1
|
Ma N, Wang H, Lu Q, Liu J, Fan X, Li L, Wang Q, Li X, Yu B, Zhang Y, Gao J. Temporal changes of neurobehavior in rats following varied blast magnitudes and screening of serum biomarkers in early stage of brain injury. Sci Rep 2024; 14:30023. [PMID: 39627295 PMCID: PMC11615197 DOI: 10.1038/s41598-024-81656-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/28/2024] [Indexed: 12/06/2024] Open
Abstract
Blast neurotrauma has been linked to impairments in higher-order cognitive functions, including memory, attention, and mood. Current literature is limited to a single overpressure exposure or repeated exposures at the same level of overpressure. In this study, a rodent model of primary blast neurotrauma was employed to determine the pressure at which acute and chronic neurological alterations occurred. Three pressure magnitudes (low, moderate and high) were used to evaluate injury thresholds. A biology shock tube (BST) was used to simulate shock waves with overpressures of 60 kPa, 90 kPa and 120 kPa respectively. Neurological behavior of the rats was assessed by the Multi-Conditioning System (MCS) at 1 d, 7 d, 28 d and 90 d after shock wave exposure. Serum dopamine (DA), 5-hydroxytryptamine (5-HT), brain-derived neurotrophic factor (BDNF) and gamma-aminobutyric acid (GABA) were measured at the same time points. The proteomic analysis was conducted to identify potentially vulnerable cellular and molecule targets of serum in the immediate post-exposure period. Results revealed that: (1) Anxiety-like behavior increased significantly at 1 d post-exposure in the medium and high overpressure (90 kPa, 120 kPa) groups, returned to baseline at 7 days, and anxiety-like behavior in the high overpressure groups re-emerged at 28 d and 90 d. (2) High overpressure (120 kPa) impaired learning and memory in the immediate post-exposure period. (3) The serum DA levels decreased significantly at 1 d post-exposure in the medium and high overpressure groups; The 5-HT levels decreased significantly at 1 d and 90 d in the high overpressure groups; The BDNF levels decreased significantly at 90 d in the high overpressure groups. (4) Proteomic analysis identified 38, 306, and 57 differentially expressed proteins in serum following low, medium and high overpressure exposures, respectively. Two co-expressed proteins were validated. Functional analysis revealed significant enrichment of 1121, 2096, and 1121 Gene Ontology (GO) items and 33, 47, and 26 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, indicating extensive molecular responses to overpressure in the early phase. These findings suggest that exposure, even at moderate levels, can induce persistent neurobehavioral and molecular alterations, highlighting the need for further research into the long-term consequences of blast neurotrauma.
Collapse
Affiliation(s)
- Ning Ma
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China
| | - Hong Wang
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China
| | - Qing Lu
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China
| | - Jinren Liu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Xiaolin Fan
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China
| | - Liang Li
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China
| | - Qi Wang
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China
| | - Xiao Li
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China
| | - Boya Yu
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China
| | - Yuhao Zhang
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China
| | - Junhong Gao
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China.
| |
Collapse
|
2
|
Margolis AE, Liu R, Conceição VA, Ramphal B, Pagliaccio D, DeSerisy ML, Koe E, Selmanovic E, Raudales A, Emanet N, Quinn AE, Beebe B, Pearson BL, Herbstman JB, Rauh VA, Fifer WP, Fox NA, Champagne FA. Convergent neural correlates of prenatal exposure to air pollution and behavioral phenotypes of risk for internalizing and externalizing problems: Potential biological and cognitive pathways. Neurosci Biobehav Rev 2022; 137:104645. [PMID: 35367513 DOI: 10.1016/j.neubiorev.2022.104645] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/20/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023]
Abstract
Humans are ubiquitously exposed to neurotoxicants in air pollution, causing increased risk for psychiatric outcomes. Effects of prenatal exposure to air pollution on early emerging behavioral phenotypes that increase risk of psychopathology remain understudied. We review animal models that represent analogues of human behavioral phenotypes that are risk markers for internalizing and externalizing problems (behavioral inhibition, behavioral exuberance, irritability), and identify commonalities among the neural mechanisms underlying these behavioral phenotypes and the neural targets of three types of air pollutants (polycyclic aromatic hydrocarbons, traffic-related air pollutants, fine particulate matter < 2.5 µm). We conclude that prenatal exposure to air pollutants increases risk for behavioral inhibition and irritability through distinct mechanisms, including altered dopaminergic signaling and hippocampal morphology, neuroinflammation, and decreased brain-derived neurotrophic factor expression. Future studies should investigate these effects in human longitudinal studies incorporating complex exposure measurement methods, neuroimaging, and behavioral characterization of temperament phenotypes and neurocognitive processing to facilitate efforts aimed at improving long-lasting developmental benefits for children, particularly those living in areas with high levels of exposure.
