1
|
Rezazade M, Ketabi S, Qomi M. Effect of functionalization on the adsorption performance of carbon nanotube as a drug delivery system for imatinib: molecular simulation study. BMC Chem 2024; 18:85. [PMID: 38678270 PMCID: PMC11555890 DOI: 10.1186/s13065-024-01197-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024] Open
Abstract
In this study, efficiency of functionalized carbon nanotube as a potential delivery system for imatinib anti-cancer drug was investigated. Accordingly, carboxyl and hydroxyl functionalized carbon nanotube were inspected as a notable candidate for the carriage of this drug in aqueous media. For this purpose, possible interactions of imatinib with pure and functionalized carbon nanotube were considered in aqueous media. The compounds were optimized in gas phase using density functional calculations. Solvation free energies and association free energies of the optimized structures were then studied by Monte Carlo simulation and perturbation method in water environment. Outcomes of quantum mechanical calculations presented that pure and functionalized carbon nanotubes can act as imatinib drug adsorbents in gas phase. However, results of association free energy calculations in aqueous solution indicated that only carboxyl and hydroxyl functionalized carbon nanotubes could interact with imatinib. Monte Carlo simulation results revealed that electrostatic interactions play a vital role in the intermolecular interaction energies after binding of drug and nanotube in aqueous solution. Computed solvation free energies in water showed that the interactions with functionalized carbon nanotubes significantly enhance the solubility of imatinib, which could improve its in vivo bioavailability.
Collapse
Affiliation(s)
- Masume Rezazade
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Ketabi
- Department of Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mahnaz Qomi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Active Pharmaceutical Ingredients Research (APIRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Brito C, Silva JV, Gonzaga RV, La-Scalea MA, Giarolla J, Ferreira EI. A Review on Carbon Nanotubes Family of Nanomaterials and Their Health Field. ACS OMEGA 2024; 9:8687-8708. [PMID: 38434894 PMCID: PMC10905599 DOI: 10.1021/acsomega.3c08824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
The use of carbon nanotubes (CNTs), which are nanometric materials, in pathogen detection, protection of environments, food safety, and in the diagnosis and treatment of diseases, as efficient drug delivery systems, is relevant for the improvement and advancement of pharmacological profiles of many molecules employed in therapeutics and in tissue bioengineering. It has contributed to the advancement of science due to the development of new tools and devices in the field of medicine. CNTs have versatile mechanical, physical, and chemical properties, in addition to their great potential for association with other materials to contribute to applications in different fields of medicine. As, for example, photothermal therapy, due to the ability to convert infrared light into heat, in tissue engineering, due to the mechanical resistance, flexibility, elasticity, and low density, in addition to many other possible applications, and as biomarkers, where the electronic and optics properties enable the transduction of their signals. This review aims to describe the state of the art and the perspectives and challenges of applying CNTs in the medical field. A systematic search was carried out in the indexes Medline, Lilacs, SciELO, and Web of Science using the descriptors "carbon nanotubes", "tissue regeneration", "electrical interface (biosensors and chemical sensors)", "photosensitizers", "photothermal", "drug delivery", "biocompatibility" and "nanotechnology", and "Prodrug design" and appropriately grouped. The literature reviewed showed great applicability, but more studies are needed regarding the biocompatibility of CNTs. The data obtained point to the need for standardized studies on the applications and interactions of these nanostructures with biological systems.
Collapse
Affiliation(s)
- Charles
L. Brito
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| | - João V. Silva
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| | - Rodrigo V. Gonzaga
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| | - Mauro A. La-Scalea
- Department
of Chemistry, Federal University of São
Paulo, Diadema 09972-270, Brazil
| | - Jeanine Giarolla
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| | - Elizabeth I. Ferreira
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| |
Collapse
|
3
|
Hatta MHM, Matmin J, Malek NANN, Kamisan FH, Badruzzaman A, Batumalaie K, Ling Lee S, Abdul Wahab R. COVID‐19: Prevention, Detection, and Treatment by Using Carbon Nanotubes‐Based Materials. ChemistrySelect 2023. [DOI: 10.1002/slct.202204615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Mohd Hayrie Mohd Hatta
- Centre for Research and Development Asia Metropolitan University 81750 Johor Bahru Johor Malaysia
| | - Juan Matmin
- Department of Chemistry Faculty of Science Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
- Centre for Sustainable Nanomaterials Ibnu Sina Institute for Scientific and Industrial Research Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
| | - Nik Ahmad Nizam Nik Malek
- Centre for Sustainable Nanomaterials Ibnu Sina Institute for Scientific and Industrial Research Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
- Department of Biosciences, Faculty of Science Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
| | - Farah Hidayah Kamisan
- Department of Biomedical Sciences Faculty of Health Sciences Asia Metropolitan University 81750 Johor Bahru Johor Malaysia
| | - Aishah Badruzzaman
- Centre for Foundation, Language and General Studies Asia Metropolitan University 81750 Johor Bahru Johor Malaysia
| | - Kalaivani Batumalaie
- Department of Biomedical Sciences Faculty of Health Sciences Asia Metropolitan University 81750 Johor Bahru Johor Malaysia
| | - Siew Ling Lee
- Department of Chemistry Faculty of Science Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
- Centre for Sustainable Nanomaterials Ibnu Sina Institute for Scientific and Industrial Research Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry Faculty of Science Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
| |
Collapse
|
4
|
Sengupta J, Hussain CM. The Emergence of Carbon Nanomaterials as Effective Nano-Avenues to Fight against COVID-19. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1068. [PMID: 36770075 PMCID: PMC9918919 DOI: 10.3390/ma16031068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
COVID-19 (Coronavirus Disease 2019), a viral respiratory ailment that was first identified in Wuhan, China, in 2019, and then expanded globally, was caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The severity of the illness necessitated quick action to cease the virus's spread. The best practices to avert the infection include early detection, the use of protective clothing, the consumption of antiviral medicines, and finally the immunization of the patients through vaccination. The family of carbon nanomaterials, which includes graphene, fullerene, carbon nanotube (CNT), and carbon dot (CD), has a great deal of potential to effectively contribute to each of the main trails in the battle against the coronavirus. Consequently, the recent advances in the application of carbon nanomaterials for containing and combating the SARS-CoV-2 virus are discussed herein, along with their associated challenges and futuristic applicability.
