1
|
Tachibana T, Mimura R, Khan S, Cline MA. Effects of Synthetic CpG Oligodeoxynucleotide K3 on Immune Response, Behavior, and Physiology in Male Layer Chicks ( Gallus gallus). J Poult Sci 2024; 61:2024025. [PMID: 39650856 PMCID: PMC11611325 DOI: 10.2141/jpsa.2024025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/29/2024] [Indexed: 12/11/2024] Open
Abstract
Unmethylated cytosine-phosphate-guanine (CpG) motifs are often found in bacteria and viruses, but are rare in mammals. In mammals, CpG oligodeoxynucleotides (CpG ODN) stimulate the innate immune system via toll-like receptor 9 (TLR9). However, TLR9 is absent in birds; instead, TLR21 serves as the receptor for CpG ODN. While CpG ODN induce behavioral and physiological changes in mammals, there is limited research on their effects on behavioral and physiological parameters in birds. The aim of the present study was to determine whether intraperitoneal injection of K3, a synthetic class B CpG ODN, affected food intake, voluntary activity, cloacal temperature, blood constituents, and feed passage from the crop in chicks (Gallus gallus). Additionally, the effects of K3 (GC), which contains GpC motifs instead of CpG motifs, were investigated to determine the importance of these CpG motifs. Intraperitoneal injection of K3 significantly increased the mRNA expression of interleukin-1β, interleukin-6, interleukin-8, and interferon-γ in the spleen. These changes were not observed with K3 (GC) administration. Intraperitoneal injection of K3 significantly decreased food intake but did not affect voluntary activity. K3 also significantly increased cloacal temperature, tended to increase plasma glucose and corticosterone concentrations and significantly decreased feed passage from the crop. In contrast, K3 (GC) showed no effects on these parameters. These results demonstrate that class B CpG ODN is associated with anorexia, hyperthermia, and reduced feed passage through the digestive tract in chicks during bacterial and viral infections.
Collapse
Affiliation(s)
- Tetsuya Tachibana
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan
| | - Rena Mimura
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan
| | - Sakirul Khan
- Research Center for Global and Local Infectious Diseases, Oita University, Yufu, Oita 879-5593, Japan
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu, Oita 879-5593, Japan
| | - Mark A. Cline
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg 24061, Virginia, United States of America
| |
Collapse
|
2
|
Liu Y, Huang X, Li C, Deng P, Zhang X, Hu Y, Dai Q. Effects of Ferulic Acid on Lipopolysaccharide-Induced Oxidative Stress and Gut Microbiota Imbalance in Linwu Ducks. Antioxidants (Basel) 2024; 13:1190. [PMID: 39456444 PMCID: PMC11504935 DOI: 10.3390/antiox13101190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Oxidative stress is a major factor that limits the development of the poultry industry. Ferulic acid (FA) has an antioxidant effect in birds, but the mechanism is not fully understood. In this study, we stimulated oxidative stress in 28-day-old female Linwu ducks by lipopolysaccharide (LPS) and fed them a diet supplemented with FA for 28 days. Results showed that FA alleviated LPS-induced growth performance regression, oxidative stress, and microbiota imbalance in ducks. An integrated metagenomics and metabolomics analysis revealed that s_Blautia_obeum, s_Faecalibacterium_prausnitzii, s_gemmiger_formicilis, and s_Ruminococcaceae_bacterium could be the biomarkers in the antioxidant effect of FA, which interacted with dihydro-3-coumaric acid, L-phenylalanine, and 13(S)-HODE, and regulated the phenylalanine metabolism and PPAR signaling pathway. This study revealed the mechanism of the antioxidant effect of FA, which provided evidence of applying FA as a new antioxidant in commercial duck production.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qiuzhong Dai
- Hunan Institute of Animal Husbandry and Veterinary Medicine, Changsha 410131, China; (Y.L.); (X.H.); (C.L.); (P.D.); (X.Z.); (Y.H.)
