1
|
Avolio E, Olivito I, Leo A, De Matteo C, Guarnieri L, Bosco F, Mahata SK, Minervini D, Alò R, De Sarro G, Citraro R, Facciolo RM. Vasostatin-1 restores autistic disorders in an idiopathic autism model (BTBR T+ Itpr3 tf/J mice) by decreasing hippocampal neuroinflammation. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111131. [PMID: 39209101 DOI: 10.1016/j.pnpbp.2024.111131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Chromogranin A (CgA), a ∼ 49 kDa acidic secretory protein, is ubiquitously distributed in endocrine and neuroendocrine cells and neurons. As a propeptide, CgA is proteolytically cleaved to generate several peptides of biological importance, including pancreastatin (PST: hCgA250-301), Vasostatin 1 (VS1: hCgA1-76), and catestatin (CST: CgA 352-372). VS1 represents the most conserved fragment of CgA. A 20 amino acid domain within VS1 (CgA 47-66) exhibits potent antimicrobial and anti-inflammatory activities. Autism is known to be associated with inflammation. Therefore, we seek to test the hypothesis that VS1 modulates autism behaviors by reducing inflammation in the hippocampus. Treatment of C57BL/6 (B6) and BTBR (a mouse model of idiopathic autism) mice with VS1 revealed the following: BTBR mice showed a significant decrease in chamber time in the presence of a stranger or a novel object. Treatment with VS1 significantly increased chamber time in both cases, underscoring a crucial role for VS1 in improving behavioral deficits in BTBR mice. In contrast to chamber time, sniffing time in BTBR mice in the presence of a stranger was less compared to B6 control mice. VS1 did not improve this latter parameter. Surprisingly, sniffing time in BTBR mice in the presence of a novel object was comparable with B6 mice. Proinflammatory cytokines such as IL-6 and IL-1b, as well as other inflammatory markers, were elevated in BTBR mice, which were dramatically reduced after supplementation with VS1. Interestingly, even Beclin-1/p62, pAKT/AKT, and p-p70-S6K/p70-S6K ratios were notably reduced by VS1. We conclude that VS1 plays a crucial role in restoring autistic spectrum disorders (ASD) plausibly by attenuating neuroinflammation.
Collapse
Affiliation(s)
- Ennio Avolio
- Comparative Neuroanatomy Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Ponte Pietro Bucci 4B, Arcavacata di Rende, 87030 Cosenza, Italy
| | - Ilaria Olivito
- Comparative Neuroanatomy Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Ponte Pietro Bucci 4B, Arcavacata di Rende, 87030 Cosenza, Italy
| | - Antonio Leo
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; System and Applied Pharmacology@University Magna Grecia, 88100 Catanzaro, Italy.
| | - Claudia De Matteo
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; System and Applied Pharmacology@University Magna Grecia, 88100 Catanzaro, Italy
| | - Lorenza Guarnieri
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; System and Applied Pharmacology@University Magna Grecia, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; System and Applied Pharmacology@University Magna Grecia, 88100 Catanzaro, Italy.
| | - Sushil K Mahata
- VA San Diego Healthcare System, San Diego, CA, USA; University of California San Diego, La Jolla, CA 92093, United States of America
| | - Damiana Minervini
- Comparative Neuroanatomy Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Ponte Pietro Bucci 4B, Arcavacata di Rende, 87030 Cosenza, Italy
| | - Raffaella Alò
- Comparative Neuroanatomy Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Ponte Pietro Bucci 4B, Arcavacata di Rende, 87030 Cosenza, Italy
| | - Giovambattista De Sarro
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; System and Applied Pharmacology@University Magna Grecia, 88100 Catanzaro, Italy
| | - Rita Citraro
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; System and Applied Pharmacology@University Magna Grecia, 88100 Catanzaro, Italy
| | - Rosa Maria Facciolo
- Comparative Neuroanatomy Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Ponte Pietro Bucci 4B, Arcavacata di Rende, 87030 Cosenza, Italy
| |
Collapse
|
2
|
