1
|
Clement A, Dam-Amby CL, Obelitz-Ryom K, Christensen SL. The search for non-evoked markers of pain in the GTN mouse model of migraine. Sci Rep 2024; 14:26481. [PMID: 39489838 PMCID: PMC11532339 DOI: 10.1038/s41598-024-78332-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024] Open
Abstract
Rodent migraine models have been developed to study the underlying molecular mechanisms of migraine, but these need further development and validation to stay relevant. The glyceryl trinitrate (GTN) mouse model with tactile hypersensitivity as the primary readout, has been highly used to understand the pathophysiology of migraine. Nevertheless, this readout has questionable translatability to the experience of spontaneous pain and additional readouts are needed to improve this model. We explored the applicability of several spontaneous behaviours and burrowing activity as additional markers to detect effects of repeated GTN injections in mice. We used the Laboratory Animal Behaviour Observation Registration and Analysis System (LABORAS) test system to understand the potential effect of GTN on locomotion and other behavioral parameters in two different experiments. Burrowing was used to investigate the potential effect on GTN on a voluntary innate behavior of mice. We found no clear effect of GTN on either locomotion or burrowing in these experiments. With our experimental design, there was no significant difference between GTN and vehicle and neither locomotion nor burrowing activity will readily supplement the von Frey test. The search for additional none-evoked markers of pain in rodent migraine models will continue.
Collapse
Affiliation(s)
- Amalie Clement
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
- Translational Research Centre, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Cecilie Luna Dam-Amby
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
- Translational Research Centre, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
- Department of Pharmacy, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Karina Obelitz-Ryom
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
- Translational Research Centre, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Sarah Louise Christensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark.
- Translational Research Centre, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark.
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Francavilla M, Facchetti S, Demartini C, Zanaboni AM, Amoroso C, Bottiroli S, Tassorelli C, Greco R. A Narrative Review of Intestinal Microbiota's Impact on Migraine with Psychopathologies. Int J Mol Sci 2024; 25:6655. [PMID: 38928361 PMCID: PMC11203823 DOI: 10.3390/ijms25126655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Migraine is a common and debilitating neurological disorder characterized by the recurrent attack of pulsating headaches typically localized on one side of the head associated with other disabling symptoms, such as nausea, increased sensitivity to light, sound and smell and mood changes. Various clinical factors, including the excessive use of migraine medication, inadequate acute treatment and stressful events, can contribute to the worsening of the condition, which may evolve to chronic migraine, that is, a headache present on >15 days/month for at least 3 months. Chronic migraine is frequently associated with various comorbidities, including anxiety and mood disorders, particularly depression, which complicate the prognosis, response to treatment and overall clinical outcomes. Emerging research indicates a connection between alterations in the composition of the gut microbiota and mental health conditions, particularly anxiety and depression, which are considered disorders of the gut-brain axis. This underscores the potential of modulating the gut microbiota as a new avenue for managing these conditions. In this context, it is interesting to investigate whether migraine, particularly in its chronic form, exhibits a dysbiosis profile similar to that observed in individuals with anxiety and depression. This could pave the way for interventions aimed at modulating the gut microbiota for treating difficult-to-manage migraines.
Collapse
Affiliation(s)
- Miriam Francavilla
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy; (M.F.); (S.F.); (A.M.Z.); (S.B.); (C.T.)
- Headache Science and Neurorehabilitation Centre, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy;
| | - Sara Facchetti
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy; (M.F.); (S.F.); (A.M.Z.); (S.B.); (C.T.)
- Headache Science and Neurorehabilitation Centre, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy;
| | - Chiara Demartini
- Headache Science and Neurorehabilitation Centre, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy;
| | - Anna Maria Zanaboni
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy; (M.F.); (S.F.); (A.M.Z.); (S.B.); (C.T.)
- Headache Science and Neurorehabilitation Centre, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy;
| | - Chiara Amoroso
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, 20135 Milan, Italy;
| | - Sara Bottiroli
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy; (M.F.); (S.F.); (A.M.Z.); (S.B.); (C.T.)