Collapse
Affiliation(s)
- Amy E Margolis
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Ran Liu
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Vasco A Conceição
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Bruce Ramphal
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - David Pagliaccio
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Mariah L DeSerisy
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Emily Koe
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Ena Selmanovic
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Amarelis Raudales
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Nur Emanet
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Aurabelle E Quinn
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Beatrice Beebe
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Brandon L Pearson
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Julie B Herbstman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA; Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Virginia A Rauh
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, USA; Heilbrunn Department of Population & Family Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - William P Fifer
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Pediatrics, Columbia University Medical Center, New York, NY, USA; Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | - Nathan A Fox
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA; Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD, USA
| | | |
Collapse
|
3
|
Fernández-Teruel A, Oliveras I, Cañete T, Rio-Álamos C, Tapias-Espinosa C, Sampedro-Viana D, Sánchez-González A, Sanna F, Torrubia R, González-Maeso J, Driscoll P, Morón I, Torres C, Aznar S, Tobeña A, Corda MG, Giorgi O. Neurobehavioral and neurodevelopmental profiles of a heuristic genetic model of differential schizophrenia- and addiction-relevant features: The RHA vs. RLA rats. Neurosci Biobehav Rev 2021; 131:597-617. [PMID: 34571119 DOI: 10.1016/j.neubiorev.2021.09.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/26/2022]
Abstract
The Roman High- (RHA) and Low-(RLA) avoidance rat lines/strains were generated through bidirectional selective breeding for rapid (RHA) vs. extremely poor (RLA) two-way active avoidance acquisition. Compared with RLAs and other rat strains/stocks, RHAs are characterized by increased impulsivity, deficits in social behavior, novelty-induced hyper-locomotion, impaired attentional/cognitive abilities, vulnerability to psychostimulant sensitization and drug addiction. RHA rats also exhibit decreased function of the prefrontal cortex (PFC) and hippocampus, increased functional activity of the mesolimbic dopamine system and a dramatic deficit of central metabotropic glutamate-2 (mGlu2) receptors (due to a stop codon mutation at cysteine 407 in Grm2 -cys407*-), along with increased density of 5-HT2A receptors in the PFC, alterations of several synaptic markers and increased density of pyramidal "thin" (immature) dendrític spines in the PFC. These characteristics suggest an immature brain of RHA rats, and are reminiscent of schizophrenia features like hypofrontality and disruption of the excitation/inhibition cortical balance. RHA rats represent a promising heuristic model of neurodevelopmental schizophrenia-relevant features and comorbidity with drug addiction vulnerability.
Collapse
Affiliation(s)
- Alberto Fernández-Teruel
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain.
| | - Ignasi Oliveras
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Toni Cañete
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | | | - Carles Tapias-Espinosa
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Daniel Sampedro-Viana
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Ana Sánchez-González
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Francesco Sanna
- Department of Life and Environmental Sciences (DiSVA), University of Cagliari, Italy
| | - Rafael Torrubia
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Javier González-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | | | - Ignacio Morón
- Department of Psychobiology and Centre of Investigation of Mind, Brain, and Behaviour (CIMCYC), University of Granada, Spain
| | - Carmen Torres
- Department of Psychology, University of Jaén, 23071, Jaén, Spain.
| | - Susana Aznar
- Research Laboratory for Stereology and Neuroscience, Bispebjerg Copenhagen University Hospital, 2400, Copenhagen, Denmark.
| | - Adolf Tobeña
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain.
| | - Maria G Corda
- Department of Life and Environmental Sciences (DiSVA), University of Cagliari, Italy.
| | - Osvaldo Giorgi
- Department of Life and Environmental Sciences (DiSVA), University of Cagliari, Italy.
| |
Collapse
|
4
|
Fernández-Teruel A, Tobeña A. Revisiting the role of anxiety in the initial acquisition of two-way active avoidance: pharmacological, behavioural and neuroanatomical convergence. Neurosci Biobehav Rev 2020; 118:739-758. [PMID: 32916193 DOI: 10.1016/j.neubiorev.2020.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 07/10/2020] [Accepted: 08/15/2020] [Indexed: 12/19/2022]
Abstract
Two-way active avoidance (TWAA) acquisition constitutes a particular case of approach -avoidance conflict for laboratory rodents. The present article reviews behavioural, psychopharmacological and neuroanatomical evidence accumulated along more than fifty years that provides strong support to the contention that anxiety is critical in the transition from CS (conditioned stimulus)-induced freezing to escape/avoidance responses during the initial stages of TWAA acquisition. Thus, anxiolytic drugs of different types accelerate avoidance acquisition, anxiogenic drugs impair it, and avoidance during these initial acquisition stages is negatively associated with other typical measures of anxiety. In addition behavioural and developmental treatments that reduce or increase anxiety/stress respectively facilitate or impair TWAA acquisition. Finally, evidence for the regulation of TWAA acquisition by septo-hippocampal and amygdala-related mechanisms is discussed. Collectively, the reviewed evidence gives support to the initial acquisition of TWAA as a paradigm with considerable predictive and (in particular) construct validity as an approach-avoidance conflict-based rodent anxiety model.
Collapse
Affiliation(s)
- Alberto Fernández-Teruel
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, 08193-Bellaterra, Barcelona, Spain.
| | - Adolf Tobeña
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, 08193-Bellaterra, Barcelona, Spain
| |
Collapse
|