1
|
Zuloaga DG, Lafrican JJ, Zuloaga KL. Androgen regulation of behavioral stress responses and the hypothalamic-pituitary-adrenal axis. Horm Behav 2024; 162:105528. [PMID: 38503191 PMCID: PMC11144109 DOI: 10.1016/j.yhbeh.2024.105528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/02/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
Testosterone is a powerful steroid hormone that can impact the brain and behavior in various ways, including regulating behavioral and neuroendocrine (hypothalamic-pituitary-adrenal (HPA) axis) stress responses. Early in life androgens can act to alter development of brain regions associated with stress regulation, which ultimately impacts the display of stress responses later in life. Adult circulating androgens can also influence the expression of distinct genes and proteins that regulate stress responses. These changes in the brain are hypothesized to underlie the potent effects of androgens in regulating behaviors related to stress and stress-induced activation of the HPA axis. Androgens can induce alterations in these functions through direct binding to the androgen receptor (AR) or following conversion to estrogens and subsequent binding to estrogen receptors including estrogen receptor alpha (ERα), beta (ERβ), and G protein-coupled estrogen receptor 1 (GPER1). In this review, we focus on the role of androgens in regulating behavioral and neuroendocrine stress responses at different stages of the lifespan and the sex hormone receptors involved in regulating these effects. We also review the specific brain regions and cell phenotypes upon which androgens are proposed to act to regulate stress responses with an emphasis on hypothalamic and extended amygdala subregions. This knowledge of androgen effects on these neural systems is critical for understanding how sex hormones regulate stress responses.
Collapse
Affiliation(s)
- Damian G Zuloaga
- Department of Psychology, University at Albany, Albany, NY, USA.
| | | | - Kristen L Zuloaga
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| |
Collapse
|
2
|
Hodes GE, Bangasser D, Sotiropoulos I, Kokras N, Dalla C. Sex Differences in Stress Response: Classical Mechanisms and Beyond. Curr Neuropharmacol 2024; 22:475-494. [PMID: 37855285 PMCID: PMC10845083 DOI: 10.2174/1570159x22666231005090134] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 10/20/2023] Open
Abstract
Neuropsychiatric disorders, which are associated with stress hormone dysregulation, occur at different rates in men and women. Moreover, nowadays, preclinical and clinical evidence demonstrates that sex and gender can lead to differences in stress responses that predispose males and females to different expressions of similar pathologies. In this curated review, we focus on what is known about sex differences in classic mechanisms of stress response, such as glucocorticoid hormones and corticotrophin-releasing factor (CRF), which are components of the hypothalamicpituitary- adrenal (HPA) axis. Then, we present sex differences in neurotransmitter levels, such as serotonin, dopamine, glutamate and GABA, as well as indices of neurodegeneration, such as amyloid β and Tau. Gonadal hormone effects, such as estrogens and testosterone, are also discussed throughout the review. We also review in detail preclinical data investigating sex differences caused by recentlyrecognized regulators of stress and disease, such as the immune system, genetic and epigenetic mechanisms, as well neurosteroids. Finally, we discuss how understanding sex differences in stress responses, as well as in pharmacology, can be leveraged into novel, more efficacious therapeutics for all. Based on the supporting evidence, it is obvious that incorporating sex as a biological variable into preclinical research is imperative for the understanding and treatment of stress-related neuropsychiatric disorders, such as depression, anxiety and Alzheimer's disease.