- Headache Science and Neurorehabilitation Centre, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy;
| | - Cristina Tassorelli
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy; (M.F.); (S.F.); (A.M.Z.); (S.B.); (C.T.)
- Headache Science and Neurorehabilitation Centre, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy;
| | - Rosaria Greco
- Headache Science and Neurorehabilitation Centre, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy;
| |
Collapse
|
3
|
Fila M, Chojnacki J, Derwich M, Chojnacki C, Pawlowska E, Blasiak J. Urine 5-Hydroxyindoleacetic Acid Negatively Correlates with Migraine Occurrence and Characteristics in the Interictal Phase of Episodic Migraine. Int J Mol Sci 2024; 25:5471. [PMID: 38791512 PMCID: PMC11121987 DOI: 10.3390/ijms25105471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Although migraine belongs to the main causes of disability worldwide, the mechanisms of its pathogenesis are poorly known. As migraine diagnosis is based on the subjective assessment of symptoms, there is a need to establish objective auxiliary markers to support clinical diagnosis. Tryptophan (TRP) metabolism has been associated with the pathogenesis of neurological and psychiatric disorders. In the present work, we investigated an association between migraine and the urine concentration of TRP and its metabolites 5-hydroxyindoleacetic acid (5-HIAA), kynurenine (KYN), kynurenic acid (KYNA) and quinolinic acid (QA) in 21 low-frequency episodic migraine patients and 32 controls. We chose the interictal phase as the episodic migraine patients were recruited from the outpatient clinic and had monthly migraine days as low as 1-2 in many cases. Migraine patients displayed lower urinary levels of 5-HIAA (p < 0.01) and KYNA (p < 0.05), but KYN and QA were enhanced, as compared with the controls (p < 0.05 and 0.001, respectively). Consequently, the patients were characterized by different values of the 5-HIAA/TRP, KYN/TRP, KYNA/KYN, and KYNA/QA ratios (p < 0.001 for all). Furthermore, urinary concentration of 5-HIAA was negatively correlated with Migraine Disability Assessment score and monthly migraine and monthly headache days. There was a negative correlation between Patient Health Questionnaire 9 scores assessing depression. In conclusion, the urinary 5-HIAA level may be further explored to assess its suitability as an easy-to-determine marker of migraine.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
| | - Jan Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (J.C.); (C.C.)
| | - Marcin Derwich
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217 Lodz, Poland; (M.D.); (E.P.)
| | - Cezary Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (J.C.); (C.C.)
| | - Elzbieta Pawlowska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217 Lodz, Poland; (M.D.); (E.P.)
| | - Janusz Blasiak
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, 09-402 Plock, Poland
| |
Collapse
|
4
|
Lu G, Xiao S, Meng F, Zhang L, Chang Y, Zhao J, Gao N, Su W, Guo X, Liu Y, Li C, Tang W, Zou L, Yu S, Liu R. AMPK activation attenuates central sensitization in a recurrent nitroglycerin-induced chronic migraine mouse model by promoting microglial M2-type polarization. J Headache Pain 2024; 25:29. [PMID: 38454376 PMCID: PMC10921743 DOI: 10.1186/s10194-024-01739-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/27/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Energy metabolism disorders and neurogenic inflammation play important roles in the central sensitization to chronic migraine (CM). AMP-activated protein kinase (AMPK) is an intracellular energy sensor, and its activation regulates inflammation and reduces neuropathic pain. However, studies on the involvement of AMPK in the regulation of CM are currently lacking. Therefore, this study aimed to explore the mechanism underlying the involvement of AMPK in the central sensitization to CM. METHODS Mice with recurrent nitroglycerin (NTG)-induced CM were used to detect the expression of AMPK protein in the trigeminal nucleus caudalis (TNC). Following intraperitoneal injection of the AMPK activator 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR) and inhibitor compound C, the mechanical pain threshold, activity level, and pain-like behaviors in the mice were measured. The expression of calcitonin gene-related peptide (CGRP) and cytokines, M1/M2 microglia, and NF-κB pathway activation were detected after the intervention. RESULTS Repeated NTG injections resulted in a gradual decrease in AMPK protein expression, and the negative regulation of AMPK by increased ubiquitin-like plant homeodomain and RING finger domain 1 (UHRF1) expression may counteract AMPK activation by increasing ADP/ATP. AICAR can reduce the hyperalgesia and pain-like behaviors of CM mice, improve the activity of mice, reduce the expression of CGRP, IL-1β, IL-6, and TNF-α in the TNC region, and increase the expression of IL-4 and IL-10. Moreover, AMPK in TNC was mainly located in microglia. AICAR could reduce the expression of inducible NO synthase (iNOS) in M1 microglia and increase the expression of Arginase 1 (Arg1) in M2 microglia by inhibiting the activation of NF-κB pathway. CONCLUSIONS AMPK was involved in the central sensitization of CM, and the activation of AMPK reduced neuroinflammation in NTG-induced CM mice. AMPK may provide new insights into interventions for energy metabolism disorders and neurogenic inflammation in migraine.
