1
|
Seike M, Ashida H, Yamashita Y. Dietary flaxseed oil induces production of adiponectin in visceral fat and prevents obesity in mice. Nutr Res 2024; 121:16-27. [PMID: 38039598 DOI: 10.1016/j.nutres.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 12/03/2023]
Abstract
Induction of obesity by dietary fats and oils differs according to the type of fat. Adiponectin is believed to be related to obesity prevention. We hypothesized that flaxseed oil is important for preventing obesity and producing adiponectin. To clarify this hypothesis, we investigated the relationship between obesity and different fat sources in mice fed diets with 6 types of fat and oils. C57BL/6J mice were given a control diet containing 5% corn oil or a high-fat diet containing 20% of either lard, palm oil, rapeseed oil, oleate-rich safflower oil, corn oil, or flaxseed oil for 14 weeks. In another experiment, mice were given a control diet and rosiglitazone (10 mg/kg body weight) by oral gavage for 1 week. At the end of study, plasma adiponectin and expression of fatty acid metabolism-related factors in white and brown adipose tissue and the liver were measured. Dietary flaxseed oil, which is rich in α-linolenic acid, did not induce obesity. Flaxseed oil resulted in increased β-oxidation-related factors in epididymal white adipose tissue, decreased fatty acid synthesis-related factors in the liver, and thermogenesis-related factor in brown adipose tissue following increase of plasma adiponectin. The results suggested that increase in plasma adiponectin after intake of flaxseed oil may be due to altered expression of AdipoQ and peroxisome proliferator-activated receptor γ in epididymal white adipose tissue. Flaxseed oil increased expression of adiponectin in visceral fat and regulated obesity-controlling fatty acid metabolism-related factors in white adipose tissue and liver, and thermogenesis-related factor in brown adipose tissue.
Collapse
Affiliation(s)
- Midori Seike
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, 657-8501, Japan
| | - Hitoshi Ashida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, 657-8501, Japan
| | - Yoko Yamashita
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, 657-8501, Japan.
| |
Collapse
|
2
|
Matsumura S, Miyakita M, Miyamori H, Kyo S, Shima D, Yokokawa T, Ishikawa F, Sasaki T, Jinno T, Tanaka J, Goto T, Momma K, Ishihara K, Berdeaux R, Inoue K. Stimulation of G s signaling in MC4R cells by DREADD increases energy expenditure, suppresses food intake, and increases locomotor activity in mice. Am J Physiol Endocrinol Metab 2022; 322:E436-E445. [PMID: 35344393 DOI: 10.1152/ajpendo.00439.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The melanocortin 4 receptor (MC4R) plays an important role in the regulation of appetite and energy expenditure in humans and rodents. Impairment of MC4R signaling causes severe obesity. MC4R mainly couples to the G-protein Gs. Ligand binding to MC4R activates adenylyl cyclase resulting in increased intracellular cAMP levels. cAMP acts as a secondary messenger, regulating various cellular processes. MC4R can also couple with Gq and other signaling pathways. Therefore, the contribution of MC4R/Gs signaling to energy metabolism and appetite remains unclear. To study the effect of Gs signaling activation in MC4R cells on whole body energy metabolism and appetite, we generated a novel mouse strain that expresses a Gs-coupled designer receptors exclusively activated by designer drugs [Gs-DREADD (GsD)] selectively in MC4R-expressing cells (GsD-MC4R mice). Chemogenetic activation of the GsD by a designer drug [deschloroclozapine (DCZ); 0.01∼0.1 mg/kg body wt] in MC4R-expressing cells significantly increased oxygen consumption and locomotor activity. In addition, GsD activation significantly reduced the respiratory exchange ratio, promoting fatty acid oxidation, but did not affect core (rectal) temperature. A low dose of DCZ (0.01 mg/kg body wt) did not suppress food intake, but a high dose of DCZ (0.1 mg/kg body wt) suppressed food intake in MC4R-GsD mice, although either DCZ dose (0.01 or 0.1 mg/kg body wt) did not affect food intake in the control mice. In conclusion, the current study demonstrated that the stimulation of Gs signaling in MC4R-expressing cells increases energy expenditure and locomotor activity and suppresses appetite.NEW & NOTEWORTHY We report that Gs signaling in melanocortin 4 receptor (MC4R)-expressing cells regulates energy expenditure, appetite, and locomotor activity. These findings shed light on the mechanism underlying the regulation of energy metabolism and locomotor activity by MC4R/cAMP signaling.
