1
|
Behrendt T, Bielitzki R, Behrens M, Jahns LM, Boersma M, Schega L. Acute psycho-physiological responses to submaximal constant-load cycling under intermittent hypoxia-hyperoxia vs. hypoxia-normoxia in young males. PeerJ 2024; 12:e18027. [PMID: 39376227 PMCID: PMC11457877 DOI: 10.7717/peerj.18027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/12/2024] [Indexed: 10/09/2024] Open
Abstract
Background Hypoxia and hyperoxia can affect the acute psycho-physiological response to exercise. Recording various perceptual responses to exercise is of particular importance for investigating behavioral changes to physical activity, given that the perception of exercise-induced pain, discomfort or unpleasure, and a low level of exercise enjoyment are commonly associated with a low adherence to physical activity. Therefore, this study aimed to compare the acute perceptual and physiological responses to aerobic exercise under intermittent hypoxia-hyperoxia (IHHT), hypoxia-normoxia (IHT), and sustained normoxia (NOR) in young, recreational active, healthy males. Methods Using a randomized, single-blinded, crossover design, 15 males (age: 24.5 ± 4.2 yrs) performed 40 min of submaximal constant-load cycling (at 60% peak oxygen uptake, 80 rpm) under IHHT (5 × 4 min hypoxia and hyperoxia), IHT (5 × 4 min hypoxia and normoxia), and NOR. Inspiratory fraction of oxygen during hypoxia and hyperoxia was set to 14% and 30%, respectively. Heart rate (HR), total hemoglobin (tHb) and muscle oxygen saturation (SmO2) of the right vastus lateralis muscle were continuously recorded during cycling. Participants' peripheral oxygen saturation (SpO2) and perceptual responses (i.e., perceived motor fatigue, effort perception, perceived physical strain, affective valence, arousal, motivation to exercise, and conflict to continue exercise) were surveyed prior, during (every 4 min), and after cycling. Prior to and after exercise, peripheral blood lactate concentration (BLC) was determined. Exercise enjoyment was ascertained after cycling. For statistical analysis, repeated measures analyses of variance were conducted. Results No differences in the acute perceptual responses were found between conditions (p ≥ 0.059, ηp 2 ≤ 0.18), while the physiological responses differed. Accordingly, SpO2 was higher during the hyperoxic periods during the IHHT compared to the normoxic periods during the IHT (p < 0.001, ηp 2 = 0.91). Moreover, HR (p = 0.005, ηp 2 = 0.33) and BLC (p = 0.033, ηp 2 = 0.28) were higher during IHT compared to NOR. No differences between conditions were found for changes in tHb (p = 0.684, ηp 2 = 0.03) and SmO2 (p = 0.093, ηp 2 = 0.16). Conclusion IHT was associated with a higher physiological response and metabolic stress, while IHHT did not lead to an increase in HR and BLC compared to NOR. In addition, compared to IHT, IHHT seems to improve reoxygenation indicated by a higher SpO2 during the hyperoxic periods. However, there were no differences in perceptual responses and ratings of exercise enjoyment between conditions. These results suggest that replacing normoxic by hyperoxic reoxygenation-periods during submaximal constant-load cycling under intermittent hypoxia reduced the exercise-related physiological stress but had no effect on perceptual responses and perceived exercise enjoyment in young recreational active healthy males.
Collapse
Affiliation(s)
- Tom Behrendt
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Robert Bielitzki
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Martin Behrens
- University of Applied Sciences for Sport and Management Potsdam, Potsdam, Germany
| | - Lina-Marie Jahns
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Malte Boersma
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Lutz Schega
- Department of Sport Science, Chair for Health and Physical Activity, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
2
|
Bagińska M, Kałuża A, Tota Ł, Piotrowska A, Maciejczyk M, Mucha D, Ouergui I, Kubacki R, Czerwińska-Ledwig O, Ambroży D, Witkowski K, Pałka T. The Impact of Intermittent Hypoxic Training on Aerobic Capacity and Biometric-Structural Indicators among Obese Women-A Pilot Study. J Clin Med 2024; 13:380. [PMID: 38256514 PMCID: PMC10816855 DOI: 10.3390/jcm13020380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Obesity, a common lifestyle-related condition, is correlated with factors like inadequate physical activity. Its connection to diverse health issues presents a significant challenge to healthcare. This pilot study investigated the effects of hypoxic training on aerobic capacity and biometric-structural indicators in obese women. The secondary objective was to determine the feasibility, effectiveness, and safety of the planned research procedures and their potential for larger-scale implementation. MATERIAL AND METHODS Forty-one non-trained women with first-degree obesity were randomly assigned to even normobaric hypoxic training (H + E), normoxic training (E), passive exposure to hypoxia (H), and a control group (C). Training sessions were conducted three times a week for four weeks (12 training sessions). Body composition parameters were assessed, metabolic thresholds were determined, and maximal oxygen consumption (VO2max) was measured before and after interventions. RESULTS The results demonstrated that training in hypoxic conditions significantly affected somatic parameters, with the H + E group achieving the best outcomes in terms of weight reduction and improvements in body composition indicators (p < 0.001). Normoxic training also induced a positive impact on body weight and body composition, although the results were less significant compared to the H + E group (p < 0.001). Additionally, training in hypoxic conditions significantly improved the aerobic capacity among the participants (p < 0.001). The H + E group achieved the best results in enhancing respiratory endurance and oxygen consumption (p < 0.001). CONCLUSIONS The results of this pilot study suggest, that hypoxic training can be effective for weight reduction and improving the aerobic capacity in obese women. Despite study limitations, these findings indicate that hypoxic training could be an innovative approach to address obesity and related conditions. Caution is advised in interpreting the results, considering both the strengths and limitations of the pilot study. Before proceeding to a larger-scale study, the main study should be expanded, including aspects such as dietary control, monitoring physical activity, and biochemical blood analysis.