Collapse
Affiliation(s)
- Guangshuang Lu
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Department of Pediatrics, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, China
| | - Shaobo Xiao
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Fanchao Meng
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Leyi Zhang
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Yan Chang
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Jinjing Zhao
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Nan Gao
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Wenjie Su
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Xinghao Guo
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Yingyuan Liu
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Chenhao Li
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Wenjing Tang
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Liping Zou
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Pediatrics, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Shengyuan Yu
- Medical School of Chinese PLA, Beijing, 100853, China.
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China.
| | - Ruozhuo Liu
- Medical School of Chinese PLA, Beijing, 100853, China.
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China.
| |
Collapse
|
5
|
Wan MM, Jin T, Fu ZY, Lai SH, Gao WP. Electroacupuncture Alleviates Dry Eye Ocular Pain Through TNF-ɑ Mediated ERK1/2/P2X 3R Signaling Pathway in SD Rats. J Pain Res 2023; 16:4241-4252. [PMID: 38107367 PMCID: PMC10725190 DOI: 10.2147/jpr.s436258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
Purpose This study aimed to examine electroacupuncture's influence on ocular pain and its potential modulation of the TNF-ɑ mediated ERK1/2/P2X3R signaling pathway in dry eye-induced rat models. Methods Male Sprague-Dawley rats with induced dry eye, achieved through extraorbital lacrimal gland removal, were treated with electroacupuncture. Comprehensive metrics such as the corneal mechanical perception threshold, palpebral fissure height, eyeblink frequency, eye wiping duration, behavioral changes in the open field test, and the forced swimming test were employed. Additionally, morphological changes in microglia and neurons were observed. Expression patterns of key markers, TNF-ɑ, TNFR1, p-ERK1/2, and P2X3R, in the trigeminal ganglion (TG) and spinal trigeminal nucleus caudalis (SpVc) regions, were studied with etanercept serving as a control to decipher the biochemistry of electroacupuncture's therapeutic effects. Results Electroacupuncture treatment demonstrated a notable decrease in the corneal mechanical perception threshold, improvement in palpebral fissure height, and significant reductions in both eyeblink frequency and eye wiping duration. Moreover, it exhibited a promising role in anxiety alleviation. Notably, the technique effectively diminished ocular pain by curbing microglial and neuronal activation in the TG and SpVc regions. Furthermore, it potently downregulated TNF-ɑ, TNFR1, p-ERK1/2, and P2X3R expression within these regions. Conclusion Electroacupuncture attenuated damage to sensory nerve pathways, reduced pain, and eased anxiety in dry eye-afflicted rats. The findings suggest a crucial role of TNF-ɑ mediated ERK1/2/P2X3R signaling pathway inhibition by electroacupuncture in these benefits.