Reza Naghdi M, Ahadi R, Motamed Nezhad A, Sadat Ahmadi Tabatabaei F, Soleimani M, Hajisoltani R. The neuroprotective effect of Diosgenin in the rat Valproic acid model of autism. Brain Res 2024; 1838:148963. [PMID: 38705555 DOI: 10.1016/j.brainres.2024.148963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/02/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND AND AIM Autism spectrum disorder (ASD) is a neurodevelopmental disorder with two core behavioral symptoms restricted/repetitive behavior and social-communication deficit. The unknown etiology of ASD makes it difficult to identify potential treatments. Valproic acid (VPA) is an anticonvulsant drug with teratogenic effects during pregnancy in humans and rodents. Prenatal exposure to VPA induces autism-like behavior in both humans and rodents. This study aimed to investigate the protective effects of Diosgenin in prenatal Valproic acid-induced autism in rats. METHOD pregnant Wister female rats were given a single intraperitoneal injection of VPA (600 mg/kg, i.p.) on gestational day 12.5. The male offspring were given oral Dios (40 mg/kg, p.o.) or Carboxymethyl cellulose (5 mg/kg, p.o.) for 30 days starting from postnatal day 23. On postnatal day 52, behavioral tests were done. Additionally, biochemical assessments for oxidative stress markers were carried out on postnatal day 60. Further, histological evaluations were performed on the prefrontal tissue by Nissl staining and Immunohistofluorescence. RESULTS The VPA-exposed rats showed increased anxiety-like behavior in the elevated plus maze (EPM). They also demonstrated repetitive and grooming behaviors in the marble burying test (MBT) and self-grooming test. Social interaction was reduced, and they had difficulty detecting the novel object in the novel object recognition (NOR) test. Also, VPA-treated rats have shown higher levels of oxidative stress malondialdehyde (MDA) and lower GPX, TAC, and superoxide dismutase (SOD) levels. Furthermore, the number of neurons decreased and the ERK signaling pathway upregulated in the prefrontal cortex (PFC). On the other hand, treatment with Dios restored the behavioral consequences, lowered oxidative stress, and death of neurons, and rescued the overly activated ERK1/2 signaling in the prefrontal cortex. CONCLUSION Chronic treatment with Dios restored the behavioral, biochemical, and histological abnormalities caused by prenatal VPA exposure.
Collapse
Affiliation(s)
| | - Reza Ahadi
- Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | | | | | - Mansoureh Soleimani
- Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Razieh Hajisoltani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Ryabushkina YA, Ayriyants KA, Sapronova AA, Mutovina AS, Kolesnikova MM, Mezhlumyan EV, Bondar NP, Reshetnikov VV. Effects of different types of induced neonatal inflammation on development and behavior of C57BL/6 and BTBR mice. Physiol Behav 2024; 280:114550. [PMID: 38614416 DOI: 10.1016/j.physbeh.2024.114550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/21/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
Neuroinflammation in the early postnatal period can disturb trajectories of the completion of normal brain development and can lead to mental illnesses, such as depression, anxiety disorders, and personality disorders later in life. In our study, we focused on evaluating short- and long-term effects of neonatal inflammation induced by lipopolysaccharide, poly(I:C), or their combination in female and male C57BL/6 and BTBR mice. We chose the BTBR strain as potentially more susceptible to neonatal inflammation because these mice have behavioral, neuroanatomical, and physiological features of autism spectrum disorders, an abnormal immune response, and several structural aberrations in the brain. Our results indicated that BTBR mice are more sensitive to the influence of the neonatal immune activation (NIA) on the formation of neonatal reflexes than C57BL/6 mice are. In these experiments, the injection of lipopolysaccharide had an effect on the formation of the cliff aversion reflex in female BTBR mice. Nonetheless, NIA had no delayed effects on either social behavior or anxiety-like behavior in juvenile and adolescent BTBR and C57BL/6 mice. Altogether, our data show that NIA has mimetic-, age-, and strain-dependent effects on the development of neonatal reflexes and on exploratory activity in BTBR and C57BL/6 mice.
Collapse
Affiliation(s)
- Yuliya A Ryabushkina
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, Novosibirsk 630090, Russia
| | - Kseniya A Ayriyants
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, Novosibirsk 630090, Russia
| | - Anna A Sapronova
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, Novosibirsk 630090, Russia
| | - Anastasia S Mutovina
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia
| | - Maria M Kolesnikova
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia
| | - Eva V Mezhlumyan
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia
| | - Natalya P Bondar
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia.
| | - Vasiliy V Reshetnikov
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, Novosibirsk 630090, Russia; Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Avenue, Sochi 354340, Russia.