Collapse
Affiliation(s)
| | - Debra Bangasser
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| | - Ioannis Sotiropoulos
- Institute of Biosciences & Applications NCSR “Demokritos”, Athens, Greece
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Rybka KA, Lafrican JJ, Rosinger ZJ, Ariyibi DO, Brooks MR, Jacobskind JS, Zuloaga DG. Sex differences in androgen receptor, estrogen receptor alpha, and c-Fos co-expression with corticotropin releasing factor expressing neurons in restrained adult mice. Horm Behav 2023; 156:105448. [PMID: 38344954 PMCID: PMC10861933 DOI: 10.1016/j.yhbeh.2023.105448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 02/15/2024]
Abstract
Gonadal hormone actions through androgen receptor (AR) and estrogen receptor alpha (ERα) regulate sex differences in hypothalamic-pituitary-adrenal (HPA) axis responsivity and stress-related behaviors. Here we tested whether corticotropin releasing factor (CRF) expressing neurons, which are widely known to regulate neuroendocrine and behavioral stress responses, co-express AR and ERα as a potential mechanism for gonadal hormone regulation of these responses. Using Crh-IRES-Cre::Ai9 reporter mice we report high co-localization of AR in CRF neurons within the medial preoptic area (MPOA), bed nucleus of the stria terminalis (BST), medial amygdala (MeA), and ventromedial hypothalamus (VMH), moderate levels within the central amygdala (CeA) and low levels in the paraventricular hypothalamus (PVN). Sex differences in CRF/AR co-expression were found in the principal nucleus of the BST (BSTmpl), CeA, MeA, and VMH (males>females). CRF co-localization with ERα was generally lower relative to AR co-localization. However, high co-expression was found within the MPOA, AVPV, and VMH, with moderate co-expression in the arcuate nucleus (ARC), BST, and MeA and low levels in the PVN and CeA. Sex differences in CRF/ERα co-localization were found in the BSTmpl and PVN (males>females). Finally, we assessed neural activation of CRF neurons in restraint-stressed mice and found greater CRF/c-Fos co-expression in females in the BSTmpl and periaqueductal gray, while co-expression was higher in males within the ARC and dorsal CA1. Given the known role of CRF in regulating behavioral stress responses and the HPA axis, AR/ERα co-expression and sex-specific activation of CRF cell groups indicate potential mechanisms for modulating sex differences in these functions.
Collapse
Affiliation(s)
- Krystyna A Rybka
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Jennifer J Lafrican
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Zachary J Rosinger
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Deborah O Ariyibi
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Mecca R Brooks
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Jason S Jacobskind
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Damian G Zuloaga
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America.
| |
Collapse
|
4
|
De Guzman RM, Rosinger ZJ, Rybka KA, Jacobskind JS, Thrasher CA, Caballero AL, Sturm KL, Sharif MS, Abbas MS, Parra KE, Zuloaga KL, Justice NJ, Zuloaga DG. Changes in Corticotropin-Releasing Factor Receptor Type 1, Co-Expression with Tyrosine Hydroxylase and Oxytocin Neurons, and Anxiety-Like Behaviors across the Postpartum Period in Mice. Neuroendocrinology 2023; 113:795-810. [PMID: 36917957 PMCID: PMC10389801 DOI: 10.1159/000530156] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/07/2023] [Indexed: 03/15/2023]
Abstract
INTRODUCTION Corticotropin-releasing factor and its primary receptor (CRFR1) are critical regulators of behavioral and neuroendocrine stress responses. CRFR1 has also been associated with stress-related behavioral changes in postpartum mice. Our previous studies indicate dynamic changes in CRFR1 levels and coupling of CRFR1 with tyrosine hydroxylase (TH) and oxytocin (OT) neurons in postpartum mice. In this study, we aimed to determine the time course of these changes during the postpartum period. METHODS Using a CRFR1-GFP reporter mouse line, we compared postpartum mice at five time points with nulliparous mice. We performed immunohistochemistry to assess changes in CRFR1 levels and changes in co-expression of TH/CRFR1-GFP and OT/CRFR1-GFP across the postpartum period. Mice were also assessed for behavioral stress responses in the open field test. RESULTS Relative to nulliparous mice, CRFR1 levels were elevated in the anteroventral periventricular nucleus (AVPV/PeN) but were decreased in the medial preoptic area from postpartum day 1 (P1) through P28. In the paraventricular hypothalamus (PVN), there is a transient decline in CRFR1 mid-postpartum with a nadir at P7. Co-localization of CRFR1 with TH-expressing neurons was also altered with a transient decrease found in the AVPV/PeN at P7 and P14. Co-expression of CRFR1 and OT neurons of the PVN and supraoptic nucleus was dramatically altered with virtually no co-expression found in nulliparous mice, but levels increased shortly after parturition and peaked near P21. A transient decrease in open field center time was found at P7, indicating elevated anxiety-like behavior. CONCLUSION This study revealed various changes in CRFR1 across the postpartum period, which may contribute to stress-related behavior changes in postpartum mice.