Collapse
Affiliation(s)
- Małgorzata Bagińska
- Institute of Biomedical Sciences, Department of Physiology and Biochemistry, University of Physical Education in Kraków, 31-571 Kraków, Poland (T.P.)
| | - Anna Kałuża
- Institute of Biomedical Sciences, Department of Physiology and Biochemistry, University of Physical Education in Kraków, 31-571 Kraków, Poland (T.P.)
| | - Łukasz Tota
- Institute of Biomedical Sciences, Department of Physiology and Biochemistry, University of Physical Education in Kraków, 31-571 Kraków, Poland (T.P.)
| | - Anna Piotrowska
- Department of Chemistry and Biochemistry, Faculty of Physiotherapy, University of Physical Education in Krakow, 31-571 Kraków, Poland
| | - Marcin Maciejczyk
- Institute of Biomedical Sciences, Department of Physiology and Biochemistry, University of Physical Education in Kraków, 31-571 Kraków, Poland (T.P.)
| | - Dariusz Mucha
- Department of Body Renovation and Body Posture Correction, Faculty of Physical Education and Sport, University of Physical Education in Kraków, 31-571 Kraków, Poland
| | - Ibrahim Ouergui
- Sports Science, Health and Movement, High Institute of Sport and Physical Education of Kef, University of Jendouba, El Kef 7100, Tunisia
| | - Rafał Kubacki
- Faculty of Physical Education and Sports, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland
| | - Olga Czerwińska-Ledwig
- Department of Chemistry and Biochemistry, Faculty of Physiotherapy, University of Physical Education in Krakow, 31-571 Kraków, Poland
| | - Dorota Ambroży
- Institute of Sports Sciences, University of Physical Education in Krakow, 31-571 Kraków, Poland
| | - Kazimierz Witkowski
- Faculty of Physical Education and Sports, University of Physical Education in Wrocław, 31-571 Kraków, Poland
| | - Tomasz Pałka
- Institute of Biomedical Sciences, Department of Physiology and Biochemistry, University of Physical Education in Kraków, 31-571 Kraków, Poland (T.P.)
| |
Collapse
|
3
|
Li SN, Peeling P, Scott BR, Peiffer JJ, Shaykevich A, Girard O. Maintenance of internal load despite a stepwise reduction in external load during moderate intensity heart rate clamped cycling with acute graded normobaric hypoxia in males. J Sci Med Sport 2023; 26:628-635. [PMID: 37852804 DOI: 10.1016/j.jsams.2023.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/20/2023]
Abstract
OBJECTIVES To investigate the acute effects of graded hypoxia on external and internal loads during 60 min of endurance cycling at a clamped heart rate. DESIGN Repeated measures. METHODS On separate visits, 16 trained males cycled for 60 min at a clamped heart rate corresponding to 80 % of their first ventilatory threshold at sea-level and 2500 m, 3000 m, 3500 m and 4000 m simulated altitudes (inspired oxygen fractions of 20.9 %, 15.4 %, 14.5 %, 13.6 % and 12.7 %, respectively). Markers of external (power output) and internal (blood lactate concentration, tissue saturation index, cardio-respiratory and perceptual responses) loads were measured every 15 min during cycling. Neuromuscular function of knee extensors was characterised pre- and post-exercise. RESULTS Compared to sea-level (101 ± 22 W), there was a stepwise reduction in power output with increasing hypoxia severity (-17.9 ± 8.9 %, -27.1 ± 10.7 %, -34.2 ± 12.0 % and - 44.6 ± 15.1 % at 2500 m, 3000 m, 3500 m, and 4000 m, respectively, all p < 0.05). Blood lactate and tissue saturation index were not different across hypoxia severities, and perceptual responses were exacerbated at 4000 m only, with increased breathing difficulty. Knee extensor torque decreased post-exercise (-14.5 ± 9.0 %, p < 0.05), independent of condition. CONCLUSIONS Increasing hypoxia severity reduces cycling power output and arterial oxygen saturation in a stepwise fashion without affecting exercise responses between sea-level and simulated altitudes up to 3500 m despite breathing difficulty being elevated at 4000 m.
Collapse
Affiliation(s)
- Siu Nam Li
- School of Human Sciences (Exercise and Sports Science), The University of Western Australia, Australia.
| | - Peter Peeling
- School of Human Sciences (Exercise and Sports Science), The University of Western Australia, Australia; Department of Sport Science, Western Australian Institute of Sport, Australia
| | - Brendan R Scott
- Murdoch Applied Sport Science Laboratory, Discipline of Exercise Science, Murdoch University, Australia; Centre for Healthy Ageing, Murdoch University, Australia
| | - Jeremiah J Peiffer
- Murdoch Applied Sport Science Laboratory, Discipline of Exercise Science, Murdoch University, Australia; Centre for Healthy Ageing, Murdoch University, Australia
| | - Alex Shaykevich
- School of Human Sciences (Exercise and Sports Science), The University of Western Australia, Australia; Perron Institute for Neurological and Translational Science, Australia
| | - Olivier Girard
- School of Human Sciences (Exercise and Sports Science), The University of Western Australia, Australia.
| |
Collapse
|
4
|
Wu JX, He Q, Zhou Y, Xu JY, Zhang Z, Chen CL, Wu YH, Chen Y, Qin LQ, Li YH. Protective effect and mechanism of lactoferrin combined with hypoxia against high-fat diet induced obesity and non-alcoholic fatty liver disease in mice. Int J Biol Macromol 2023; 227:839-850. [PMID: 36563804 DOI: 10.1016/j.ijbiomac.2022.12.211] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Obesity is a global epidemic, it can induce glucose and lipid metabolism disorder and non-alcoholic fatty liver disease (NAFLD). This study explored a new way to control weight and improve fatty liver, namely, living in hypoxia environment and supplement with lactoferrin (Lf). Sixty male C57BL/6J mice were divided into six groups, namely, control, hypoxia, high-fat diet, hypoxia + high-fat diet, hypoxia + high-fat diet + low dose Lf intervention, and hypoxia + high-fat diet + high-dose Lf intervention. Mice in the hypoxia treatment groups were treated with approximately 11.5 % oxygen for 6 h every day for 8 weeks. Results showed that interventions combining Lf and hypoxia treatments showed better effect against obesity and NAFLD than hypoxia treatment alone. The interventions controlled weight gain in mice, improved glucolipid metabolism in mice. The combination intervention reduced cholesterol absorption by reducing the level of hydrophobic bile acids, and elevating the level of hydrophilic bile acids. Gut microbiota analysis revealed that the combination intervention considerably elevated short chain fatty acids (SCFAs)-producing bacteria level, and reduced the Desulfovibrionaceae_unclassified level. Thus, Lf combined with hypoxia intervention effectively prevents obesity and NAFLD by restoring gut microbiota composition and bile acid profile.