| |
Collapse
|
4
|
Yadollahi-Farsani Y, Vanani VR, Lorigooini Z, Farahzad A, Amini-Khoei H. Anethole via increase in the gene expression of PI3K/AKT/mTOR mitigates the autistic-like behaviors induced by maternal separation stress in mice. IBRO Neurosci Rep 2024; 16:1-7. [PMID: 38145174 PMCID: PMC10733685 DOI: 10.1016/j.ibneur.2023.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/25/2023] [Indexed: 12/26/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodegenerative disease with increasing incidence in the world. The maternal separation (MS) stress at early life with its own neuroendocrine and neurostructural changes can provide the basis for development of ASD. Previously it has been reported neuroprotective characteristics for anethole. The PI3K/AKT/mTOR signaling pathway has pivotal role in the function of central nervous system (CNS). This study aimed to evaluate the possible effects of anethole on the autistic-like behaviors in the maternally separated (MS) mice focusing on the potential role of the PI3K/AKT/mTOR pathway. Forty male Naval Medical Research Institute (NMRI) mice were assigned to five groups (n = 8) comprising a control group (treated with normal saline) and four groups subjected to MS and treated with normal saline and or anethole at doses of 31.25, 62.5 and 125 mg/kg, respectively. All gents were administrated via intraperitoneal (i.p.) route for 14 constant days. Behavioral tests were conducted, including the three-chamber test, shuttle box and resident-intruder test. The gene expression of the PI3K, AKT and mTOR assessed in the hippocampus by qRT-PCR. Findings indicated that MS is associated with autistic-like behaviors. Anethole increased the sociability and social preference indexes in the three-chamber test, increased duration of secondary latency in the shuttle box test and decreased aggressive behaviors in the resident-intruder test. Also, anethole increased the gene expression of PI3K, AKT and mTOR in the hippocampus of MS mice. We concluded that anethole through increase in the gene expression of PI3K/ AKT/mTOR mitigated autistic-like behaviors induced by MS in mice.
Collapse
Affiliation(s)
- Yasaman Yadollahi-Farsani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Vahid Reisi Vanani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Anahita Farahzad
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
5
|
Li C, Zheng Z, Ha P, Jiang W, Soo C, Ting K. Neural EGFL-like 1, a craniosynostosis-related osteochondrogenic molecule, strikingly associates with neurodevelopmental pathologies. Cell Biosci 2023; 13:227. [PMID: 38102659 PMCID: PMC10725010 DOI: 10.1186/s13578-023-01174-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
Various craniofacial syndromes cause skeletal malformations and are accompanied by neurological abnormalities at different levels, leading to tremendous biomedical, financial, social, and psychological burdens. Accumulating evidence highlights the importance of identifying and characterizing the genetic basis that synchronously modulates musculoskeletal and neurobehavioral development and function. Particularly, previous studies from different groups have suggested that neural EGFL-like-1 (Nell-1), a well-established osteochondrogenic inducer whose biopotency was initially identified in the craniofacial tissues, may also play a vital role in the central nervous system, particularly regarding neurological disorder pathologies. To provide first-hand behavior evidence if Nell-1 also has a role in central nervous system abnormalities, we compared the Nell-1-haploinsufficient (Nell-1+/6R) mice with their wild-type counterparts regarding their repetitive, social communication, anxiety-related, locomotor, sensory processing-related, motor coordination, and Pavlovian learning and memory behaviors, as well as their hippocampus transcriptional profile. Interestingly, Nell-1+/6R mice demonstrated core autism spectrum disorder-like deficits, which could be corrected by Risperidone, an FDA-approved anti-autism, anti-bipolar medicine. Besides, transcriptomic analyses identified 269 differential expressed genes, as well as significantly shifted alternative splicing of ubiquitin B pseudogene Gm1821, in the Nell-1+/6R mouse hippocampus, which confirmed that Nell-1 plays a role in neurodevelopment. Therefore, the current study verifies that Nell-1 regulates neurological development and function for the first time. Moreover, this study opens new avenues for understanding and treating craniofacial patients suffering from skeletal deformities and behavior, memory, and cognition difficulties by uncovering a novel bone-brain-crosstalk network. Furthermore, the transcriptomic analysis provides the first insight into deciphering the mechanism of Nell-1 in neurodevelopment.