Collapse
Affiliation(s)
| | | | | | | | - Christina A. Thrasher
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | | | | | | | | | | | - Kristen L. Zuloaga
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Nicholas J. Justice
- Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine of McGovern Medical School, University of Texas Health Sciences Center, Houston, TX, USA
| | | |
Collapse
|
5
|
Yao D, Lu Y, Li L, Wang S, Mu Y, Ding C, Zhao J, Liu M, Xu M, Wu H, Dou C, Zhu Z, Li H. Prolactin and glucocorticoid receptors in the prefrontal cortex are associated with anxiety-like behavior in prenatally stressed adolescent offspring rats. J Neuroendocrinol 2023; 35:e13231. [PMID: 36683309 DOI: 10.1111/jne.13231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022]
Abstract
Prenatal stress (PS) causes anxiety in mothers and their offspring and chewing is a commonly observed behavior during maternal stress. Prolactin (PRL) is an anti-anxiety factor that suppresses the hypothalamic-pituitary-adrenal axis. Here, we studied the roles of PRL, corticosterone (CORT), and their receptors in PS-induced anxiety-like behavior in dams and their offspring. We further investigated whether chewing during maternal stress could prevent PS-induced harmful consequences. Pregnant rats were randomly divided into PS, PS + chewing, and control groups. Anxiety-like behaviors of dams and their adolescent offspring were assessed using the open field test and elevated plus maze. Serum levels of PRL and CORT were measured by ELISA. Expression of mRNA and protein of PRLR and glucocorticoid receptor (GR) in the prefrontal cortex (PFC) were evaluated by qRT-PCR and western blotting, respectively. Compared to the control rats, dams and their female offspring, but not male offspring, in the PS group showed increased anxiety-like behaviors. The PS-affected rats had a lower serum PRL level and increased PRLR expression in the PFC. In contrast, these rats had a higher serum CORT level and decreased GR expression in the PFC. Chewing ameliorated anxiety-like behaviors and counteracted stress-induced changes in serum PRL and CORT, as well as the expression of their receptors in the PFC. Conclusion: PS-induced anxiety-like behavior is associated with changes in the serum levels of PRL and CORT and expression of their receptors in the PFC. Moreover, chewing blunts the hormonal and receptor changes and may serve as an effective stress-coping method for preventing PS-induced anxiety-like behavior.
Collapse
Affiliation(s)
- Dan Yao
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Yong Lu
- Central Laboratory, Heze Medical College, Heze, Shandong, China
| | - Li Li
- Central Laboratory, Heze Medical College, Heze, Shandong, China
| | - Shan Wang
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Yingjun Mu
- Central Laboratory, Heze Medical College, Heze, Shandong, China
| | - Chenxi Ding
- School of Public Health, Xi'an Jiaotong University Health Science Center, Shaanxi, China
| | - Jing Zhao
- Central Laboratory, Heze Medical College, Heze, Shandong, China
| | - Mingzhe Liu
- Central Laboratory, Heze Medical College, Heze, Shandong, China
| | - Meina Xu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Shaanxi, China
| | - Haoyue Wu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Shaanxi, China
| | - Chengyin Dou
- School of Public Health, Xi'an Jiaotong University Health Science Center, Shaanxi, China
| | - Zhongliang Zhu
- Maternal and Infant Health Research Institute, Northwest University, Shaanxi, China
| | - Hui Li
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
- Department of Neonatology, The Affiliated Children Hospital of Xi'an Jiaotong University, Shaanxi, China
| |
Collapse
|
6
|
Ugartemendia L, De Guzman RM, Cai J, Rajamanickam S, Jiang Z, Tao J, Zuloaga DG, Justice NJ. A subpopulation of oxytocin neurons initiate expression of CRF receptor 1 (CRFR1) in females post parturition. Psychoneuroendocrinology 2022; 145:105918. [PMID: 36116320 PMCID: PMC9881188 DOI: 10.1016/j.psyneuen.2022.105918] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 02/06/2023]
Abstract
