1
|
Frohlich J, Liorni N, Mangoni M, Lochmanová G, Pírek P, Kaštánková N, Pata P, Kucera J, Chaldakov GN, Tonchev AB, Pata I, Gorbunova V, Leire E, Zdráhal Z, Mazza T, Vinciguerra M. Epigenetic and transcriptional control of adipocyte function by centenarian-associated SIRT6 N308K/A313S mutant. Clin Epigenetics 2024; 16:96. [PMID: 39033117 PMCID: PMC11265064 DOI: 10.1186/s13148-024-01710-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Obesity is a major health burden. Preadipocytes proliferate and differentiate in mature adipocytes in the adipogenic process, which could be a potential therapeutic approach for obesity. Deficiency of SIRT6, a stress-responsive protein deacetylase and mono-ADP ribosyltransferase enzyme, blocks adipogenesis. Mutants of SIRT6 (N308K/A313S) were recently linked to the in the long lifespan Ashkenazi Jews. In this study, we aimed to clarify how these new centenarian-associated SIRT6 genetic variants affect adipogenesis at the transcriptional and epigenetic level. METHODS We analyzed the role of SIRT6 wild-type (WT) or SIRT6 centenarian-associated mutant (N308K/A313S) overexpression in adipogenesis, by creating stably transduced preadipocyte cell lines using lentivirus on the 3T3-L1 model. Histone post-translational modifications (PTM: acetylation, methylation) and transcriptomic changes were analyzed by mass spectrometry (LC-MS/MS) and RNA-Seq, respectively, in 3T3-L1 adipocytes. In addition, the adipogenic process and related signaling pathways were investigated by bioinformatics and biochemical approaches. RESULTS Overexpression of centenarian-associated SIRT6 mutant increased adipogenic differentiation to a similar extent compared to the WT form. However, it triggered distinct histone PTM profiles in mature adipocytes, with significantly higher acetylation levels, and activated divergent transcriptional programs, including those dependent on signaling related to the sympathetic innervation and to PI3K pathway. 3T3-L1 mature adipocytes overexpressing SIRT6 N308K/A313S displayed increased insulin sensitivity in a neuropeptide Y (NPY)-dependent manner. CONCLUSIONS SIRT6 N308K/A313S overexpression in mature adipocytes ameliorated glucose sensitivity and impacted sympathetic innervation signaling. These findings highlight the importance of targeting SIRT6 enzymatic activities to regulate the co-morbidities associated with obesity.
Collapse
Affiliation(s)
- Jan Frohlich
- International Clinical Research Center, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic
| | - Niccolò Liorni
- IRCCS, Bioinformatics Unit, Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Manuel Mangoni
- IRCCS, Bioinformatics Unit, Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Gabriela Lochmanová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Pavlína Pírek
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Nikola Kaštánková
- International Clinical Research Center, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic
| | | | - Jan Kucera
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Physical Activities and Health, Faculty of Sports Studies, Masaryk University, Brno, Czech Republic
| | - George N Chaldakov
- Department of Translational Stem Cell Biology, Research Institute of the Medical University, Varna, Bulgaria
- Department of Anatomy and Cell Biology, Faculty of Medicine, Varna, Bulgaria
| | - Anton B Tonchev
- Department of Translational Stem Cell Biology, Research Institute of the Medical University, Varna, Bulgaria
- Department of Anatomy and Cell Biology, Faculty of Medicine, Varna, Bulgaria
| | | | - Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - Eric Leire
- GenFlow Biosciences Srl, Charleroi, Belgium
- Clinique 135, Brussels, Belgium
| | - Zbyněk Zdráhal
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Tommaso Mazza
- IRCCS, Bioinformatics Unit, Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic.
- Department of Translational Stem Cell Biology, Research Institute of the Medical University, Varna, Bulgaria.
- Faculty of Science, Liverpool John Moores University (LJMU), Liverpool, UK.
| |
Collapse
|
2
|
Wang Y, Ye L. The Afferent Function of Adipose Innervation. Diabetes 2024; 73:348-354. [PMID: 38377447 PMCID: PMC10882147 DOI: 10.2337/dbi23-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 12/18/2023] [Indexed: 02/22/2024]
Abstract
Adipose tissue innervation is critical for regulating metabolic and energy homeostasis. While the sympathetic efferent innervation of fat is well characterized, the role of sensory or afferent innervation remains less explored. This article reviews previous work on adipose innervation and recent advances in the study of sensory innervation of adipose tissues. We discuss key open questions, including the physiological implications of adipose afferents in homeostasis as well as potential cross talk with sympathetic neurons, the immune system, and hormonal pathways. We also outline the general technical challenges of studying dorsal root ganglia innervating fat, along with emerging technologies that may overcome these barriers. Finally, we highlight areas for further research to deepen our understanding of the afferent function of adipose innervation.
Collapse
Affiliation(s)
- Yu Wang
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA
| | - Li Ye
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA
| |
Collapse
|
3
|
Lorsignol A, Rabiller L, Labit E, Casteilla L, Pénicaud L. The nervous system and adipose tissues: a tale of dialogues. Am J Physiol Endocrinol Metab 2023; 325:E480-E490. [PMID: 37729026 DOI: 10.1152/ajpendo.00115.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/16/2023] [Accepted: 09/18/2023] [Indexed: 09/22/2023]
Abstract
White, beige, and brown adipose tissues play a crucial role in maintaining energy homeostasis. Due to the heterogeneous and diffuse nature of fat pads, this balance requires a fine and coordinated control of many actors and therefore permanent dialogues between these tissues and the central nervous system. For about two decades, many studies have been devoted to describe the neuro-anatomical and functional complexity involved to ensure this dialogue. Thus, if it is now clearly demonstrated that there is an efferent sympathetic innervation of different fat depots controlling plasticity as well as metabolic functions of the fat pad, the crucial role of sensory innervation capable of detecting local signals informing the central nervous system of the metabolic state of the relevant pads is much more recent. The purpose of this review is to provide the current state of knowledge on this subject.
Collapse
Affiliation(s)
- Anne Lorsignol
- RESTORE, CNRS, Inserm, Université de Toulouse, Toulouse, France
| | - Lise Rabiller
- RESTORE, CNRS, Inserm, Université de Toulouse, Toulouse, France
| | - Elodie Labit
- RESTORE, CNRS, Inserm, Université de Toulouse, Toulouse, France
| | - Louis Casteilla
- RESTORE, CNRS, Inserm, Université de Toulouse, Toulouse, France
| | - Luc Pénicaud
- RESTORE, CNRS, Inserm, Université de Toulouse, Toulouse, France
| |
Collapse
|