Collapse
Affiliation(s)
- Chenshuang Li
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zhong Zheng
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Pin Ha
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Wenlu Jiang
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Chia Soo
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Orthopedic Hospital Research Center and David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- MacDonald Research Laboratories (MRL), 675 Charles E. Young Dr. South Room 2641A, Box 951759, Los Angeles, CA, 90095-1759, USA.
| | - Kang Ting
- American Dental Association Forsyth Institute, 245 First Street, Cambridge, MA, 02142, USA.
| |
Collapse
|
6
|
Arakawa H. Revisiting sociability: Factors facilitating approach and avoidance during the three-chamber test. Physiol Behav 2023; 272:114373. [PMID: 37805136 DOI: 10.1016/j.physbeh.2023.114373] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/07/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
The three-chamber test, the so-called sociability test, has been widely used to assess social deficits based on impaired socially oriented investigations in rodent models. An innate motivation for investigating conspecifics is theoretically a prerequisite for gaining sociability scores in this paradigm. However, several relevant factors mediating investigatory motives, such as familiarity, attractiveness, and aggression, may affect sociability scores, which must be verified to obtain an adequate evaluation of the psychiatric phenotypes exhibited by disease-relevant rodent models. We assessed the social and non-social factors that mediate proximity preference by the three-chamber test with standard C57BL/6 J (B6) mice and low sociability BTBR+ltpr3tf/J (BTBR) mice. Strains of the opponents had no effect. Sexual cues (i.e., opposite sex) increased proximity preference in both strains of mice; in contrast, novel objects induced an approach in B6 mice but avoidance in BTBR mice. Single-housing before testing, stimulated social motive, affected BTBR mice but not B6 mice. BTBR females showed increased proximity preference across the sessions, and BTBR males showed increased preference toward a male B6 stimulus, but not a male BTBR stimulus. The male preference was restored when the male BTBR stimulus was anesthetized. In addition, self-grooming was facilitated by social and non-social novelty cues in both strains. B6 mice predominantly exhibited an investigatory approach toward social or non-social stimuli, whereas BTBR mice recognized social cues but tended to show avoidance. The three-chamber test could evaluate approach-avoidance strategies in target mouse strains that comprise innate social distance between mice.
Collapse
Affiliation(s)
- Hiroyuki Arakawa
- Department Systems Physiology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan.
| |
Collapse
|
7
|
Nakhal MM, Jayaprakash P, Aburuz S, Sadek B, Akour A. Canagliflozin Ameliorates Oxidative Stress and Autistic-like Features in Valproic-Acid-Induced Autism in Rats: Comparison with Aripiprazole Action. Pharmaceuticals (Basel) 2023; 16:ph16050769. [PMID: 37242552 DOI: 10.3390/ph16050769] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/06/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Based on their proven anti-inflammatory and antioxidant effects, recent studies have examined the therapeutic potential of the sodium-glucose cotransporter 2 (SGLT2) inhibitors in neurodevelopmental disorders such as autism spectrum disorder (ASD). Therefore, the aim of this study is to assess the effects of subchronic systemic treatment with intraperitoneal (i.p.) canagliflozin (20, 50, and 100 mg/kg) compared to aripiprazole (ARP) (3 mg/g, i.p.) in a valproic acid (VPA)-induced rat model of autism. The behavioral characteristics of ASD, oxidative stress, and acetylcholinesterase (AChE) activity in rats with ASD-like behaviors, which were induced by prenatal exposure to VPA, were evaluated. The behavioral assessment methods used for this study were the open field test (OFT), the marble-burying test (MBT), and the nestlet-shredding test (NST) to examine their exploratory, anxiety, and compulsiveness-like actions, while the biochemical assessment used for this study was an ELISA colorimetric assay to measure ASD biomarker activity in the hippocampus, prefrontal cortex, and cerebellum. Rats that were pretreated with 100 mg/kg of canagliflozin displayed a significantly lower percentage of shredding (1.12 ± 0.6%, p < 0.01) compared to the ARP group (3.52 ± 1.6%). Pretreatment with (20 mg/kg, 50 mg/kg, and 100 mg/kg) canagliflozin reversed anxiety levels and hyperactivity and reduced hyper-locomotor activity significantly (161 ± 34.9 s, p < 0.05; 154 ± 44.7 s, p < 0.05; 147 ± 33.6 s, p < 0.05) when compared with the VPA group (303 ± 140 s). Moreover, canagliflozin and ARP mitigated oxidative stress status by restoring levels of glutathione (GSH) and catalase (CAT) and increasing the levels of malondialdehyde (MDA) in all tested brain regions. The observed results propose repurposing of canagliflozin in the therapeutic management of ASD. However, further investigations are still required to verify the clinical relevance of canagliflozin in ASD.