Oxytocin (OT) is essential for successful reproduction, particularly during parturition and lactation. During the postpartum period, OT also influences maternal behavior to promote bonding between mothers and their newborns, and increases stress resilience. However, the mechanism by which stress influences OT neuron activity and OT release has remained unclear. Here, we provide evidence that a subpopulation of OT neurons initiate expression of the receptor for the stress neuropeptide Corticotropin Releasing Factor (CRF), CRFR1, in reproductive females. OT neuron expression of CRFR1 begins at the first parturition and increases during the postpartum period until weaning. The percentage of OT neurons that express CRFR1 increases with successive breeding cycles until it reaches a plateau of 20-25% of OT neurons. OT neuron expression of CRFR1 in reproductive females is maintained after they are no longer actively breeding. CRFR1 expression leads to activation of OT neurons when animals are stressed. We propose a model in which direct CRF signaling to OT neurons selectively in reproductive females potentiates OT release to promote stress resilience in mothers.
Collapse
Affiliation(s)
- Lierni Ugartemendia
- Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Sciences Center, Houston, TX 77030, United States
| | - Rose M De Guzman
- Department of Psychology, University at Albany, Albany, NY 12222, United States
| | - Jing Cai
- Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Sciences Center, Houston, TX 77030, United States
| | - Shivakumar Rajamanickam
- Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Sciences Center, Houston, TX 77030, United States
| | - Zhiying Jiang
- Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Sciences Center, Houston, TX 77030, United States
| | - Jonathan Tao
- Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Sciences Center, Houston, TX 77030, United States
| | - Damian G Zuloaga
- Department of Psychology, University at Albany, Albany, NY 12222, United States.
| | - Nicholas J Justice
- Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Sciences Center, Houston, TX 77030, United States.
| |
Collapse
|
7
|
Mbiydzenyuy NE, Hemmings SMJ, Qulu L. Prenatal maternal stress and offspring aggressive behavior: Intergenerational and transgenerational inheritance. Front Behav Neurosci 2022; 16:977416. [PMID: 36212196 PMCID: PMC9539686 DOI: 10.3389/fnbeh.2022.977416] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Even though studies have shown that prenatal maternal stress is associated with increased reactivity of the HPA axis, the association between prenatal maternal stress and fetal glucocorticoid exposure is complex and most likely dependent on unidentified and poorly understood variables including nature and timing of prenatal insults. The precise mechanisms in which prenatal maternal stress influence neuroendocrine signaling between the maternal-placental-fetal interface are still unclear. The aim of this review article is to bring comprehensive basic concepts about prenatal maternal stress and mechanisms of transmission of maternal stress to the fetus. This review covers recent studies showing associations between maternal stress and alterations in offspring aggressive behavior, as well as the possible pathways for the “transmission” of maternal stress to the fetus: (1) maternal-fetal HPA axis dysregulation; (2) intrauterine environment disruption due to variations in uterine artery flow; (3) epigenetic modifications of genes implicated in aggressive behavior. Here, we present evidence for the phenomenon of intergenerational and transgenerational transmission, to better understands the mechanism(s) of transmission from parent to offspring. We discuss studies showing associations between maternal stress and alterations in offspring taking note of neuroendocrine, brain architecture and epigenetic changes that may suggest risk for aggressive behavior. We highlight animal and human studies that focus on intergenerational transmission following exposure to stress from a biological mechanistic point of view, and maternal stress-induced epigenetic modifications that have potential to impact on aggressive behavior in later generations.