Collapse
Affiliation(s)
- Jiang-Xue Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical college of Soochow University, Suzhou, Jiangsu, China
| | - Qian He
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical college of Soochow University, Suzhou, Jiangsu, China
| | - Yan Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical college of Soochow University, Suzhou, Jiangsu, China
| | - Jia-Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical college of Soochow University, Suzhou, Jiangsu, China
| | - Zheng Zhang
- Center of Child Health Management, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Cai-Long Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical college of Soochow University, Suzhou, Jiangsu, China; Center of Child Health Management, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yun-Hsuan Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical college of Soochow University, Suzhou, Jiangsu, China
| | - Yun Chen
- Food Science School, Guangdong Pharmaceutical University, Zhongshan, Guangdong, China
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical college of Soochow University, Suzhou, Jiangsu, China.
| | - Yun-Hong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical college of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
5
|
Tee CCL, Cooke MB, Chong MC, Yeo WK, Camera DM. Mechanisms for Combined Hypoxic Conditioning and Divergent Exercise Modes to Regulate Inflammation, Body Composition, Appetite, and Blood Glucose Homeostasis in Overweight and Obese Adults: A Narrative Review. Sports Med 2023; 53:327-348. [PMID: 36441492 PMCID: PMC9877079 DOI: 10.1007/s40279-022-01782-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2022] [Indexed: 11/29/2022]
Abstract
Obesity is a major global health issue and a primary risk factor for metabolic-related disorders. While physical inactivity is one of the main contributors to obesity, it is a modifiable risk factor with exercise training as an established non-pharmacological treatment to prevent the onset of metabolic-related disorders, including obesity. Exposure to hypoxia via normobaric hypoxia (simulated altitude via reduced inspired oxygen fraction), termed hypoxic conditioning, in combination with exercise has been increasingly shown in the last decade to enhance blood glucose regulation and decrease the body mass index, providing a feasible strategy to treat obesity. However, there is no current consensus in the literature regarding the optimal combination of exercise variables such as the mode, duration, and intensity of exercise, as well as the level of hypoxia to maximize fat loss and overall body compositional changes with hypoxic conditioning. In this narrative review, we discuss the effects of such diverse exercise and hypoxic variables on the systematic and myocellular mechanisms, along with physiological responses, implicated in the development of obesity. These include markers of appetite regulation and inflammation, body conformational changes, and blood glucose regulation. As such, we consolidate findings from human studies to provide greater clarity for implementing hypoxic conditioning with exercise as a safe, practical, and effective treatment strategy for obesity.
Collapse
Affiliation(s)
- Chris Chow Li Tee
- Division of Research and Innovation, National Sports Institute of Malaysia, Kuala Lumpur, Malaysia
- Sport and Exercise Medicine Group, Swinburne University, Room SPW224, Mail H21, PO Box 218, Hawthorn, VIC, 3122, Australia
| | - Matthew B Cooke
- Sport and Exercise Medicine Group, Swinburne University, Room SPW224, Mail H21, PO Box 218, Hawthorn, VIC, 3122, Australia
| | - Mee Chee Chong
- Sport and Exercise Medicine Group, Swinburne University, Room SPW224, Mail H21, PO Box 218, Hawthorn, VIC, 3122, Australia
| | - Wee Kian Yeo
- Division of Research and Innovation, National Sports Institute of Malaysia, Kuala Lumpur, Malaysia
| | - Donny M Camera
- Sport and Exercise Medicine Group, Swinburne University, Room SPW224, Mail H21, PO Box 218, Hawthorn, VIC, 3122, Australia.
| |
Collapse
|
6
|
Chen S, Su H, Liu X, Li Q, Yao Y, Cai J, Gao Y, Ma Q, Shi Y. Effects of exercise training in hypoxia versus normoxia on fat-reducing in overweight and/or obese adults: A systematic review and meta-analysis of randomized clinical trials. Front Physiol 2022; 13:940749. [PMID: 36082216 PMCID: PMC9447682 DOI: 10.3389/fphys.2022.940749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Objective: Fat loss theory under various oxygen conditions has been disputed, and relevant systematic review studies are limited. This study is a systematic review and meta-analysis to assess whether hypoxic exercise training (HET) leads to superior fat-reducing compared with normoxic exercise training (NET). Methods: We searched PubMed, Web of Science, CNKI, ProQuest, Google Scholar, Cochrane Library, and EBSCOhost from inception to June 2022 for articles comparing the effects of hypoxic and normoxic exercise on body composition indicators, glycometabolism, and lipometabolism indicators in obese and overweight adults. Only randomized controlled trials (RCTs) were included. The effect sizes were expressed as standardized mean difference (SMD) and 95% confidence intervals (CI). Between-study heterogeneity was examined using the I2 test and evaluated publication bias via Egger’s regression test. The risk of bias assessment was performed for each included trial using Cochrane Evaluation Tool second generation. The meta-analysis was performed by using R 4.1.3 and RevMan 5.3 analytic tools. Results: A total of 19 RCTs with 444 subjects were analyzed according to the inclusion and exclusion criteria. Among them, there were 14 English literature and five Chinese literature. No significant difference in body composition (SMD -0.10, 95% CI -0.20 to -0.01), glycometabolism and lipid metabolism (SMD -0.01, 95% CI -0.13 to -0.10) has been observed when comparing the HET and NET groups. We only found low heterogeneity among trials assessing glycometabolism and lipometabolism (I2 = 20%, p = 0.09), and no publication bias was detected. Conclusion: The effects of HET and NET on fat loss in overweight or obese people are the same. The application and promotion of HET for fat reduction need further exploration.