Collapse
Affiliation(s)
- Mi-Mi Wan
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Tuo Jin
- Department of Ophthalmology, Kunshan Hospital of Chinese Medicine, Suzhou, People’s Republic of China
| | - Zhang-Yitian Fu
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Si-Hua Lai
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Wei-Ping Gao
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| |
Collapse
|
6
|
Qi R, Zhang J, Diao T, Yu L. The auditory function in migraine model rats induced by postauricular nitroglycerin injection. Front Neurol 2023; 14:1259982. [PMID: 38020638 PMCID: PMC10630915 DOI: 10.3389/fneur.2023.1259982] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Objective The mechanism by which migraines produce inner ear-related symptoms is not well understood. Previous studies have found that the latency of auditory brainstem response (ABR) in animal models of migraine has changed, but the threshold has not changed significantly. Therefore, it is necessary to establish a better animal model with both migraine and hearing loss to explore the relationship between migraine and auditory function deeply. Methods In this study, the rat model of migraine was induced by postauricular injection of nitroglycerin (NTG), and the effect on the auditory function of the inner ear was explored by comparing with intraperitoneal injection of nitroglycerin. The rats were given the drug repeatedly on alternate days, a total of 5 dosing, with the body weight monitored during the drug administration. The tactile threshold of the rats' forepaw was measured using von-Frey filaments and auditory function was assessed by ABR. Results The results showed that the baseline tactile threshold of rats gradually decreased during the modeling process, and hyperalgesia appeared. Postauricular injection of NTG did not affect the weight gain of rats, while intraperitoneal injection of NTG showed slow or even negative weight gain. The ABR threshold of Click, 4 and 8 kHz of postauricular NTG injection rats increased, the latency was prolonged, and the ABR threshold in the right ear was higher than that in the left ear. Conclusions We demonstrated that postauricular injection of nitroglycerin may be safer and more effective than intraperitoneal injection of nitroglycerin in the process of creating rat migraine model without affecting the weight gain. Postauricular injection of nitroglycerin has more damage to the auditory function of rats. Therefore, the migraine model rat induced by postauricular injection of nitroglycerin may be a new model of cochlear migraine.
Collapse
|
7
|
Alpay B, Cimen B, Akaydin E, Bolay H, Sara Y. Levcromakalim provokes an acute rapid-onset migraine-like phenotype without inducing cortical spreading depolarization. J Headache Pain 2023; 24:93. [PMID: 37488480 PMCID: PMC10367339 DOI: 10.1186/s10194-023-01627-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Migraine headache attacks and accompanying sensory augmentation can be induced by several agents including levcromakalim (LVC), that is also capable of provoking aura-like symptoms in migraineurs. We investigated whether single LVC injection causes acute migraine-like phenotype in rats and induces/modulates cortical spreading depolarization (CSD), a rodent model of migraine aura. METHODS Wistar rats were administered LVC (1 mg/kg, i.p.) and compared to control (CTRL, vehicle, i.p.) and nitroglycerin (NTG, 10 mg/kg, i.p.) groups. Von Frey filaments were used to examine the periorbital and hind paw mechanical allodynia. Dark-light box (DLB), elevated plus maze (EPM), and open field arena (OFA) were used to evaluate light sensitivity and anxiety-related behaviors. The effects of LVC on CSD parameters, somatosensory evoked potentials, and baseline dural EEG (electroencephalography) were investigated. Possible CSD-induced c-fos expression was studied with Western Blot. Blood-brain barrier integrity in cortex was examined with Evans blue assay. RESULTS LVC and NTG administration robustly reduced periorbital mechanical thresholds in rats and induced anxiety-like behaviors and photophobia within 30 and 120 min, respectively. LVC induced migraine-like phenotype recovered in 2 h while NTG group did not fully recover before 4 h. Both LVC and NTG did not provoke DC (direct current) shift, EEG alterations or cortical c-fos expression characteristic to CSD. LVC did not induce de novo CSD and affect KCl (potassium chloride)-induced CSD parameters except for an increase in propagation failure. However, NTG significantly increased both CSD susceptibility and propagation failure. Somatosensory evoked potential (SSEP) configurations were not altered in both LVC and NTG groups, but SSEP latencies were prolonged after CSD. Acute LVC or NTG injection did not increase cortical BBB permeability. CONCLUSIONS Single LVC administration induced the fastest manifestation and recovery of acute migraine-like phenotype which was not mediated by CSD waves in the cerebral cortex. We suppose LVC triggered rapid-onset migraine-like symptoms are probably related to functional alterations in the trigeminal nociceptive system and K+ channel opening properties of LVC. Understanding the neurobiological mechanisms of this nociceptive window, may provide a novel target in migraine treatment.