Collapse
Affiliation(s)
- Ngala Elvis Mbiydzenyuy
- Department of Basic Science, School of Medicine, Copperbelt University, Ndola, Zambia
- Division of Medical Physiology, Biomedical Science Research Institute, Stellenbosch University, Cape Town, South Africa
- *Correspondence: Ngala Elvis Mbiydzenyuy,
| | - Sian Megan Joanna Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Lihle Qulu
- Division of Medical Physiology, Biomedical Science Research Institute, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
8
|
Rybka KA, Sturm KL, De Guzman RM, Bah S, Jacobskind JS, Rosinger ZJ, Taroc EZM, Forni PE, Zuloaga DG. Androgen regulation of corticotropin releasing factor receptor 1 in the mouse brain. Neuroscience 2022; 491:185-199. [DOI: 10.1016/j.neuroscience.2022.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/19/2022]
|
9
|
Rosinger ZJ, Mayer HS, Geyfen JI, Orser MK, Stolzenberg DS. Ethologically relevant repeated acute social stress induces maternal neglect in the lactating female mouse. Dev Psychobiol 2021; 63:e22173. [PMID: 34674243 PMCID: PMC10631567 DOI: 10.1002/dev.22173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 12/27/2022]
Abstract
Psychosocial stress is a top predictor of peripartum mood disorders in human mothers. In the present study, we developed a novel paradigm testing the effects of direct and vicarious social stress on maternal and mood-related behaviors in B6 mice. Using a novel housing paradigm, we examined the extent to which postpartum dams withdrew from litters following psychosocial stress. Repeated acute direct social stress involved exposing dams to a virgin male mouse for 7 min/day on postpartum days 5-7 during a brief (15-min) mother-pup separation. To remove the effects of direct stress, the vicarious social stress dams were housed in the same vivarium as direct social stressed dams, but without direct exposure to intruders. Control dams were given mock intruder exposure and housed in a separate vivarium room containing breeding mice. All dams experienced pup separation, and maternal care was investigated upon reunion. Direct and vicarious social stress induced significant deficits in maternal care and increased maternal anxiety relative to controls. Although vicarious stress effects were more likely to occur on days when there was acute stress exposure, direct stress sustained maternal deficits 24 h after the final stressor. Together, these data suggest psychosocial stress induces aberrant maternal phenotypes in mice.
Collapse
Affiliation(s)
- Zachary J Rosinger
- Department of Psychology, University of California, Davis, California, USA
| | - Heather S Mayer
- Department of Psychology, University of California, Davis, California, USA
| | | | - Mable K Orser
- Department of Psychology, University of California, Davis, California, USA
| | | |
Collapse
|
10
|
De Guzman RM, Rosinger ZJ, Parra KE, Jacobskind JS, Justice NJ, Zuloaga DG. Alterations in corticotropin-releasing factor receptor type 1 in the preoptic area and hypothalamus in mice during the postpartum period. Horm Behav 2021; 135:105044. [PMID: 34507241 PMCID: PMC8653990 DOI: 10.1016/j.yhbeh.2021.105044] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/16/2021] [Accepted: 08/06/2021] [Indexed: 01/24/2023]
Abstract
Corticotropin-releasing factor (CRF) signaling through CRF receptor 1 (CRFR1) regulates autonomic, endocrine, and behavioral responses to stress, as well as behavioral changes during the maternal period. Previous work in our lab reported higher levels of CRFR1 in female, compared to male, mice within the rostral anteroventral periventricular nucleus (AVPV/PeN), a brain region involved in maternal behaviors. In this study, we used CRFR1-GFP reporter mice to investigate whether the reproductive status (postpartum vs. nulliparous) of acutely stressed females affects levels of CRFR1 in the AVPV/PeN and other regions involved in maternal functions. Compared to nulliparous, postpartum day 14 females showed increased AVPV/PeN CRFR1-GFP immunoreactivity and an elevated number of restraint stress-activated AVPV/PeN CRFR1 cells as assessed by immunohistochemical co-localization of CRFR1-GFP and phosphorylated CREB (pCREB). The medial preoptic area (MPOA) and paraventricular hypothalamus (PVN) of postpartum mice showed modest decreases in CRFR1-GFP immunoreactivity, while increased CRFR1-GFP/pCREB co-expressing cells were found in the PVN following restraint stress relative to nulliparous mice. Tyrosine hydroxylase (TH) and CRFR1-GFP co-localization was also assessed in the AVPV/PeN and other regions and revealed a decrease in co-localized neurons in the AVPV/PeN and ventral tegmental area of postpartum mice. Corticosterone analysis of restrained mice revealed blunted peak, but elevated recovery, levels in postpartum compared to nulliparous mice. Finally, we investigated projection patterns of AVPV/PeN CRFR1 neurons using female CRFR1-Cre mice and revealed dense efferent projections to several preoptic, hypothalamic, and hindbrain regions known to control stress-associated and maternal functions. Together, these findings contribute to our understanding of the neurobiology that might underlie changes in stress-related functions during the postpartum period.