Collapse
|
7
|
Bestavashvili A, Glazachev O, Bestavashvili A, Suvorov A, Zhang Y, Zhang X, Rozhkov A, Kuznetsova N, Pavlov C, Glushenkov D, Kopylov P. Intermittent Hypoxic-Hyperoxic Exposures Effects in Patients with Metabolic Syndrome: Correction of Cardiovascular and Metabolic Profile. Biomedicines 2022; 10:biomedicines10030566. [PMID: 35327372 PMCID: PMC8945352 DOI: 10.3390/biomedicines10030566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
The aim of this study was to evaluate efficacy and applicability of the “intermittent hypoxic-hyperoxic exposures at rest” (IHHE) protocol as an adjuvant method for metabolic syndrome (MS) cardiometabolic components. A prospective, single-center, randomized controlled clinical study was conducted on 65 patients with MS subject to optimal pharmacotherapy, who were randomly allocated to IHHE or control (CON) groups. The IHHE group completed a 3-week, 5 days/week program of IHHE, each treatment session lasting for 45 min. The CON group followed the same protocol, but was breathing room air through a facial mask instead. The data were collected 2 days before, and at day 2 after the 3-week intervention. As the primary endpoints, systolic (SBP) and diastolic (DBP) blood pressure at rest, as well as arterial stiffness and hepatic tissue elasticity parameters, were selected. After the trial, the IHHE group had a significant decrease in SBP and DBP (Cohen’s d = 1.15 and 0.7, p < 0.001), which became significantly lower (p < 0.001) than in CON. We have failed to detect any pre-post IHHE changes in the arterial stiffness parameters (judging by the Cohen’s d), but after the intervention, cardio-ankle vascular indexes (RCAVI and LCAVI) were significantly lowered in the IHHE group as compared with the CON. The IHHE group demonstrated a medium effect (0.68; 0.69 and 0.71 Cohen’s d) in pre-post decrease of Total Cholesterol (p = 0.04), LDL (p = 0.03), and Liver Steatosis (p = 0.025). In addition, the IHHE group patients demonstrated a statistically significant decrease in pre-post differences (deltas) of RCAVI, LCAVI, all antropometric indices, NTproBNP, Liver Fibrosis, and Steatosis indices, TC, LDL, ALT, and AST in comparison with CON (p = 0.001). The pre-post shifts in SBP, DBP, and HR were significantly correlated with the reduction degree in arterial stiffness (ΔRCAVI, ΔLCAVI), liver fibrosis and steatosis severity (ΔLFibr, ΔLS), anthropometric parameters, liver enzymes, and lipid metabolism in the IHHE group only. Our results suggested that IHHE is a safe, well-tolerated intervention which could be an effective adjuvant therapy in treatment and secondary prevention of atherosclerosis, obesity, and other components of MS that improve the arterial stiffness lipid profile and liver functional state in MS patients.
Collapse
Affiliation(s)
- Afina Bestavashvili
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (N.K.); (P.K.)
- Correspondence: ; Tel.: +7-916-338-3595
| | - Oleg Glazachev
- Department of Normal Physiology, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (O.G.); (X.Z.)
| | - Alexander Bestavashvili
- Department of Therapy, General Practice and Nuclear Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Alexander Suvorov
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.); (A.R.)
| | - Yong Zhang
- The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Department of Pharmacology, TbalHarbin Medical University, Harbin 150081, China;
| | - Xinliang Zhang
- Department of Normal Physiology, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (O.G.); (X.Z.)
| | - Andrey Rozhkov
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.); (A.R.)
| | - Natalia Kuznetsova
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (N.K.); (P.K.)
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.); (A.R.)
| | - Chavdar Pavlov
- Department of Therapy of the Institute of Professional Education, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Botkinskaya Hospital, 125284 Moscow, Russia
| | - Dmitriy Glushenkov
- Department of Internal Medicine, Gastroenterology and Hepatology, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Philippe Kopylov
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (N.K.); (P.K.)
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.S.); (A.R.)
| |
Collapse
|
8
|
Lemieux P, Birot O. Altitude, Exercise, and Skeletal Muscle Angio-Adaptive Responses to Hypoxia: A Complex Story. Front Physiol 2021; 12:735557. [PMID: 34552509 PMCID: PMC8450406 DOI: 10.3389/fphys.2021.735557] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022] Open
Abstract
Hypoxia, defined as a reduced oxygen availability, can be observed in many tissues in response to various physiological and pathological conditions. As a hallmark of the altitude environment, ambient hypoxia results from a drop in the oxygen pressure in the atmosphere with elevation. A hypoxic stress can also occur at the cellular level when the oxygen supply through the local microcirculation cannot match the cells’ metabolic needs. This has been suggested in contracting skeletal myofibers during physical exercise. Regardless of its origin, ambient or exercise-induced, muscle hypoxia triggers complex angio-adaptive responses in the skeletal muscle tissue. These can result in the expression of a plethora of angio-adaptive molecules, ultimately leading to the growth, stabilization, or regression of muscle capillaries. This remarkable plasticity of the capillary network is referred to as angio-adaptation. It can alter the capillary-to-myofiber interface, which represent an important determinant of skeletal muscle function. These angio-adaptive molecules can also be released in the circulation as myokines to act on distant tissues. This review addresses the respective and combined potency of ambient hypoxia and exercise to generate a cellular hypoxic stress in skeletal muscle. The major skeletal muscle angio-adaptive responses to hypoxia so far described in this context will be discussed, including existing controversies in the field. Finally, this review will highlight the molecular complexity of the skeletal muscle angio-adaptive response to hypoxia and identify current gaps of knowledges in this field of exercise and environmental physiology.
