1
|
Dong Y, Fu C, Zhang T, Dong F, Zhu X, Jiang Y, Hu L, Pan L, Li J, Zhang X. Abnormal hippocampal neurogenesis and impaired social recognition memory in two neurodevelopmental models of schizophrenia. FASEB J 2024; 38:e70138. [PMID: 39485229 DOI: 10.1096/fj.202401258rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024]
Abstract
Schizophrenia is a mental disorder characterized by cognitive impairments, specifically deficits in social recognition memory (SRM). Abnormal hippocampal neurogenesis has been implicated in these deficits. Due to the pathogenetic heterogeneity of schizophrenia, studying the hippocampal neurogenesis and SRM in two models with prenatal and postnatal defects could enhance our understanding of the developmental aspects of the biological susceptibility to schizophrenia. Here, we examined SRM and hippocampal neurogenesis in two developmental models of schizophrenia: gestational exposure to methylazoxymethanol acetate (MAM) and postweaning social isolation (SI). Our findings revealed that gestational MAM exposure induced a decay of social memory while postweaning SI led to impaired social memory formation and decay. In both models, we observed a correlation between impaired SRM and reduced number, and abnormal differentiation and less complex morphology of hippocampal neurons. These results indicate that aberrant hippocampal neurogenesis may contribute to the deficits of SRM in both models, and these abnormalities may be a shared underlying pathogenic factor in developmental models of schizophrenia, regardless of prenatal and postnatal pathogenesis.
Collapse
Affiliation(s)
- Yibei Dong
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Chuxian Fu
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Ting Zhang
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Feiyuan Dong
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Xinyi Zhu
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Yingke Jiang
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Linbo Hu
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Luhui Pan
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Jiawen Li
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Xiaoqin Zhang
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
2
|
Speechley EM, Ashton BJ, Foo YZ, Simmons LW, Ridley AR. Meta-analyses reveal support for the Social Intelligence Hypothesis. Biol Rev Camb Philos Soc 2024; 99:1889-1908. [PMID: 38855980 DOI: 10.1111/brv.13103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
The Social Intelligence Hypothesis (SIH) is one of the leading explanations for the evolution of cognition. Since its inception a vast body of literature investigating the predictions of the SIH has accumulated, using a variety of methodologies and species. However, the generalisability of the hypothesis remains unclear. To gain an understanding of the robustness of the SIH as an explanation for the evolution of cognition, we systematically searched the literature for studies investigating the predictions of the SIH. Accordingly, we compiled 103 studies with 584 effect sizes from 17 taxonomic orders. We present the results of four meta-analyses which reveal support for the SIH across interspecific, intraspecific and developmental studies. However, effect sizes did not differ significantly between the cognitive or sociality metrics used, taxonomy or testing conditions. Thus, support for the SIH is similar across studies using neuroanatomy and cognitive performance, those using broad categories of sociality, group size and social interactions, across taxonomic groups, and for tests conducted in captivity or the wild. Overall, our meta-analyses support the SIH as an evolutionary and developmental explanation for cognitive variation.
Collapse
Affiliation(s)
- Elizabeth M Speechley
- Centre for Evolutionary Biology, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Benjamin J Ashton
- Centre for Evolutionary Biology, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- School of Natural Sciences, Macquarie University, 205b Culloden Road, Sydney, NSW, 2109, Australia
| | - Yong Zhi Foo
- Centre for Evolutionary Biology, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Leigh W Simmons
- Centre for Evolutionary Biology, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Amanda R Ridley
- Centre for Evolutionary Biology, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| |
Collapse
|
3
|
Flatt EE, Alderman SL. 11β-Hydroxysteroid dehydrogenase type 2 may mediate the stress-specific effects of cortisol on brain cell proliferation in adult zebrafish (Danio rerio). J Exp Biol 2024; 227:jeb248020. [PMID: 39092490 PMCID: PMC11418181 DOI: 10.1242/jeb.248020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Stress-induced increases in cortisol can stimulate or inhibit brain cell proliferation, but the mechanisms behind these opposing effects are unknown. We tested the hypothesis that 11β-hydroxysteroid dehydrogenase type 2 (Hsd11b2), a glucocorticoid-inactivating enzyme expressed in neurogenic regions of the adult zebrafish brain, mitigates cortisol-induced changes to brain cell proliferation, using one of three stress regimes: a single 1 min air exposure (acute stress), two air exposures spaced 24 h apart (repeat acute stress) or social subordination (chronic stress). Plasma cortisol was significantly elevated 15 min after air exposure and recovered within 24 h after acute and repeat acute stress, whereas subordinate fish exhibited significant and sustained elevations relative to dominant fish for 24 h. Following acute stress, brain hsd11b2 transcript abundance was elevated up to 6 h after a single air exposure but was unchanged by repeat acute stress or social subordination. A sustained increase in brain Hsd11b2 protein levels occurred after acute stress, but not after repeat or chronic stress. Following acute and repeat acute stress, brain pcna transcript abundance (a marker of cell proliferation) exhibited a prolonged elevation, but was unaffected by social subordination. Interestingly, the number of telencephalic BrdU+ cells increased in fish after a single air exposure but was unchanged by repeat acute stress. Following acute and repeat acute stress, fish expressed lower brain glucocorticoid and mineralocorticoid receptor (gr and mr) transcript abundance while subordinate fish exhibited no changes. Taken together, these results demonstrate stressor-specific regulation of Hsd11b2 in the zebrafish brain that could modulate rates of cortisol catabolism contributing to observed differences in brain cell proliferation.