Collapse
Affiliation(s)
- Berkay Alpay
- Department of Medical Pharmacology, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, Türkiye
- Neuroscience and Neurotechnology Excellence Joint Application and Research Center (NÖROM), Ankara, Türkiye
| | - Bariscan Cimen
- Department of Medical Pharmacology, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, Türkiye
- Neuroscience and Neurotechnology Excellence Joint Application and Research Center (NÖROM), Ankara, Türkiye
| | - Elif Akaydin
- Department of Medical Pharmacology, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, Türkiye
- Neuroscience and Neurotechnology Excellence Joint Application and Research Center (NÖROM), Ankara, Türkiye
| | - Hayrunnisa Bolay
- Neuroscience and Neurotechnology Excellence Joint Application and Research Center (NÖROM), Ankara, Türkiye.
- Department of Neurology and Algology, Faculty of Medicine, Gazi University, Besevler, Ankara, Türkiye.
| | - Yildirim Sara
- Department of Medical Pharmacology, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, Türkiye
- Neuroscience and Neurotechnology Excellence Joint Application and Research Center (NÖROM), Ankara, Türkiye
| |
Collapse
|
8
|
Greco R, Francavilla M, Demartini C, Zanaboni AM, Facchetti S, Palmisani M, Franco V, Tassorelli C. Activity of FAAH-Inhibitor JZP327A in an Experimental Rat Model of Migraine. Int J Mol Sci 2023; 24:10102. [PMID: 37373250 PMCID: PMC10299064 DOI: 10.3390/ijms241210102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Increased anandamide levels via fatty acid amide hydrolase (FAAH) inhibition can decrease the pronociceptive responses and inflammatory mediators in animal models of migraine. Here, we profile the pharmacological activity of the FAAH inhibitor JZP327A, a chiral 1,3,4-oxadiazol-2(3H)-one compound, in the mediation of spontaneous and nocifensive behaviour in the animal models of migraine based on nitroglycerin (NTG) administration. JZP327A (0.5 mg/kg, i.p.) or vehicle was administered to male rats 3 h after NTG (10 mg/kg, i.p.) or NTG vehicle injection. The rats were then exposed to the open field test and an orofacial formalin test 1 h later. The levels of endocannabinoids and lipid-related substances, and the expression of pain and inflammatory mediators were evaluated in cranial tissues and serum. The findings show that JZP327A did not affect NTG-induced changes in the spontaneous behaviour of rats, while it inhibited NTG-induced hyperalgesia at the orofacial formalin test. Furthermore, JZP327A dramatically decreased the gene expression of calcitonin gene-related peptide (CGRP), tumor necrosis factor alpha (TNF-alpha) and interleukin 6 (IL-6) in the trigeminal ganglia and medulla-pons, while it did not change endocannabinoids or lipids levels nor CGRP serum levels in the same tissues. These data suggest an anti-hyperalgesic role for JZP327A in the NTG model, which is mediated by the inhibition of the inflammatory cascade of events. This activity does not seem mediated by a change in the levels of endocannabinoids and lipid amides.
Collapse
Affiliation(s)
- Rosaria Greco
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (M.F.); (C.D.); (A.M.Z.); (S.F.); (M.P.); (V.F.); (C.T.)
| | - Miriam Francavilla
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (M.F.); (C.D.); (A.M.Z.); (S.F.); (M.P.); (V.F.); (C.T.)
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
| | - Chiara Demartini
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (M.F.); (C.D.); (A.M.Z.); (S.F.); (M.P.); (V.F.); (C.T.)
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
| | - Anna Maria Zanaboni
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (M.F.); (C.D.); (A.M.Z.); (S.F.); (M.P.); (V.F.); (C.T.)
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
| | - Sara Facchetti
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (M.F.); (C.D.); (A.M.Z.); (S.F.); (M.P.); (V.F.); (C.T.)
| | - Michela Palmisani
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (M.F.); (C.D.); (A.M.Z.); (S.F.); (M.P.); (V.F.); (C.T.)