Collapse
Affiliation(s)
- Pierre Lemieux
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Olivier Birot
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| |
Collapse
|
9
|
Afina AB, Oleg SG, Alexander AB, Ines D, Alexander Yu S, Nikita VV, Denis ST, Daria GG, Zhang Y, Chavdar SP, Dmitriy VG, Elena AS, Irina VK, Philippe Yu K. The Effects of Intermittent Hypoxic-Hyperoxic Exposures on Lipid Profile and Inflammation in Patients With Metabolic Syndrome. Front Cardiovasc Med 2021; 8:700826. [PMID: 34513946 PMCID: PMC8429814 DOI: 10.3389/fcvm.2021.700826] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/23/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Patients with metabolic syndrome (MS) tend to suffer from comorbidities, and are often simultaneously affected by obesity, dysglycemia, hypertension, and dyslipidemia. This syndrome can be reversed if it is timely diagnosed and treated with a combination of risk factors-reducing lifestyle changes and a tailored pharmacological plan. Interval hypoxic-hyperoxic training (IHHT) has been shown as an effective program in reducing cardiovascular risk factors in patients with MS even in the absence of exercise. However, the influence of IHHT on the lipid profile and inflammation in this clinical population remains relatively unknown. Methods: A prospective, single-center, randomized controlled trial was conducted on 65 (33 men) patients with MS aged 29–74 years, who were randomly allocated to the IHHT or control (sham) experimental groups. The IHHT group completed a 3-week, 5 days/week intermittent exposure to hypoxia and hyperoxia. The control (sham) group followed the same protocol but was breathing room air instead. The primary endpoints were the lipid profile (concentrations of total cholesterol [TC], low-density lipoprotein [LDL], high-density lipoprotein [HDL], and triglycerides [TG]) and the inflammatory factors such as high-sensitivity C-reactive protein (hs-CRP), galectin-3, heat shock proteins (Hsp70). The secondary endpoints were alanine aminotransferase (ALT), aspartate aminotransferase (AST), N-terminal pro-hormone of brain natriuretic peptide level (NTproBNP), transforming growth factor beta-1 (TGF-beta1), heart-type fatty acid-binding protein (H-FABP), and nitric oxide synthase 2 (NOS2). Results: There were no differences between the two groups but the different baseline values have affected these results. The IHHT group demonstrated pre-post decrease in total cholesterol (p = 0.001), LDL (p = 0.001), and TG levels (p = 0.001). We have also found a decrease in the CRP-hs (p = 0.015) and Hsp70 (p = 0.006) in IHHT-group after intervention, and a significant decrease in pre-post (delta) differences of NTproBNP (p < 0.0001) in the IHHT group compared to the control group. In addition, the patients of the IHHT group showed a statistically significant decrease in pre-post differences of ALT and AST levels in comparison with the control group (p = 0.001). No significant IHHT complications or serious adverse events were observed. Conclusions: The IHHT appears to improve lipid profile and anti-inflammatory status. It is a safe, well-tolerated procedure, and could be recommended as an auxiliary treatment in patients suffering from MS, however, the experiment results were limited by the baseline group differences. Clinical Trial Registration:ClinicalTrials.gov, identifier [NCT04791397]. Evaluation of the effect of IHHT on vascular stiffness and elasticity of the liver tissue in patients with MS.
Collapse
Affiliation(s)
- A Bestavashvili Afina
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosofsky, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - S Glazachev Oleg
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosofsky, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - A Bestavashvili Alexander
- Department of Facultative Therapy, A.I. Nesterov of Medical Faculty, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Dhif Ines
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosofsky, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Suvorov Alexander Yu
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosofsky, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - V Vorontsov Nikita
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosofsky, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - S Tuter Denis
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosofsky, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - G Gognieva Daria
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosofsky, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Yong Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - S Pavlov Chavdar
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosofsky, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - V Glushenkov Dmitriy
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosofsky, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - A Sirkina Elena
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosofsky, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - V Kaloshina Irina
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosofsky, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Kopylov Philippe Yu
- Department of Cardiology, Functional and Ultrasound Diagnostics, N.V. Sklifosofsky, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
10
|
Trapé ÁA, Camacho-Cardenosa M, Camacho-Cardenosa A, Merellano-Navarro E, Rodrigues JAL, da Silva Lizzi EA, Sorgi CA, Papoti M, Brazo-Sayavera J. Effects of moderate-intensity intermittent hypoxic training on health outcomes of patients recovered from COVID-19: the AEROBICOVID study protocol for a randomized controlled trial. Trials 2021; 22:534. [PMID: 34384461 PMCID: PMC8358903 DOI: 10.1186/s13063-021-05414-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/30/2021] [Indexed: 12/24/2022] Open
Abstract
Background Recent studies point to a lower number and reduced severity of cases in higher altitude cities with decreased oxygen concentration. Specific literature has shown several benefits of physical training, so, in this sense, physical training with hypoxic stimulus appears as an alternative that supports the conventional treatments of the COVID-19 patient’s recovery. Thus, this study’s primary aim is to analyze the effects of moderate-intensity intermittent hypoxic training on health outcomes in COVID-19 recovered patients. Methods A clinical trial controlled double-blind study was designed. Participants (30–69 years old) will be recruited among those with moderate to severe COVID-19 symptoms, approximately 30 days after recovery. They will be included in groups according to the training (T) and recovery (R) association with hypoxia (H) or normoxia (N): (a) TH:RH, (b) TN:RH, (c) TN:RN, and last (d) the control group. The 8-week exercise bike intervention will be carried out with a gradual load increase according to the established periods, three times a week in sets of 5 min, 90 to 100% of the anaerobic threshold (AT), and a 2.5-min break. Blood will be collected for genotyping. First, after 4 weeks (partial), after 8 weeks, and later, 4 weeks after the end of the physical training intervention, participants will perform assessments. The primary outcome is the maximum oxygen consumption (VO2peak). The secondary outcomes include lung function, inflammatory mediators, hematological, autonomic parameters, AT, body composition analysis, quality of life, mental health, anthropometric measurements, and physical fitness. The statistical analysis will be executed using the linear regression model with mixed effects at a 5% significance level. Discussion This study is designed to provide evidence to support the clinical benefits of moderate-intensity intermittent hypoxic training as a part of the treatment of patients recovered from COVID-19. It may also provide evidence on the efficacy and safety of intermittent hypoxic training in different health conditions. Lastly, this study presents an innovative strategy enabling up to 16 participants in the same training session. Trial registration ClinicalTrials.gov RBR-5d7hkv. Registered after the start of inclusion on 3 November 2020 with the Brazilian Clinical Trials Registry Supplementary Information The online version contains supplementary material available at 10.1186/s13063-021-05414-2.