Collapse
Affiliation(s)
- Shigenobu Matsumura
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Department of Clinical Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Osaka, Japan
| | - Motoki Miyakita
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Haruka Miyamori
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Satomi Kyo
- Department of Food and Nutrition, Kyoto Women's University, Kyoto, Japan
| | - Daisuke Shima
- Department of Food Sciences and Human Nutrition, Faculty of Agriculture, Ryukoku University, Shiga, Japan
| | - Takumi Yokokawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Fuka Ishikawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tsutomu Sasaki
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tomoki Jinno
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Jin Tanaka
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tsuyoshi Goto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Keiko Momma
- Department of Food and Nutrition, Kyoto Women's University, Kyoto, Japan
| | - Kengo Ishihara
- Department of Food Sciences and Human Nutrition, Faculty of Agriculture, Ryukoku University, Shiga, Japan
| | - Rebecca Berdeaux
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Kazuo Inoue
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Matsumura S, Ishikawa F, Sasaki T, Terkelsen MK, Ravnskjaer K, Jinno T, Tanaka J, Goto T, Inoue K. Loss of CREB Coactivator CRTC1 in SF1 Cells Leads to Hyperphagia and Obesity by High-fat Diet But Not Normal Chow Diet. Endocrinology 2021; 162:6224280. [PMID: 33846709 PMCID: PMC8682520 DOI: 10.1210/endocr/bqab076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/19/2022]
Abstract
Cyclic adenosine monophosphate responsive element-binding protein-1-regulated transcription coactivator-1 (CRTC1) is a cytoplasmic coactivator that translocates to the nucleus in response to cyclic adenosine monophosphate. Whole-body knockdown of Crtc1 causes obesity, resulting in increased food intake and reduced energy expenditure. CRTC1 is highly expressed in the brain; therefore, it might play an important role in energy metabolism via the neuronal pathway. However, the precise mechanism by which CRTC1 regulates energy metabolism remains unknown. Here, we showed that mice lacking CRTC1, specifically in steroidogenic factor-1 expressing cells (SF1 cells), were sensitive to high-fat diet (HFD)-induced obesity, exhibiting hyperphagia and increased body weight gain. The loss of CRTC1 in SF1 cells impaired glucose metabolism. Unlike whole-body CRTC1 knockout mice, SF1 cell-specific CRTC1 deletion did not affect body weight gain or food intake in normal chow feeding. Thus, CRTC1 in SF1 cells is required for normal appetite regulation in HFD-fed mice. CRTC1 is primarily expressed in the brain. Within the hypothalamus, which plays an important role for appetite regulation, SF1 cells are only found in ventromedial hypothalamus. RNA sequencing analysis of microdissected ventromedial hypothalamus samples revealed that the loss of CRTC1 significantly changed the expression levels of certain genes. Our results revealed the important protective role of CRTC1 in SF1 cells against dietary metabolic imbalance.
Collapse
Affiliation(s)
- Shigenobu Matsumura
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Kyoto, 611-0011, Japan
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Osaka, 583-8555, Japan
- Correspondence: Shigenobu Matsumura, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino, Osaka, 583-8555, Japan. E-mail:
| | - Fuka Ishikawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Kyoto, 611-0011, Japan
| | - Tsutomu Sasaki
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Mike Krogh Terkelsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Kim Ravnskjaer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Tomoki Jinno
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Kyoto, 611-0011, Japan
| | - Jin Tanaka
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Kyoto, 611-0011, Japan
| | - Tsuyoshi Goto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Kyoto, 611-0011, Japan
| | - Kazuo Inoue
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Kyoto, 611-0011, Japan
| |
Collapse
|
4
|
Sindete M, Rharass T, Gbankoto A, Yemoa A, Ganfon H, Adjagba M, Ribou AC. A comparative study of Caesalpinia bonduc (L.) Roxb. root extracts on sexual behaviour in male Wistar rats. Andrologia 2021; 53:e14072. [PMID: 33891329 DOI: 10.1111/and.14072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/17/2022] Open
Abstract
Caesalpinia bonduc is among the traditionally used plant in Benin, for its enhancement of male sexual activity. This study was undertaken to investigate the potential effect of C. bonduc root extracts on sexual behaviour of male Wistar rats. For that, thirty-six rats were allocated into six groups and orally treated with dimethyl sulfoxide (control), Sildenafil citrate (standard) and C. bonduc root extracts (hexane, ethyl acetate, ethanol and methanol) orally for twenty-eight days. Sexual behaviour parameters such as intromission frequency, intromission latency, mount latency and mount frequency were evaluated on day 0, 14 and 28. After the study completion, the body and reproductive organ weights as well as testicular histology and testosterone level were recorded. C. bonduc root extracts treatments had no significant effect on the body weight of rats. Enhancement in sexual behaviour was observed in ethanolic extract treated rats. An significant increase in mount frequency and intromission frequency as well as significant reduction in mount latency and intromission latency were noticed for ethanolic extract. The same extract caused an improvement in testosterone levels, relative testes weight and histological architecture. The findings demonstrate the aphrodisiac potential of C. bonduc root and lend support to the folkloric use as aphrodisiac.