| |
Collapse
|
3
|
Vasconcelos MDC, Sousa LS, Lopes TSB, Gonçalves LM, de Souza AB, Avelar NM, Oliveira JMF, Leme FDOP, Lara LJC, Araújo ICS. Impact of increased pre-start diet density on broiler chick behavior, corticosterone levels, and performance responses under cold stress during early life. J Therm Biol 2024; 124:103974. [PMID: 39277912 DOI: 10.1016/j.jtherbio.2024.103974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/18/2024] [Accepted: 08/30/2024] [Indexed: 09/17/2024]
Abstract
This study assessed the effects of increased pre-start diet density on the metabolism, crop filling, and overall performance of broilers under cold stress during their initial 14 days of life. Using 576 one-day-old Cobb500 male chicks from 27-week-old breeders, the experiment employed a 2 × 2 arrangement, varying thermal conditions (thermoneutrality or cold stress at 18 °C for 8 h) and pre-start diet composition (21.5% crude protein, 2970 kcal/kg or 22.5%, 3050 kcal/kg). The cold stress group exhibited lower cloacal temperature and decreased crop filling rate during the first two days (P < 0.05). Chick behavior was significantly affected at 1 and 5 days (P < 0.05), and corticosterone levels in serum were higher for the cold stress group at 7 days (P < 0.05). Feed intake at 7 days was lower in the high-density feed group (P < 0.05). No significant interactions were observed for feed intake, body weight gain, or feed conversion ratio at 7 and 35 days (P > 0.05). Cold stress resulted in performance losses, impacting feed conversion and the Productive Efficiency Index. The dense diet influenced performance only within the first week, with subsequent diets showing no effect, suggesting dietary manipulation alone was insufficient to mitigate cold stress-induced losses.
Collapse
Affiliation(s)
- Mariana Diniz Costa Vasconcelos
- Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lorena Salim Sousa
- Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Larissa Moreira Gonçalves
- Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Aline Bernardes de Souza
- Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Nathália Morais Avelar
- Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Júlia Macedo Fernandes Oliveira
- Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fabíola de Oliveira Paes Leme
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Leonardo José Camargos Lara
- Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Itallo Conrado Sousa Araújo
- Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
4
|
Takahashi M, Ishida T, Khan S, Makino R, Cline MA, Tachibana T. Zymosan and lipopolysaccharide decrease gene expression of neuronal nitric oxide synthase in peripheral organs in chicks. Vet Immunol Immunopathol 2024; 271:110752. [PMID: 38579442 DOI: 10.1016/j.vetimm.2024.110752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
Nitric oxide (NO) is gaseous bioactive molecule that is synthesized by NO synthase (NOS). Inducible NOS (iNOS) expression occurs in response to pathogenic challenges, resulting in the production of large amounts of NO. However, there is a lack of knowledge regarding neuronal NOS (nNOS) and endothelial NOS (eNOS) in birds during pathogenic challenge. Therefore, the present study was conducted to determine the influence of intraperitoneal (IP) injection of zymosan (cell wall component of yeast) and lipopolysaccharide (LPS, a cell wall component of gram-negative bacteria) on NOS expression in chicks (Gallus gallus). Furthermore, the effect of NOS inhibitors on the corresponding behavioral and physiological parameters was investigated. Zymosan and LPS injections induced iNOS mRNA expression in several organs. Zymosan had no effect on eNOS mRNA expression in the organs investigated, whereas LPS increased its expression in the pancreas. Zymosan and LPS decreased nNOS mRNA expression in the lung, heart, kidney, and pancreas. The decreased nNOS mRNA expression in pancreas was probably associated with the NO from iNOS provided that such effect was reproduced by IP injection of sodium nitroprusside, which is a NO donor. Furthermore, pancreatic nNOS mRNA expression decreased following subcutaneous injection of corticosterone. Furthermore, IP injections of a nonspecific NOS inhibitor, NG-nitro-L-arginine methyl ester, and an nNOS-specific inhibitor, 7-nitroindazole, resulted in the significant decreases in food intake, cloacal temperature, and feed passage via the digestive tract in chicks. Collectively, the current findings imply the decreased nNOS expression because of fungal and bacterial infections, which affects food intake, body temperature, and the digestive function in birds.
Collapse
Affiliation(s)
- Maki Takahashi
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan
| | - Tomohisa Ishida
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan
| | - Sakirul Khan
- Research Center for Global and Local Infectious Diseases, Oita University, Yufu, Oita 879-5593, Japan; Department of Microbiology, Faculty of Medicine, Oita University, Yufu, Oita 879-5593, Japan
| | - Ryosuke Makino
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan
| | - Mark A Cline
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| | - Tetsuya Tachibana
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan.
| |
Collapse
|