Collapse
Affiliation(s)
- E. Emma Flatt
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, Canada, N1G 2W1
| | - Sarah L. Alderman
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, Canada, N1G 2W1
| |
Collapse
|
4
|
Paull GC, Lee CJ, Tyler CR. Beyond compliance: harmonising research and husbandry practices to improve experimental reproducibility using fish models. Biol Rev Camb Philos Soc 2024; 99:253-264. [PMID: 37817305 DOI: 10.1111/brv.13020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/12/2023]
Abstract
Reproducibility in animal research is impacted by the environment, by husbandry practices in the laboratory and by the animals' provenance. These factors, however, are often not adequately considered by researchers. A disconnect between researchers and animal care staff can result in inappropriate housing and husbandry decisions for scientific studies with those animals. This is especially the case for the research in neuro-behaviour, epigenetics, and the impact of climate change, as heritable phenotypic, behavioural or physiological changes are known to result from the animals' environmental housing, husbandry, provenance and prior experience. This can lead to greater variation (even major differences) in data outcomes among studies, driving scientific uncertainties. Herein, we illustrate some of the endpoints measured in fish studies known to be intrinsically linked to the environment and husbandry conditions and assess the significance of housing and husbandry practice decisions for research adopting these endpoints for different fish species. We highlight the different priorities and challenges faced by researchers and animal care staff and how harmonising their activities and building greater understanding of how husbandry practices affect the fish will improve reproducibility in research outcomes. We furthermore illustrate how improving engagement between stakeholders, including regulatory bodies, can better underpin fish husbandry decisions and where researchers could help to drive best husbandry practices through their own research with fish models.
Collapse
Affiliation(s)
- Gregory C Paull
- Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Carole J Lee
- Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Charles R Tyler
- Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| |
Collapse
|
5
|
Mair A, Bisazza A, Dadda M, Santacà M. Shortest path choice in zebrafish (Danio rerio). Behav Processes 2024; 214:104983. [PMID: 38081441 DOI: 10.1016/j.beproc.2023.104983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
Many animals regularly move between different locations within their home range. During these journeys, individuals are expected to use the shortest path, because this strategy minimizes energy expenditure and reduces exposure to adverse conditions, such as predation. The ability to find the shortest distance route has been demonstrated in ants, migrating birds and a few mammals. We investigated whether a freshwater fish, Danio rerio, exhibits this ability. Small groups of zebrafish were allowed to move between the two compartments of their tank using two paths differing in length. They developed a preference for the shorter path gradually over the six days of the experiment. Subjects' accuracy in choosing the shorter path varied from below 60%, with a 20% length disparity, to 80% when one path was twice as long as the other. In a second experiment, zebrafish were initially allowed to practice in groups and then tested individually. We found evidence of individual and sex differences in performance, with males performing more accurately than females. However, due to our experimental design, we cannot conclusively determine whether these differences are indeed cognitive or influenced by confounding factors during the group phase of the experiment.