Collapse
Affiliation(s)
- Mohammed Moutaz Nakhal
- Department of Biochemistry and Molecular Biology Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Petrilla Jayaprakash
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Salahdein Aburuz
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 17666, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
8
|
Silva AO, Ribeiro JM, Patrocínio TB, Amorim GE, Pereira-Júnior AA, Ângelo ML, de Araújo Paula FB, de Mello Silva Oliveira N, Ruginsk SG, Antunes-Rodrigues J, Elias LLK, Dias MVS, Torres LH, Ceron CS. Protective Effects of Kefir Against Unpredictable Chronic Stress Alterations in Mice Central Nervous System, Heart, and Kidney. Probiotics Antimicrob Proteins 2023; 15:411-423. [PMID: 36534210 DOI: 10.1007/s12602-022-10031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Kefir is a probiotic mixture with anxiolytic and antioxidant properties. Chronic stress can lead to anxiety disorders and increase oxidative damage in organs such as the heart and kidney. In this study, we examined whether kefir ameliorates the anxiety-like behavior of mice submitted to chronic unpredictable stress (CUS) by modulating brain-derived neurotrophic factor (BDNF) and corticosterone levels and whether kefir modifies the oxidative parameters in the heart and kidney of mice. Male Swiss mice received kefir (0.3 mL/100 g/day) or milk for 30 days (gavage). On the 10th day, the mice were submitted to CUS. Behavioral analysis was performed using the elevated plus maze and forced swimming tests. BDNF levels were analyzed in brain tissues. Heart and kidney superoxide dismutase (SOD), catalase, glutathione (GSH), thiobarbituric acid reactive substances (TBARS), 3-nitrotyrosine, metalloproteinase-2 (MMP-2), and plasma corticosterone were evaluated. Kefir reverted the CUS-induced decrease in the time spent in the open arms, the increase in grooming frequency, and decrease in the head dipping frequency, but not the reduced immobility time. CUS decreased the cerebellum BDNF levels and increased corticosterone levels, which were restored by Kefir. Neither catalase and SOD activities nor GSH, TBARS, 3-nitrotyrosine, and MMP-2 were modified by CUS in the heart. In the kidney, CUS increased 3-nitrotyrosine and MMP-2. Kefir increased the antioxidant defense in the heart and kidney of control and CUS mice. These results suggest that kefir ameliorated CUS-induced anxiety-like behavior by modulating brain BDNF and corticosterone levels. Kefir also increased the antioxidant defense of mice heart and kidney.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Carla Speroni Ceron
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Diogo de Vasconcelos, 122, 35400-000l, Ouro Preto, MG, Brazil.
| |
Collapse
|
9
|
Arakawa H, Higuchi Y, Ozawa A. Oxytocin neurons in the paraventricular nucleus of the hypothalamus circuit-dependently regulates social behavior, which malfunctions in BTBR mouse model of autism. RESEARCH SQUARE 2023:rs.3.rs-2621359. [PMID: 36909537 PMCID: PMC10002846 DOI: 10.21203/rs.3.rs-2621359/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Oxytocin (OXT) a neuropeptide synthesized in the hypothalamic nuclei has a variety of function including socio-emotional processes in mammals. While the neural circuits and signaling pathways in central OXT converge in the paraventricular nucleus of the hypothalamus (PVN), we illuminate specific function of discrete PVN OXT circuits, which connect to the medial amygdala (MeA) and the bed nucleus of the stria terminalis (BnST) in mouse models. The OXTPVN→BnST projections are innervated from entire portions of the PVN, while those OXTPVN→MeA projections are asymmetrically innervated from the posterior portion of the PVN. Compared with OXT neurons in B6 wild type mice, BTBR mice that are recognized as a behavior-based autism model exhibited defect in the OXTPVN→BnST projection. We demonstrate that chemogenetic activation of OXTPVN→MeA circuit enhances anxiety-like behavior and facilitates social approach behavior, while activation of OXTPVN→BnST circuit suppresses anxiety-like behavior along with inhibiting social approach. This chemogenetic manipulation on the OXTPVN→BnST circuit proves ineffective in BTBR mice. Accordingly, chemogenetic activation of OXTPVN neurons that stimulate both OXT circuits induces OXT receptor expressions in both MeA and BnST as with those by social encounter in B6 mice. The induction of OXT receptor genes in the BnST was not observed in BTBR mice. These data support the hypothesis that OXT circuits serve as a regulator for OXT signaling in PVN to control socio-emotional approach/avoidance behavior, and a defect of OXTPVN→BnST circuit contributes to autism-like social phenotypes in BTBR mice.