Collapse
Affiliation(s)
- Rose M De Guzman
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Zachary J Rosinger
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Katherine E Parra
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Jason S Jacobskind
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Nicholas J Justice
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Sciences Center, Houston, TX, United States
| | - Damian G Zuloaga
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States.
| |
Collapse
|
11
|
Locci A, Yan Y, Rodriguez G, Dong H. Sex differences in CRF1, CRF, and CRFBP expression in C57BL/6J mouse brain across the lifespan and in response to acute stress. J Neurochem 2021; 158:943-959. [PMID: 32813270 PMCID: PMC9811412 DOI: 10.1111/jnc.15157] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 01/07/2023]
Abstract
Signaling pathways mediated by corticotropin-releasing factor and its receptor 1 (CRF1) play a central role in stress responses. Dysfunction of the CRF system has been associated with neuropsychiatric disorders. However, dynamic changes in the CRF system during brain development and aging are not well investigated. In this study, we characterized CRF1, CRF, and corticotropin-releasing factor binding protein (CRFBP) expression in different brain regions in both male and female C57BL/6J mice from 1 to 18 months of age under basal conditions as well as after an acute 2-hr-restraint stress. We found that CRF and CRF1 levels tended to increase in the hippocampus and hypothalamus, and to decrease in the prefrontal cortex with aging, especially at 18 months of age, whereas CRFBP expression followed an opposite direction in these brain areas. We also observed area-specific sex differences in the expression of these three proteins. For example, CRF expression was lower in females than in males in all the brain regions examined except the prefrontal cortex. After acute stress, CRF and CRF1 were up-regulated at 1, 6, and 12 months of age, and down-regulated at 18 months of age. Females showed more robust changes compared to males of the same age. CRFBP expression either decreased or remained unchanged in most of the brain areas following acute stress. Our findings suggest that brain CRF1, CRF, and CRFBP expression changes dynamically across the lifespan and under stress condition in a sex- and regional-specific manner. Sex differences in the CRF system in response to stress may contribute to the etiology of stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Andrea Locci
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yan Yan
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Guadalupe Rodriguez
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
12
|
Tenorio-Lopes L, Kinkead R. Sex-Specific Effects of Stress on Respiratory Control: Plasticity, Adaptation, and Dysfunction. Compr Physiol 2021; 11:2097-2134. [PMID: 34107062 DOI: 10.1002/cphy.c200022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As our understanding of respiratory control evolves, we appreciate how the basic neurobiological principles of plasticity discovered in other systems shape the development and function of the respiratory control system. While breathing is a robust homeostatic function, there is growing evidence that stress disrupts respiratory control in ways that predispose to disease. Neonatal stress (in the form of maternal separation) affects "classical" respiratory control structures such as the peripheral O2 sensors (carotid bodies) and the medulla (e.g., nucleus of the solitary tract). Furthermore, early life stress disrupts the paraventricular nucleus of the hypothalamus (PVH), a structure that has emerged as a primary determinant of the intensity of the ventilatory response to hypoxia. Although underestimated, the PVH's influence on respiratory function is a logical extension of the hypothalamic control of metabolic demand and supply. In this article, we review the functional and anatomical links between the stress neuroendocrine axis and the medullary network regulating breathing. We then present the persistent and sex-specific effects of neonatal stress on respiratory control in adult rats. The similarities between the respiratory phenotype of stressed rats and clinical manifestations of respiratory control disorders such as sleep-disordered breathing and panic attacks are remarkable. These observations are in line with the scientific consensus that the origins of adult disease are often found among developmental and biological disruptions occurring during early life. These observations bring a different perspective on the structural hierarchy of respiratory homeostasis and point to new directions in our understanding of the etiology of respiratory control disorders. © 2021 American Physiological Society. Compr Physiol 11:1-38, 2021.