Collapse
Affiliation(s)
- Alberto Mair
- Department of General Psychology, University of Padova, Padova, Italy
| | - Angelo Bisazza
- Department of General Psychology, University of Padova, Padova, Italy; Padua Neuroscience Center, University of Padova, Padova, Italy
| | - Marco Dadda
- Department of General Psychology, University of Padova, Padova, Italy
| | - Maria Santacà
- Department of General Psychology, University of Padova, Padova, Italy.
| |
Collapse
|
6
|
Differential Impact of Social Isolation and Space Radiation on Behavior and Motor Learning in Rats. Life (Basel) 2023; 13:life13030826. [PMID: 36983981 PMCID: PMC10057568 DOI: 10.3390/life13030826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
Future missions to Mars will expose astronauts to several physical and psychological challenges, including exposure to space radiation (SR) and periods of social isolation (SI). Each of these stressors, in addition to mission demands, can affect physical and mental health and potentially negatively impact sleep. The effects of inflight stressors may vary with duration and time course, may be additive or compounding, and may vary with individual differences in stress resilience and vulnerability. Determining how individual differences in resilient and vulnerable phenotypes respond to these mission-related stressors and their interactions with sleep will be crucial for understanding and mitigating factors that can impair performance and damage health. Here, we examined the single and compound effects of ground-based analogs of SI and SR on sensorimotor performance on the balance beam (BB) in rats. We also assessed emotional responses during testing on the BB and assessed whether sensorimotor performance and emotion varied with individual differences in stress resiliency using our established animal model in which stress produces different effects on sleep. Results showed differential motor performance and emotion in the BB task between SI and SR, and these varied based on resilient and vulnerable phenotypes. These findings demonstrate that identifying individual responses to stressors that can impact sensorimotor ability and behavior necessary to perform mission-related tasks will be of particular importance for astronauts and future missions. Should similar effects occur in humans, there may be considerable inter-individual variability in the impact that flight stressors have on the mental health of astronauts and their ability to perform mission-related tasks.
Collapse
|
7
|
Social Enhancement of Adult Neurogenesis in Zebrafish is Not Regulated by Cortisol. Neuroscience 2023; 509:51-62. [PMID: 36400322 DOI: 10.1016/j.neuroscience.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022]
Abstract
In Mammals adult neurogenesis is influenced by environmental conditions, and the glucocorticoid hormones (GC) play a major role in this regulation. In contrast in fish, the study of the effects of cortisol on the regulation of environmental driven adult neurogenesis has produced conflicting results. While in some species elevated cortisol levels impair cell proliferation, in others, it promotes cell proliferation and differentiation. This lack of consistency may be explained by methodological differences across studies, namely in the stimuli and/or cortisol treatments used. Here, we tested the effects of the social environment on adult neurogenesis, considering a positive and a negative social context, and different durations of cortisol exposure. We hypothesise that there is an interaction between the valence of the social environment and cortisol, such that elevated acute cortisol experienced during social interactions only have a detrimental effect on neurogenesis in negative social contexts. Therefore, fish were exposed to a positive (conspecific shoal) or negative (predator) social experience, and the interaction between the valence of the social context and cortisol exposure (acute and chronic) was tested. Our results indicate that adult neurogenesis is modulated by the social environment, with the number of newly generated cells being dependent on the valence of the social information (positive > negative). These effects were independent of cortisol, either for acute or chronic exposure, highlighting the social environment as a key factor in the modulation of cell proliferation in the adult zebrafish brain, and rejecting a role for cortisol in this modulation.
Collapse
|
8
|
Guo H, Näslund J, Thomassen ST, Larsen MH. Social isolation affects intra-specific interaction behaviour and reduces the size of the cerebellar brain region in juvenile Atlantic salmon Salmo salar. JOURNAL OF FISH BIOLOGY 2022; 101:711-721. [PMID: 35751413 PMCID: PMC9540882 DOI: 10.1111/jfb.15142] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
The social environment can affect the development of behavioural phenotypes in fish, and it is important to understand such effects when rearing fish in artificial environments. Here, the authors test the effects of spatial isolation on social interaction propensity and brain development in hatchery-reared Atlantic salmon Salmo salar L. Salmon reared in isolation generally stayed further away from a conspecific in a standardized intruder test than conspecifics reared together in groups. Isolated salmon also tended to be more active in an intruder test, albeit non-significantly so, but this pattern was not detected in open-field tests without an intruding conspecific. The cerebellar brain region was relatively smaller in isolated salmon, suggesting that the brain was developing differently in these fish. Therefore, some features of the behavioural and neural phenotype are affected by rearing in isolation. These effects should be considered when rearing salmon, particularly for experimental purposes as it may affect results of laboratory studies on behavioural expression and brain size.