Collapse
|
10
|
Arzuaga AL, Edmison DD, Mroczek J, Larson J, Ragozzino ME. Prenatal stress and fluoxetine exposure in mice differentially affect repetitive behaviors and synaptic plasticity in adult male and female offspring. Behav Brain Res 2023; 436:114114. [DOI: 10.1016/j.bbr.2022.114114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/17/2022] [Accepted: 09/11/2022] [Indexed: 10/14/2022]
|
11
|
Negrete SB, Arai H, Natsume K, Shibata T. Multi-view image-based behavior classification of wet-dog shake in Kainate rat model. Front Behav Neurosci 2023; 17:1148549. [PMID: 37200783 PMCID: PMC10187480 DOI: 10.3389/fnbeh.2023.1148549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/05/2023] [Indexed: 05/20/2023] Open
Abstract
The wet-dog shake behavior (WDS) is a short-duration behavior relevant to the study of various animal disease models, including acute seizures, morphine abstinence, and nicotine withdrawal. However, no animal behavior detection system has included WDS. In this work, we present a multi-view animal behavior detection system based on image classification and use it to detect rats' WDS behavior. Our system uses a novel time-multi-view fusion scheme that does not rely on artificial features (feature engineering) and is flexible to adapt to other animals and behaviors. It can use one or more views for higher accuracy. We tested our framework to classify WDS behavior in rats and compared the results using different amounts of cameras. Our results show that the use of additional views increases the performance of WDS behavioral classification. With three cameras, we achieved a precision of 0.91 and a recall of 0.86. Our multi-view animal behavior detection system represents the first system capable of detecting WDS and has potential applications in various animal disease models.
Collapse
|
12
|
Infection of the murine placenta by Listeria monocytogenes induces sex-specific responses in the fetal brain. Pediatr Res 2022; 93:1566-1573. [PMID: 36127406 DOI: 10.1038/s41390-022-02307-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/06/2022] [Accepted: 08/30/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Epidemiological data indicate that prenatal infection is associated with an increased risk of several neurodevelopmental disorders in the progeny. These disorders display sex differences in presentation. The role of the placenta in the sex-specificity of infection-induced neurodevelopmental abnormalities is not well-defined. We used an imaging-based animal model of the bacterial pathogen Listeria monocytogenes to identify sex-specific effects of placental infection on neurodevelopment of the fetus. METHODS Pregnant CD1 mice were infected with a bioluminescent strain of Listeria on embryonic day 14.5 (E14.5). Excised fetuses were imaged on E18.5 to identify the infected placentas. The associated fetal brains were analyzed for gene expression and altered brain structure due to infection. The behavior of adult offspring affected by prenatal Listeria infection was analyzed. RESULTS Placental infection induced sex-specific alteration of gene expression patterns in the fetal brain and resulted in abnormal cortical development correlated with placental infection levels. Furthermore, male offspring exhibited abnormal social interaction, whereas females exhibited elevated anxiety. CONCLUSION Placental infection by Listeria induced sex-specific abnormalities in neurodevelopment of the fetus. Prenatal infection also affected the behavior of the offspring in a sex-specific manner. IMPACT Placental infection with Listeria monocytogenes induces sexually dichotomous gene expression patterns in the fetal brains of mice. Abnormal cortical lamination is correlated with placental infection levels. Placental infection results in autism-related behavior in male offspring and heightened anxiety levels in female offspring.
Collapse
|
13
|
Jiang CC, Lin LS, Long S, Ke XY, Fukunaga K, Lu YM, Han F. Signalling pathways in autism spectrum disorder: mechanisms and therapeutic implications. Signal Transduct Target Ther 2022; 7:229. [PMID: 35817793 PMCID: PMC9273593 DOI: 10.1038/s41392-022-01081-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/19/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a prevalent and complex neurodevelopmental disorder which has strong genetic basis. Despite the rapidly rising incidence of autism, little is known about its aetiology, risk factors, and disease progression. There are currently neither validated biomarkers for diagnostic screening nor specific medication for autism. Over the last two decades, there have been remarkable advances in genetics, with hundreds of genes identified and validated as being associated with a high risk for autism. The convergence of neuroscience methods is becoming more widely recognized for its significance in elucidating the pathological mechanisms of autism. Efforts have been devoted to exploring the behavioural functions, key pathological mechanisms and potential treatments of autism. Here, as we highlight in this review, emerging evidence shows that signal transduction molecular events are involved in pathological processes such as transcription, translation, synaptic transmission, epigenetics and immunoinflammatory responses. This involvement has important implications for the discovery of precise molecular targets for autism. Moreover, we review recent insights into the mechanisms and clinical implications of signal transduction in autism from molecular, cellular, neural circuit, and neurobehavioural aspects. Finally, the challenges and future perspectives are discussed with regard to novel strategies predicated on the biological features of autism.