Collapse
Affiliation(s)
- Átila Alexandre Trapé
- School of Physical Education and Sport of Ribeirão Preto, University of Sao Paulo (USP), Ribeirão Preto, SP, Brazil. .,Ribeirão Preto College of Nursing, USP, Ribeirão Preto, SP, Brazil.
| | | | | | | | | | | | - Carlos Arterio Sorgi
- Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Marcelo Papoti
- School of Physical Education and Sport of Ribeirão Preto, University of Sao Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Javier Brazo-Sayavera
- Department of Sports and Computer Science, Universidad Pablo de Olavide (UPO), Seville, Spain.,PDU EFISAL, Centro Universitario Regional Noreste, Universidad de la República, Rivera, Uruguay
| |
Collapse
|
11
|
Effects of Acute Hypoxia on Lactate Thresholds and High-Intensity Endurance Performance-A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147573. [PMID: 34300024 PMCID: PMC8306057 DOI: 10.3390/ijerph18147573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 11/24/2022]
Abstract
The present project compared acute hypoxia-induced changes in lactate thresholds (methods according to Mader, Dickhuth and Cheng) with changes in high-intensity endurance performance. Six healthy and well-trained volunteers conducted graded cycle ergometer tests in normoxia and in acute normobaric hypoxia (simulated altitude 3000 m) to determine power output at three lactate thresholds (PMader, PDickhuth, PCheng). Subsequently, participants performed two maximal 30-min cycling time trials in normoxia (test 1 for habituation) and one in normobaric hypoxia to determine mean power output (Pmean). PMader, PDickhuth and PCheng decreased significantly from normoxia to hypoxia by 18.9 ± 9.6%, 18.4 ± 7.3%, and 11.5 ± 6.0%, whereas Pmean decreased by only 8.3 ± 1.6%. Correlation analyses revealed strong and significant correlations between Pmean and PMader (r = 0.935), PDickhuth (r = 0.931) and PCheng (r = 0.977) in normoxia and partly weaker significant correlations between Pmean and PMader (r = 0.941), PDickhuth (r = 0.869) and PCheng (r = 0.887) in hypoxia. PMader and PCheng did not significantly differ from Pmean (p = 0.867 and p = 0.784) in normoxia, whereas this was only the case for PCheng (p = 0.284) in hypoxia. Although investigated in a small and select sample, the results suggest a cautious application of lactate thresholds for exercise intensity prescription in hypoxia.
Collapse
|
12
|
Post-exercise cardiac autonomic and cardiovascular responses to heart rate-matched and work rate-matched hypoxic exercise. Eur J Appl Physiol 2021; 121:2061-2076. [PMID: 33811558 PMCID: PMC8192382 DOI: 10.1007/s00421-021-04678-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/28/2021] [Indexed: 12/30/2022]
Abstract
Purpose This study investigated the effect of performing hypoxic exercise at the same heart rate (HR) or work rate (WR) as normoxic exercise on post-exercise autonomic and cardiovascular responses. Methods Thirteen men performed three interval-type exercise sessions (5 × 5-min; 1-min recovery): normoxic exercise at 80% of the WR at the first ventilatory threshold (N), hypoxic exercise (FiO2 = 14.2%) at the same WR as N (H-WR) and hypoxic exercise at the same HR as N (H-HR). Autonomic and cardiovascular assessments were conducted before and after exercise, both at rest and during active squat–stand manoeuvres (SS). Results Compared to N, H-WR elicited a higher HR response (≈ 83% vs ≈ 75%HRmax, p < 0.001) and H-HR a reduced exercise WR (− 21.1 ± 9.3%, p < 0.001). Cardiac parasympathetic indices were reduced 15 min after exercise and recovered within 60 min in N and H-HR, but not after H-WR (p < 0.05). H-WR altered cardiac baroreflex sensitivity (cBRS) both at rest and during SS (specifically in the control of blood pressure fall during standing phases) in the first 60 min after the exercise bout (p < 0.05). Post-exercise hypotension (PEH) did not occur in H-HR (p > 0.05) but lasted longer in H-WR than in N (p < 0.05). Conclusions Moderate HR-matched hypoxic exercise mimicked post-exercise autonomic responses of normoxic exercise without resulting in significant PEH. This may relate to the reduced WR and the limited associated mechanical/metabolic strain. Conversely, WR-matched hypoxic exercise impacted upon post-exercise autonomic and cardiovascular responses, delaying cardiac autonomic recovery, temporarily decreasing cBRS and evoking prolonged PEH. Supplementary Information The online version contains supplementary material available at 10.1007/s00421-021-04678-5.
Collapse
|
13
|
Kayser B, Verges S. Hypoxia, energy balance, and obesity: An update. Obes Rev 2021; 22 Suppl 2:e13192. [PMID: 33470528 DOI: 10.1111/obr.13192] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
Because of the enduring rise in the prevalence of obesity worldwide, there is continued interest in hypoxia as a mechanism underlying the pathophysiology of obesity and its comorbidities and as a potential therapeutic adjunct for the management of the disease. Lifelong exposure to altitude is accompanied by a lower risk for obesity, whereas altitude sojourns are generally associated with a loss of body mass. A negative energy balance upon exposure to hypoxia can be due to a combination of changes in determinants of energy expenditure (resting metabolic rate and physical activity energy expenditure) and energy intake (appetite). Over the past 15 years, the potential therapeutic interest of hypobaric or normobaric hypoxic exposure in individuals with obesity-to lower body mass and improve health status-has become an active field of research. Various protocols have been implemented, using actual altitude sojourns or intermittent normobaric hypoxic exposures, at rest or in association with physical activity. Although several studies suggest benefits on body mass and cardiovascular and metabolic variables, further investigations are required before recommending hypoxic exposure in obesity management programs. Future studies should also better clarify the effects of hypoxia on appetite, the intestinal microbiota, and finally on overall energy balance.