Collapse
Affiliation(s)
- Haoyu Guo
- Fisheries CollegeZhejiang Ocean UniversityZhoushanChina
| | - Joacim Näslund
- Department of Aquatic ResourcesInstitute of Freshwater Research, Swedish University of Agricultural SciencesDrottningholmSweden
| | | | - Martin H. Larsen
- Danish Centre for Wild SalmonRandersDenmark
- National Institute of Aquatic ResourcesSection for Freshwater Fisheries Ecology, Technical University of DenmarkSilkeborgDenmark
| |
Collapse
|
9
|
Mazzitelli-Fuentes LS, Román FR, Castillo Elías JR, Deleglise EB, Mongiat LA. Spatial Learning Promotes Adult Neurogenesis in Specific Regions of the Zebrafish Pallium. Front Cell Dev Biol 2022; 10:840964. [PMID: 35646912 PMCID: PMC9130729 DOI: 10.3389/fcell.2022.840964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Adult neurogenesis could be considered as a homeostatic mechanism that accompanies the continuous growth of teleost fish. As an alternative but not excluding hypothesis, adult neurogenesis would provide a form of plasticity necessary to adapt the brain to environmental challenges. The zebrafish pallium is a brain structure involved in the processing of various cognitive functions and exhibits extended neurogenic niches throughout the periventricular zone. The involvement of neuronal addition as a learning-related plastic mechanism has not been explored in this model, yet. In this work, we trained adult zebrafish in a spatial behavioral paradigm and evaluated the neurogenic dynamics in different pallial niches. We found that adult zebrafish improved their performance in a cue-guided rhomboid maze throughout five daily sessions, being the fish able to relearn the task after a rule change. This cognitive activity increased cell proliferation exclusively in two pallial regions: the caudal lateral pallium (cLP) and the rostral medial pallium (rMP). To assessed whether learning impinges on pallial adult neurogenesis, mitotic cells were labeled by BrdU administration, and then fish were trained at different periods of adult-born neuron maturation. Our results indicate that adult-born neurons are being produced on demand in rMP and cLP during the learning process, but with distinct critical periods among these regions. Next, we evaluated the time course of adult neurogenesis by pulse and chase experiments. We found that labeled cells decreased between 4 and 32 dpl in both learning-sensitive regions, whereas a fraction of them continues proliferating over time. By modeling the population dynamics of neural stem cells (NSC), we propose that learning increases adult neurogenesis by two mechanisms: driving a chained proliferation of labeled NSC and rescuing newborn neurons from death. Our findings highlight adult neurogenesis as a conserved source of brain plasticity and shed light on a rostro-caudal specialization of pallial neurogenic niches in adult zebrafish.
Collapse
Affiliation(s)
- Laura S Mazzitelli-Fuentes
- Departamento de Física Médica, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, San Carlos de Bariloche, Argentina.,Consejo Nacional de Investigaciones Científicas y, Técnicas, Argentina.,Instituto Balseiro, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
| | - Fernanda R Román
- Departamento de Física Médica, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, San Carlos de Bariloche, Argentina.,Consejo Nacional de Investigaciones Científicas y, Técnicas, Argentina.,Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, San Carlos de Bariloche, Argentina
| | - Julio R Castillo Elías
- Departamento de Física Médica, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, San Carlos de Bariloche, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Emilia B Deleglise
- Departamento de Física Médica, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, San Carlos de Bariloche, Argentina.,Consejo Nacional de Investigaciones Científicas y, Técnicas, Argentina.,Instituto Balseiro, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
| | - Lucas A Mongiat
- Departamento de Física Médica, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, San Carlos de Bariloche, Argentina.,Consejo Nacional de Investigaciones Científicas y, Técnicas, Argentina
| |
Collapse
|
10
|
Yuan Y, Jiang S, Yan S, Chen L, Zhang M, Zhang J, Luo L, Jeong J, Lv Y, Jiang K. The relationship between depression and social avoidance of college students: A moderated mediation model. J Affect Disord 2022; 300:249-254. [PMID: 34979184 DOI: 10.1016/j.jad.2021.12.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/02/2021] [Accepted: 12/30/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND The fact that depression and anxiety are highly prevalent and often co-occur has been well documented. The present study hypothesized that loneliness and interpersonal trust mediate the relationship between depression and social anxiety, with self-esteem playing a moderating role. METHODS 1021 college students completed the interpersonal trust scale (ITS), self-rating depression scale (SDS), UCLA loneliness scale, self-esteem scale (SES), and social avoidance and distress (SAD) scale. And descriptive statistical analysis and correlation analysis, structural equation model analysis were conducted. RESULTS 1) The correlations between depression, loneliness, interpersonal trust, self-esteem and social avoidance were all statistically significant. 2) Loneliness and interpersonal trust mediated the relationship between depression and social avoidance. 3) Self-esteem moderated the relationship between interpersonal trust and social avoidance. Specifically, compared with individuals who had high self-esteem, social avoidance in those with low self-esteem individuals was more susceptible to the effects of interpersonal trust. LIMITATIONS First, the questionnaire data may be influenced by social approval. Second, most of the participants were college students. Finally, the causal relationship between the variables could not be inferred. CONCLUSIONS The results indicated that loneliness and interpersonal trust played mediating roles between depression and social avoidance, and the relationship between interpersonal trust and social avoidance was moderated by self-esteem. It provides a new way to explain the mechanism of depression, and a new perspective for the clinical intervention of depression, that is, from the perspective of their self-experience and self-esteem.