Collapse
Affiliation(s)
- Mariette Sindete
- Laboratory of Experimental Physiology and Pharmacology, Faculty of Sciences and Technology, Abomey-Calavi University, Cotonou, Benin.,Institute of Modeling and Analysis in Geo-environmental and Health, Perpignan Via Domitia University, Perpignan, France
| | - Tareck Rharass
- Institute of Modeling and Analysis in Geo-environmental and Health, Perpignan Via Domitia University, Perpignan, France
| | - Adam Gbankoto
- Laboratory of Experimental Physiology and Pharmacology, Faculty of Sciences and Technology, Abomey-Calavi University, Cotonou, Benin.,Institute of Modeling and Analysis in Geo-environmental and Health, Perpignan Via Domitia University, Perpignan, France
| | - Achille Yemoa
- Laboratory of Pharmaceuticals and Analytical Chemistry, Faculty of Health Sciences, Abomey-Calavi University, Cotonou, Benin
| | - Habib Ganfon
- Laboratory of Pharmacognosy and Phytotherapy, Faculty of Health Sciences, Abomey-Calavi University, Cotonou, Benin
| | - Marius Adjagba
- Laboratory of Histology, Reproductive Biology, Cytogenetics and Medical Genetics, Faculty of Health Sciences, Abomey-Calavi University, Cotonou, Benin
| | - Anne-Cécile Ribou
- Institute of Modeling and Analysis in Geo-environmental and Health, Perpignan Via Domitia University, Perpignan, France
| |
Collapse
|
5
|
Kotańska M, Mika K, Sałaciak K, Wheeler L, Sapa J, Kieć-Kononowicz K, Pytka K. Pitolisant protects mice chronically treated with corticosterone from some behavioral but not metabolic changes in corticosterone-induced depression model. Pharmacol Biochem Behav 2020; 196:172974. [PMID: 32565240 DOI: 10.1016/j.pbb.2020.172974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/09/2020] [Accepted: 06/17/2020] [Indexed: 01/12/2023]
Abstract
PURPOSE Histamine H3 receptor ligands may have antidepressant and anxiolytic effects. They can also compensate for metabolic disorders, which affect glucose or triglyceride levels. In previous studies, we have shown that pitolisant, a histamine H3 receptor antagonist/inverse agonist and σ1 receptor agonist, prevented the development of certain metabolic and depressive-like disorders in mice that have been treated chronically with olanzapine. METHODS As a continuation of our previous experiments, this study aimed to investigate the antidepressant- and anxiolytic-like activity of pitolisant in mice using the corticosterone-induced depression model. The forced swim and the elevated plus maze tests were used as behavioral endpoints. We also studied the effect pitolisant had on the level of acetoacetic acid in the urine as well as the glucose tolerance and body weight of the mice that had been administered corticosterone. RESULTS Pitolisant (10 mg/kg b.w.) did not prevent depressive-like behavior in mice during the chronic corticosterone administration but did counteract anxiety-like behavior, whilst fluoxetine (10 mg/kg) was shown to protect the mice from both of these behaviors. None of the treatments that were used in the study showed an effect on the locomotor activity of the mice. Pitolisant did not prevent an increase in acetoacetic acid levels in the urine, nor did it improve glucose tolerance in the tested mice. CONCLUSION Although literature data indicates that there is significant potential for finding an antidepressant and anti-diabetic drug among the histamine H3 and σ1 receptor ligands, in our study, pitolisant was shown to only slightly compensate for corticosterone-induced abnormalities. However, further research will be required to study pitolisant's anxiolytic-like activity.
Collapse
Affiliation(s)
- Magdalena Kotańska
- Department of Pharmacological Screening, Jagiellonian University Medical College, 9 Medyczna Street, PL 30-688 Krakow, Poland.
| | - Kamil Mika
- Department of Pharmacological Screening, Jagiellonian University Medical College, 9 Medyczna Street, PL 30-688 Krakow, Poland
| | - Kinga Sałaciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Lee Wheeler
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Jacek Sapa
- Department of Pharmacological Screening, Jagiellonian University Medical College, 9 Medyczna Street, PL 30-688 Krakow, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland.
| |
Collapse
|