Collapse
Affiliation(s)
- Luana Tenorio-Lopes
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta, Canada
| | - Richard Kinkead
- Département de Pédiatrie, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
13
|
Nair BB, Khant Aung Z, Porteous R, Prescott M, Glendining KA, Jenkins DE, Augustine RA, Silva MSB, Yip SH, Bouwer GT, Brown CH, Jasoni CL, Campbell RE, Bunn SJ, Anderson GM, Grattan DR, Herbison AE, Iremonger KJ. Impact of chronic variable stress on neuroendocrine hypothalamus and pituitary in male and female C57BL/6J mice. J Neuroendocrinol 2021; 33:e12972. [PMID: 33896057 DOI: 10.1111/jne.12972] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/02/2021] [Accepted: 03/24/2021] [Indexed: 12/18/2022]
Abstract
Chronic stress exerts multiple negative effects on the physiology and health of an individual. In the present study, we examined hypothalamic, pituitary and endocrine responses to 14 days of chronic variable stress (CVS) in male and female C57BL/6J mice. In both sexes, CVS induced a significant decrease in body weight and enhanced the acute corticosterone stress response, which was accompanied by a reduction in thymus weight only in females. However, single-point blood measurements of basal prolactin, thyroid-stimulating hormone, luteinising hormone, growth hormone and corticosterone levels taken at the end of the CVS were not different from those of controls. Similarly, pituitary mRNA expression of Fshb, Lhb, Prl and Gh was unchanged by CVS, although Pomc and Tsh were significantly elevated. Within the adrenal medulla, mRNA for Th, Vip and Gal were elevated following CVS. Avp transcript levels within the paraventricular nucleus of the hypothalamus were increased by CVS; however, levels of Gnrh1, Crh, Oxt, Sst, Trh, Ghrh, Th and Kiss1 remained unchanged. Oestrous cycles were lengthened slightly by CVS and ovarian histology revealed a reduction in the number of preovulatory follicles and corpora lutea. Taken together, these observations indicate that 14 days of CVS induces an up-regulation of the neuroendocrine stress axis and creates a mild disruption of female reproductive function. However, the lack of changes in other neuroendocrine axes controlling anterior and posterior pituitary secretion suggest that most neuroendocrine axes are relatively resilient to CVS.