Collapse
Affiliation(s)
- Bengt Kayser
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Samuel Verges
- HP2 Laboratory, INSERM, Grenoble Alpes University Hospital, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
14
|
Hobbins L, Hunter S, Gaoua N, Girard O. Short-Term Perceptually Regulated Interval-Walk Training in Hypoxia and Normoxia in Overweight-to-Obese Adults. JOURNAL OF SPORTS SCIENCE AND MEDICINE 2021; 20:45-51. [PMID: 33707985 DOI: 10.52082/jssm.2021.45] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/23/2020] [Indexed: 12/26/2022]
Abstract
We compared the effects of short-term, perceptually regulated training using interval-walking in hypoxia vs. normoxia on health outcomes in overweight-to-obese individuals. Sixteen adults (body mass index = 33 ± 3 kg·m-2) completed eight interval-walk training sessions (15 × 2 min walking at a rating of perceived exertion of 14 on the 6-20 Borg scale; rest = 2 min) either in hypoxia (FiO2 = 13.0%) or normoxia during two weeks. Treadmill velocity did not differ between conditions or over time (p > 0.05). Heart rate was higher in hypoxia (+10 ± 3%; p = 0.04) during the first session and this was consistent within condition across the training sessions (p > 0.05). Similarly, arterial oxygen saturation was lower in hypoxia than normoxia (83 ± 1% vs. 96 ± 1%, p < 0.05), and did not vary over time (p > 0.05). After training, perceived mood state (+11.8 ± 2.7%, p = 0.06) and exercise self-efficacy (+10.6 ± 4.1%, p = 0.03) improved in both groups. Body mass (p = 0.55), systolic and diastolic blood pressure (p = 0.19 and 0.07, respectively) and distance covered during a 6-min walk test (p = 0.11) did not change from pre- to post-tests. Short term (2-week) perceptually regulated interval-walk training sessions with or without hypoxia had no effect on exercise-related sensations, health markers and functional performance. This mode and duration of hypoxic conditioning does not appear to modify the measured cardiometabolic risk factors or improve exercise tolerance in overweight-to-obese individuals.
Collapse
Affiliation(s)
- Liam Hobbins
- Sport and Exercise Science Research Centre (SESRC), London South Bank University, London, UK
| | - Steve Hunter
- Sport and Exercise Science Research Centre (SESRC), London South Bank University, London, UK
| | - Nadia Gaoua
- Sport and Exercise Science Research Centre (SESRC), London South Bank University, London, UK
| | - Olivier Girard
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
15
|
Chacaroun S, Borowik A, Vega-Escamilla Y Gonzalez I, Doutreleau S, Wuyam B, Belaidi E, Tamisier R, Pepin JL, Flore P, Verges S. Hypoxic Exercise Training to Improve Exercise Capacity in Obese Individuals. Med Sci Sports Exerc 2021; 52:1641-1649. [PMID: 32102058 DOI: 10.1249/mss.0000000000002322] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Combining exercise training with hypoxic exposure has been recently proposed as a new therapeutic strategy to improve health status of obese individuals. Whether hypoxic exercise training (HET) provides greater benefits regarding body composition and cardiometabolic parameters than normoxic exercise training (NET) remains, however, unclear. We hypothesized that HET would induce greater improvement in exercise capacity and health status than NET in overweight and obese individuals. METHODS Twenty-three subjects were randomized into 8-wk HET (11 men and 1 woman; age, 52 ± 12 yr; body mass index, 31.2 ± 2.4 kg·m) or NET (eight men and three women; age, 56 ± 11 yr; body mass index, 31.8 ± 3.2 kg·m) programs (three sessions per week; constant-load cycling at 75% of maximal heart rate; target arterial oxygen saturation for HET 80%, FiO2 ~0.13, i.e., ~3700 m a.s.l.). Before and after the training programs, the following evaluations were performed: incremental maximal and submaximal cycling tests, measurements of pulse-wave velocity, endothelial function, fasting glucose, insulin and lipid profile, blood NO metabolites and oxidative stress, and determination of body composition by magnetic resonance imaging. RESULTS Peak oxygen consumption and maximal power output increased significantly after HET only (peak oxygen consumption HET + 10% ± 11% vs NET + 1% ± 10% and maximal power output HET + 11% ± 7% vs NET + 3% ± 10%, P < 0.05). Submaximal exercise responses improved similarly after HET and NET. Except diastolic blood pressure which decreased significantly after both HET and NET, no change in vascular function, metabolic status and body composition was observed after training. Hypoxic exercise training only increased nitrite and reduced superoxide dismutase concentrations. CONCLUSIONS Combining exercise training and hypoxic exposure may provide some additional benefits to standard NET for obese individual health status.