Collapse
Affiliation(s)
- Chen-Chen Jiang
- International Joint Laboratory for Drug Target of Critical Illnesses; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Li-Shan Lin
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Sen Long
- Department of Pharmacy, Hangzhou Seventh People's Hospital, Mental Health Center Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Xiao-Yan Ke
- Child Mental Health Research Center, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Ying-Mei Lu
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Feng Han
- International Joint Laboratory for Drug Target of Critical Illnesses; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- Institute of Brain Science, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, China.
| |
Collapse
|
14
|
Fabregat M, Niño-Rivero S, Pose S, Cárdenas-Rodríguez M, Bresque M, Hernández K, Prieto-Echagüe V, Schlapp G, Crispo M, Lagos P, Lago N, Escande C, Irigoín F, Badano JL. Generation and characterization of Ccdc28b mutant mice links the Bardet-Biedl associated gene with mild social behavioral phenotypes. PLoS Genet 2022; 18:e1009896. [PMID: 35653384 PMCID: PMC9197067 DOI: 10.1371/journal.pgen.1009896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 06/14/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022] Open
Abstract
CCDC28B (coiled-coil domain-containing protein 28B) was identified as a modifier in the ciliopathy Bardet-Biedl syndrome (BBS). Our previous work in cells and zebrafish showed that CCDC28B plays a role regulating cilia length in a mechanism that is not completely understood. Here we report the generation of a Ccdc28b mutant mouse using CRISPR/Cas9 (Ccdc28b mut). Depletion of CCDC28B resulted in a mild phenotype. Ccdc28b mut animals i) do not present clear structural cilia affectation, although we did observe mild defects in cilia density and cilia length in some tissues, ii) reproduce normally, and iii) do not develop retinal degeneration or obesity, two hallmark features of reported BBS murine models. In contrast, Ccdc28b mut mice did show clear social interaction defects as well as stereotypical behaviors. This finding is indeed relevant regarding CCDC28B as a modifier of BBS since behavioral phenotypes have been documented in BBS. Overall, this work reports a novel mouse model that will be key to continue evaluating genetic interactions in BBS, deciphering the contribution of CCDC28B to modulate the presentation of BBS phenotypes. In addition, our data underscores a novel link between CCDC28B and behavioral defects, providing a novel opportunity to further our understanding of the genetic, cellular, and molecular basis of these complex phenotypes. BBS is caused by mutations in any one of 22 genes known to date. In some families, BBS can be inherited as an oligogenic trait whereby mutations in more than one BBS gene collaborate in the presentation of the syndrome. In addition, CCDC28B was originally identified as a modifier of BBS, whereby a reduction in CCDC28B levels was associated with a more severe presentation of the syndrome. Different mechanisms, all relying on functional redundancy, have been proposed to explain these genetic interactions. The characterization of BBS proteins supported this functional redundancy hypothesis: BBS proteins play a role in cilia maintenance/function and subsets of BBS proteins can even interact directly in multiprotein complexes. We have previously shown that CCDC28B also participates in cilia biology regulating the length of the organelle: knockdown of CCDC28B in cells results in cilia shortening and targeting ccdc28b in zebrafish also results in early embryonic phenotypes characteristic of other cilia mutants. In this work, we generated a Ccdc28b mutant mouse to determine whether abrogating Ccdc28b function would be sufficient to cause a ciliopathy phenotype in mammals, and to generate a tool to continue dissecting its modifying role in the context of BBS. Overall, Ccdc28b mutant mice presented a mild phenotype, a finding fully compatible with its role as a modifier, rather than a causal BBS gene. In addition, we found that Ccdc28b mutants showed behavioral phenotypes, similar to the deficits observed in rodent autism spectrum disorder (ASD) models. Thus, our results underscore a novel causal link between CCDC28B and behavioral phenotypes in mice.