Collapse
Affiliation(s)
- Betina B Nair
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Zin Khant Aung
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Robert Porteous
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Melanie Prescott
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Kelly A Glendining
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Danielle E Jenkins
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Rachael A Augustine
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Mauro S B Silva
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Siew H Yip
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Gregory T Bouwer
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Colin H Brown
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Christine L Jasoni
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Rebecca E Campbell
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Stephen J Bunn
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Greg M Anderson
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Allan E Herbison
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| | - Karl J Iremonger
- Centre for Neuroendocrinology, Departments of Anatomy and Physiology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
14
|
Zuloaga DG, Heck AL, De Guzman RM, Handa RJ. Roles for androgens in mediating the sex differences of neuroendocrine and behavioral stress responses. Biol Sex Differ 2020; 11:44. [PMID: 32727567 PMCID: PMC7388454 DOI: 10.1186/s13293-020-00319-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
Estradiol and testosterone are powerful steroid hormones that impact brain function in numerous ways. During development, these hormones can act to program the adult brain in a male or female direction. During adulthood, gonadal steroid hormones can activate or inhibit brain regions to modulate adult functions. Sex differences in behavioral and neuroendocrine (i.e., hypothalamic pituitary adrenal (HPA) axis) responses to stress arise as a result of these organizational and activational actions. The sex differences that are present in the HPA and behavioral responses to stress are particularly important considering their role in maintaining homeostasis. Furthermore, dysregulation of these systems can underlie the sex biases in risk for complex, stress-related diseases that are found in humans. Although many studies have explored the role of estrogen and estrogen receptors in mediating sex differences in stress-related behaviors and HPA function, much less consideration has been given to the role of androgens. While circulating androgens can act by binding and activating androgen receptors, they can also act by metabolism to estrogenic molecules to impact estrogen signaling in the brain and periphery. This review focuses on androgens as an important hormone for modulating the HPA axis and behaviors throughout life and for setting up sex differences in key stress regulatory systems that could impact risk for disease in adulthood. In particular, impacts of androgens on neuropeptide systems known to play key roles in HPA and behavioral responses to stress (corticotropin-releasing factor, vasopressin, and oxytocin) are discussed. A greater knowledge of androgen action in the brain is key to understanding the neurobiology of stress in both sexes.
Collapse
Affiliation(s)
| | - Ashley L Heck
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | | | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
15
|
Noe CR, Noe-Letschnig M, Handschuh P, Noe CA, Lanzenberger R. Dysfunction of the Blood-Brain Barrier-A Key Step in Neurodegeneration and Dementia. Front Aging Neurosci 2020; 12:185. [PMID: 32848697 PMCID: PMC7396716 DOI: 10.3389/fnagi.2020.00185] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
The vascular endothelium in the brain is an essential part of the blood-brain-barrier (BBB) because of its very tight structure to secure a functional and molecular separation of the brain from the rest of the body and to protect neurons from pathogens and toxins. Impaired transport of metabolites across the BBB due to its increasing dysfunction affects brain health and cognitive functioning, thus providing a starting point of neurodegenerative diseases. The term “cerebral metabolic syndrome” is proposed to highlight the importance of lifestyle factors in neurodegeneration and to describe the impact of increasing BBB dysfunction on neurodegeneration and dementia, especially in elderly patients. If untreated, the cerebral metabolic syndrome may evolve into dementia. Due to the high energy demand of the brain, impaired glucose transport across the BBB via glucose transporters as GLUT1 renders the brain increasingly susceptible to neurodegeneration. Apoptotic processes are further supported by the lack of essential metabolites of the phosphocholine synthesis. In Alzheimer’s disease (AD), inflammatory and infectious processes at the BBB increase the dysfunction and might be pace-making events. At this point, the potentially highly relevant role of the thrombocytic amyloid precursor protein (APP) in endothelial inflammation of the BBB is discussed. Chronic inflammatory processes of the BBB transmitted to an increasing number of brain areas might cause a lasting build-up of spreading, pore-forming β-amyloid fragments explaining the dramatic progression of the disease. In the view of the essential requirement of an early diagnosis to investigate and implement causal therapeutic strategies against dementia, brain imaging methods are of great importance. Therefore, status and opportunities in the field of diagnostic imaging of the living human brain will be portrayed, comprising diverse techniques such as positron emissions tomography (PET) and functional magnetic resonance imaging (fMRI) to uncover the patterns of atrophy, protein deposits, hypometabolism, and molecular as well as functional alterations in AD.
Collapse
Affiliation(s)
- Christian R Noe
- Department of Medicinal Chemistry, University of Vienna, Vienna, Austria
| | | | - Patricia Handschuh
- Neuroimaging Lab (NIL), Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Chiara Anna Noe
- Department of Otorhinolaryngology, University Clinic St. Poelten, St. Poelten, Austria
| | - Rupert Lanzenberger
- Neuroimaging Lab (NIL), Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|