Collapse
Affiliation(s)
- Samarmar Chacaroun
- Université Grenoble Alpes, Inserm, Grenoble Alpes University Hospital, Grenoble, FRANCE
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Girard O, Matic Girard I, Peeling P. Hypoxic conditioning: a novel therapeutic solution for load-compromised individuals to achieve similar exercise benefits by doing less mechanical work! Br J Sports Med 2020; 55:944-945. [PMID: 33132206 DOI: 10.1136/bjsports-2020-103186] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2020] [Indexed: 11/03/2022]
Affiliation(s)
- Olivier Girard
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Western Australia, Australia
| | - Ivana Matic Girard
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Peter Peeling
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Western Australia, Australia.,Western Australian Institute of Sport, Mt Claremont, Perth, Western Australia, Australia
| |
Collapse
|
17
|
Du X, Girard O, Fan RY, Ma F. Effects of Active and Passive Hypoxic Conditioning for 6 Weeks at Different Altitudes on Blood Lipids, Leptin, and Weight in Rats. High Alt Med Biol 2020; 21:243-248. [PMID: 32486854 DOI: 10.1089/ham.2020.0003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Du, Xia, Olivier Girard, Rong yun Fan, and Fuhai Ma. Effects of active and passive hypoxic conditioning for 6 weeks at different altitudes on blood lipids, leptin, and weight in rats. High Alt Med Biol. 21:243-248, 2020. Objective: To compare the effects of 6 weeks of passive and active hypoxia exposure at different altitudes on lipid metabolism, leptin, and weight in rats. Materials and Methods: Eighty 9-week-old male Wistar rats were assigned to either non-exercise or exercise groups. Each group was subdivided into four categories (n = 10) based on hypoxic conditions: 0, 2200, 2200 + 3500, and 3500 m. Rats in the exercise group trained on a treadmill at a speed of 20-22 m/min (0° incline) for 90 minutes, 5 days per week for 6 weeks. Serum lipid and leptin levels and weight were measured following the intervention. Results: Total cholesterol (-8.2% ± 3.5%), low-density lipoproteins (-29.8% ± 8.1%), and triglyceride (TG) levels (-17.2% ± 3.8%) were lower, and high-density lipoproteins (+7.4% ± 4.0%) higher, in exercise versus non-exercise groups (all p < 0.001), independent of condition. TG levels were lower at altitude (-13.0% ± 27.3%, -10.9% ± 24.3%, and -9.2% ± 20.9% at 2200, 2200 + 3500, and 3500 m, respectively) compared to 0 m (p < 0.001). Hypoxic exposure decreased leptin with lower values at 2200 + 3500 m and 3500 m compared to 0 m (p < 0.05). Weight was lower in exercise than non-exercise groups (-8.2% ± 21.0%; p < 0.001), and at altitude (-2.7% ± 2.6%, -5.5% ± 3.7%, and -5.7% ± 2.7% at 2200, 2200 + 3500, and 3500 m, respectively) compared to 0 m. Conclusion: Regular aerobic exercise led to more favorable responses for lipid metabolism and weight control than the oxygenation conditions the animals are in.
Collapse
Affiliation(s)
- Xia Du
- Qinghai Provincial Sports Bureau, Qinghai Institute of Sports Science, Xi Ning, China.,China National Sports Bureau, Key Lab of Plateau Training in China General Administration of Sport, Xi Ning, China.,Qinghai Provincial Department of Science and Technology, Excellent Key Lab of Plateau Physical Education in Qinghai Province, Xi Ning, China
| | - Olivier Girard
- School of Human Sciences, Exercise and Sport Science, The University of Western Australia, Crawley, Australia
| | - Rong Yun Fan
- Qinghai Provincial Sports Bureau, Qinghai Institute of Sports Science, Xi Ning, China.,China National Sports Bureau, Key Lab of Plateau Training in China General Administration of Sport, Xi Ning, China.,Qinghai Provincial Department of Science and Technology, Excellent Key Lab of Plateau Physical Education in Qinghai Province, Xi Ning, China
| | - Fuhai Ma
- Qinghai Provincial Sports Bureau, Qinghai Institute of Sports Science, Xi Ning, China.,China National Sports Bureau, Key Lab of Plateau Training in China General Administration of Sport, Xi Ning, China.,Qinghai Provincial Department of Science and Technology, Excellent Key Lab of Plateau Physical Education in Qinghai Province, Xi Ning, China
| |
Collapse
|
18
|
Camacho-Cardenosa A, Camacho-Cardenosa M, Brazo-Sayavera J, Timón R, González-Custodio A, Olcina G. Repeated sprint in hypoxia as a time-metabolic efficient strategy to improve physical fitness of obese women. Eur J Appl Physiol 2020; 120:1051-1061. [PMID: 32185477 DOI: 10.1007/s00421-020-04344-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/10/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE To investigate the training and detraining effects of two different hypoxic high-intensity protocols on cardiorespiratory fitness, maximal fat oxidation and energy contribution in obese women. METHODS 82 obese women completed a 12-week training of: (1) interval training in hypoxia (IHT; n = 19; 3 min at 90%Wmax: 3 min at 55-65%Wmax; FiO2 = 17.2%), (2) interval training in normoxia (INT; n = 20; 3 min at 90%Wmax: 3 min at 55-65%Wmax), (3) repeated sprint training in hypoxia (RSH; n = 22; 30 s at 130%Wmax: 3 min at 55-65%Wmax; FiO2 = 17.2%), and (4) repeated sprint training in normoxia (RSN; n = 21; 30 s at 130%Wmax: 3 min at 55-65%Wmax). VO2max, workload, time to exhaustion and heart rate were assessed at baseline, after completion of 36 training sessions over 12 weeks and after 4 weeks of detraining. RESULTS Hypoxic training (IHT and RSH) showed a significant positive effect on absolute (p < 0.001) and relative maximal oxygen uptake (p < 0.001) as well as VT2 (%VO2max; p < 0.001). Both IHT and RSH showed significantly higher values of absolute VO2max (IHT: + 26.63%; RSH: + 19.79%) and relative VO2max (IHT: + 27.95%; RSH: + 19.94%) between baseline and post-exercise (p < 0.001). VO2max (IHT: + 21.74%; RSH: + 17.65%) and relative VO2max (IHT: + 23.53%; RSH: + 17.15%) remained significantly higher after detraining in IHT and RSH (p < 0.001). CONCLUSION A larger improvement in cardiorespiratory fitness has been observed after high-intensity interval training under normobaric hypoxia. As interval training or repeated sprint training did not show a significant effect, RSH might provide a time-metabolic effective strategy in this population.
Collapse
Affiliation(s)
- Alba Camacho-Cardenosa
- Faculty of Sport Sciences, University of Extremadura, Av. Universidad, s/n, 10003, Cáceres, Spain
| | - Marta Camacho-Cardenosa
- Faculty of Sport Sciences, University of Extremadura, Av. Universidad, s/n, 10003, Cáceres, Spain.
| | | | - Rafael Timón
- Faculty of Sport Sciences, University of Extremadura, Av. Universidad, s/n, 10003, Cáceres, Spain
| | - Adrián González-Custodio
- Faculty of Sport Sciences, University of Extremadura, Av. Universidad, s/n, 10003, Cáceres, Spain
| | - Guillermo Olcina
- Faculty of Sport Sciences, University of Extremadura, Av. Universidad, s/n, 10003, Cáceres, Spain
| |
Collapse
|
19
|
|