Collapse
Affiliation(s)
- Matías Fabregat
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
- INDICyO Institutional Program, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Sofía Niño-Rivero
- Departamento de Fisiología, Universidad de la República, Montevideo, Uruguay
| | - Sabrina Pose
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Magdalena Cárdenas-Rodríguez
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
- INDICyO Institutional Program, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Mariana Bresque
- INDICyO Institutional Program, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Metabolic Diseases and Aging Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Karina Hernández
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Victoria Prieto-Echagüe
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
- INDICyO Institutional Program, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Geraldine Schlapp
- Laboratory Animal Biotechnology Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Martina Crispo
- Laboratory Animal Biotechnology Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Patricia Lagos
- Departamento de Fisiología, Universidad de la República, Montevideo, Uruguay
| | - Natalia Lago
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Carlos Escande
- INDICyO Institutional Program, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Metabolic Diseases and Aging Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Florencia Irigoín
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
- INDICyO Institutional Program, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- * E-mail: (FI); (JLB)
| | - Jose L. Badano
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
- INDICyO Institutional Program, Institut Pasteur de Montevideo, Montevideo, Uruguay
- * E-mail: (FI); (JLB)
| |
Collapse
|
15
|
Liu H, Huang X, Xu J, Mao H, Li Y, Ren K, Ma G, Xue Q, Tao H, Wu S, Wang W. Dissection of the relationship between anxiety and stereotyped self-grooming using the Shank3B mutant autistic model, acute stress model and chronic pain model. Neurobiol Stress 2021; 15:100417. [PMID: 34815987 PMCID: PMC8591549 DOI: 10.1016/j.ynstr.2021.100417] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 12/27/2022] Open
Abstract
Self-grooming is an innate, cephalo-caudal progression of body cleaning behaviors that are found in normal rodents but exhibit repetitive and stereotyped patterns in several mouse models, such as autism spectrum disorders (ASDs). It is also recognized as a marker of stress and anxiety. Mice with Shank3B gene knockout (KO) exhibit typical ASD-like behavioral abnormalities, including stereotyped self-grooming and increased levels of anxiety. However, the exact relationship between anxiety and stereotyped self-grooming in certain types of animal models is not clear. We selected three animal models with high anxiety to compare their self-grooming parameters. First, we confirmed that Shank3B KO mice (ASD model), acute restraint stress mouse model (stress model), and chronic inflammatory pain mouse model (pain model) all showed increased anxiety levels in the open field test (OFT) and elevated plus maze (EPM). We found that only the ASD model and the stress model produced increased total grooming duration. The pain model only exhibited an increasing trend of mean self-grooming duration. We used the grooming analysis algorithm to examine the self-grooming microstructure and assess the cephalo-caudal progression of grooming behavior. The results showed distinct self-grooming microstructures in these three models. The anxiolytic drug diazepam relieved the anxiety level and the total time of grooming in the ASD and stress models. The grooming microstructure was not restored in Shank3B KO mice but was partially relieved in the stress model, which suggested that anxiety aggravated stereotyped self-grooming duration but not the grooming microstructure in the ASD mouse model. Our results indicated that stereotyped behavior and anxiety may be shared by separate, but interacting, neural circuits in distinct disease models, which may be useful to understand the mechanisms and develop potential treatments for stereotyped behaviors and anxiety.
Collapse
Affiliation(s)
- Haiying Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Xin Huang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jinwei Xu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Honghui Mao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Yaohao Li
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Keke Ren
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Guaiguai Ma
- Department of Physiology, Medicine College of Yan'an University, Yan'an, 716000, China
| | - Qian Xue
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Huiren Tao
- Department of Spine Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong, 518055, China
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, PR China
- Corresponding author. Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, China.
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, PR China
- Corresponding author. Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
16
|
Involvement of Intestinal Goblet Cells and Changes in Sodium Glucose Transporters Expression: Possible Therapeutic Targets in Autistic BTBR T +Itpr3 tf/J Mice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111328. [PMID: 34769857 PMCID: PMC8583041 DOI: 10.3390/ijerph182111328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/22/2022]
Abstract
Autism spectrum disorder is a neurodevelopmental syndrome with a complicated etiology and could be responsible for disrupted gastrointestinal tract microbiota. The aim of this work was to study intestinal samples from an autistic animal model (BTBR mouse strain) to better describe gastrointestinal alterations. We performed a morphological and biological evaluation of small intestine samples. In terms of morphology, we studied the goblet cells, cells of intestinal mucosal responsible for the production and maintenance of the protective mucous blanket. Alterations in their secretion may indicate an altered rate of mucus synthesis and this is one of the possible causes of gastrointestinal problems. In terms of biological evaluation, impaired regulation of glucose homeostasis regulated by sodium-glucose transporters has been suggested as an important component of obesity and associated comorbidities; therefore, this study analyzed the expression of sodium/glucose transporter-1 and -3 in BTBR mice to better define their role. We demonstrated that, in BTBR mice as compared to C57BL/6J (B6) strain animals: (1) The goblet cells had different protein content in their vesicles and apparently a larger number of Golgi cisternae; (2) the expression and level of sodium/glucose transporters were higher. These findings could suggest new possible targets in autism spectrum disorder to maintain mucus barrier function.
Collapse
|