- Clinical and Experimental Pharmacology Unit, Department of Internal Medicine and Therapeutics, University of Pavia, Via Ferrata 9/A, 27100 Pavia, Italy
| | - Valentina Franco
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (M.F.); (C.D.); (A.M.Z.); (S.F.); (M.P.); (V.F.); (C.T.)
- Clinical and Experimental Pharmacology Unit, Department of Internal Medicine and Therapeutics, University of Pavia, Via Ferrata 9/A, 27100 Pavia, Italy
| | - Cristina Tassorelli
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (M.F.); (C.D.); (A.M.Z.); (S.F.); (M.P.); (V.F.); (C.T.)
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
| |
Collapse
|
9
|
Greco R, Francavilla M, Demartini C, Zanaboni AM, Sodergren MH, Facchetti S, Pacchetti B, Palmisan M, Franco V, Tassorelli C. Characterization of the biochemical and behavioral effects of cannabidiol: implications for migraine. J Headache Pain 2023; 24:48. [PMID: 37138206 PMCID: PMC10155373 DOI: 10.1186/s10194-023-01589-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023] Open
Abstract
Cannabidiol (CBD) is the main pharmacologically active phytocannabinoid. CBD exerts an analgesic effect in several pain models, does not have side effects and has low toxicity. The data about CBD mechanisms of action in pain and its therapeutic potential in this area are limited. Here, we tested CBD effects in animal models specific for migraine. We assayed CBD distribution in plasma and in cranial areas related to migraine pain in male Sprague Dawley rats treated chronically (5 days). Successively, we tested CBD activity on the behavioral and biochemical effects induced in the acute and the chronic migraine animal models by nitroglycerin (NTG) administration. In the acute migraine model, rats received CBD (15 mg or 30 mg/kg, i.p) 3 h after NTG (10 mg/kg i.p.) or vehicle injection. In the chronic migraine model, rats were treated with CBD and NTG every other day over nine days with the following doses: CBD 30 mg/kg i.p., NTG 10 mg/kg i.p. We evaluated behavioral parameters with the open field and the orofacial formalin tests. We explored the fatty acid amide hydrolase gene expression, cytokines mRNA and protein levels in selected brain areas and CGRP serum level. CBD levels in the meninges, trigeminal ganglia, cervical spinal cord, medulla pons, and plasma were higher 1 h after the last treatment than after 24 h, suggesting that CBD penetrates but does not accumulate in these tissues. In the acute model, CBD significantly reduced NTG-induced trigeminal hyperalgesia and CGRP and cytokine mRNA levels in peripheral and central sites. In the chronic model, CBD caused a significant decrease in NTG-induced IL-6 protein levels in the medulla-pons, and trigeminal ganglion. It also reduced CGRP serum levels. By contrast, CBD did not modulate TNF-alpha protein levels and fatty acid amide hydrolase (FAAH) gene expression in any of investigated areas. In both experimental conditions, there was no modulation of anxiety, motor/exploratory behavior, or grooming. These findings show that CBD reaches brain areas involved in migraine pain after systemic administration. They also show for the first time that CBD modulates migraine-related nociceptive transmission, likely via a complex signaling mechanism involving different pathways.
Collapse
Affiliation(s)
- Rosaria Greco
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, 27100, Pavia, Italy.
| | - Miriam Francavilla
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, 27100, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, 27100, Pavia, Italy
| | - Chiara Demartini
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, 27100, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, 27100, Pavia, Italy
| | - Anna Maria Zanaboni
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, 27100, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, 27100, Pavia, Italy
| | - Mikael H Sodergren
- Curaleaf International, Guernsey, UK
- Medical Cannabis Research Group, Imperial College London, London, UK
| | - Sara Facchetti
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, 27100, Pavia, Italy
| | | | - Michela Palmisan
- Clinical and Experimental Pharmacology Unit, Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Pavia, Italy
| | - Valentina Franco
- Clinical and Experimental Pharmacology Unit, Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Pavia, Italy
| | - Cristina Tassorelli
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, 27100, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, 27100, Pavia, Italy
| |
Collapse
|