Collapse
Affiliation(s)
- Ye Yuan
- School of Mental Health, Wenzhou Medical University, Wenzhou, China; Department of Statistics, Chonnam National University, Korea
| | - Suhua Jiang
- School of Mathematics and Statistics, Shangqiu Normal University, Shangqiu, China
| | - Shiyu Yan
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Lei Chen
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Min Zhang
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Jiaying Zhang
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Lilan Luo
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Jaesik Jeong
- Department of Statistics, Chonnam National University, Korea.
| | - Yijun Lv
- School of Mental Health, Wenzhou Medical University, Wenzhou, China.
| | - Ke Jiang
- School of Mental Health, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
11
|
An Environment Enrichment Redesign of Seclusion Rooms. CURRENT PSYCHOLOGY 2022. [DOI: 10.1007/s12144-021-02648-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Dunlap KD, Teles MC, Oliveira RF. Social stimuli increase activity of adult-born cells in the telencephalon of zebrafish, Danio rerio. J Exp Biol 2021; 224:271856. [PMID: 34223613 DOI: 10.1242/jeb.242253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022]
Abstract
Fish have particularly high levels of adult neurogenesis, and this high neurogenic capacity may contribute to behavioural plasticity. While it is known that adult-born cells can differentiate into neurons and incorporate into neural circuits, it is unclear whether they are responsive to external stimuli and thereby capable of contributing to behavioural change. We tested whether cells born in the telencephalon of adult zebrafish are activated by social stimuli. We marked cell birth with BrdU and, 40 d later, exposed fish to brief (15 min) visual social stimuli and assayed cellular activity through immunolocalization of phospho-S6-ribosomal protein (pS6). BrdU+/pS6+ colabeled cells were found in six brain regions, and, in four regions (D, Dl, Dm and POA), the number of colabelled cells and fraction of BrdU+ cells that labeled pS6+ increased during social stimulation. These results are consistent with the hypothesis that adult-born neurons play a role in regulating social behaviour.
Collapse
Affiliation(s)
- Kent D Dunlap
- Department of Biology, Trinity College, Hartford, CT 06106, USA
| | | | - Rui F Oliveira
- Instituto Gulbenkian de Ciências, Oeiras, Portugal.,ISPA-Instituto Universitário, Lisboa, Portugal.,Champalimaud Neuroscience Programme, Lisboa, Portugal
| |
Collapse
|
13
|
Zupanc GKH. Adult neurogenesis in the central nervous system of teleost fish: from stem cells to function and evolution. J Exp Biol 2021; 224:258585. [PMID: 33914040 DOI: 10.1242/jeb.226357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Adult neurogenesis, the generation of functional neurons from adult neural stem cells in the central nervous system (CNS), is widespread, and perhaps universal, among vertebrates. This phenomenon is more pronounced in teleost fish than in any other vertebrate taxon. There are up to 100 neurogenic sites in the adult teleost brain. New cells, including neurons and glia, arise from neural stem cells harbored both in neurogenic niches and outside these niches (such as the ependymal layer and parenchyma in the spinal cord, respectively). At least some, but not all, of the stem cells are of astrocytic identity. Aging appears to lead to stem cell attrition in fish that exhibit determinate body growth but not in those with indeterminate growth. At least in some areas of the CNS, the activity of the neural stem cells results in additive neurogenesis or gliogenesis - tissue growth by net addition of cells. Mathematical and computational modeling has identified three factors to be crucial for sustained tissue growth and correct formation of CNS structures: symmetric stem cell division, cell death and cell drift due to population pressure. It is hypothesized that neurogenesis in the CNS is driven by continued growth of corresponding muscle fibers and sensory receptor cells in the periphery to ensure a constant ratio of peripheral versus central elements. This 'numerical matching hypothesis' can explain why neurogenesis has ceased in most parts of the adult CNS during the evolution of mammals, which show determinate growth.
Collapse
Affiliation(s)
- Günther K H Zupanc
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|