Collapse
Affiliation(s)
- Joydip Sengupta
- Department of Electronic Science, Jogesh Chandra Chaudhuri College, Kolkata 700033, India
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
5
|
Al-Sawaff ZH, Dalgic SS, Kandemirli F, Monajjemi M, Mollaamin F. DFT Study Adsorption of Hydroxychloroquine for Treatment COVID-19 by SiC Nanotube and Al, Si Doping on Carbon Nanotube Surface: A Drug Delivery Simulation. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [PMCID: PMC9801348 DOI: 10.1134/s003602442213026x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zaid H. Al-Sawaff
- Material Science and Engineering Department, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
- Medical Instrumentation Technology, Technical Engineering College, Northern Technical University, Mosul, Iraq
| | - Serap Senturk Dalgic
- Department of Physics, Faculty of Science, Trakya University, 22030 Edirne, Turkey
| | - Fatma Kandemirli
- Biomedical Engineering Department, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Majid Monajjemi
- Biomedical Engineering Department, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Fatemeh Mollaamin
- Biomedical Engineering Department, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| |
Collapse
|
6
|
Jiwanti PK, Wardhana BY, Sutanto LG, Dewi DMM, Putri IZD, Savitri INI. Recent Development of Nano-Carbon Material in Pharmaceutical Application: A Review. Molecules 2022; 27:7578. [PMID: 36364403 PMCID: PMC9654677 DOI: 10.3390/molecules27217578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/21/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Carbon nanomaterials have attracted researchers in pharmaceutical applications due to their outstanding properties and flexible dimensional structures. Carbon nanomaterials (CNMs) have electrical properties, high thermal surface area, and high cellular internalization, making them suitable for drug and gene delivery, antioxidants, bioimaging, biosensing, and tissue engineering applications. There are various types of carbon nanomaterials including graphene, carbon nanotubes, fullerenes, nanodiamond, quantum dots and many more that have interesting applications in the future. The functionalization of the carbon nanomaterial surface could modify its chemical and physical properties, as well as improve drug loading capacity, biocompatibility, suppress immune response and have the ability to direct drug delivery to the targeted site. Carbon nanomaterials could also be fabricated into composites with proteins and drugs to reduce toxicity and increase effectiveness in the pharmaceutical field. Thus, carbon nanomaterials are very effective for applications in pharmaceutical or biomedical systems. This review will demonstrate the extraordinary properties of nanocarbon materials that can be used in pharmaceutical applications.
Collapse
Affiliation(s)
- Prastika K. Jiwanti
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Kampus C Universitas Airlangga, Surabaya 60115, Indonesia
| | - Brasstira Y. Wardhana
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Kampus C Universitas Airlangga, Surabaya 60115, Indonesia
| | - Laurencia G. Sutanto
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Kampus C Universitas Airlangga, Surabaya 60115, Indonesia
| | - Diva Meisya Maulina Dewi
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Kampus C Universitas Airlangga, Surabaya 60115, Indonesia
| | | | - Ilmi Nur Indira Savitri
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
7
|
Adekoya O, Adekoya GJ, Sadiku RE, Hamam Y, Ray SS. Density Functional Theory Interaction Study of a Polyethylene Glycol-Based Nanocomposite with Cephalexin Drug for the Elimination of Wound Infection. ACS OMEGA 2022; 7:33808-33820. [PMID: 36188269 PMCID: PMC9520710 DOI: 10.1021/acsomega.2c02347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/26/2022] [Indexed: 05/13/2023]
Abstract
In this paper, density functional theory (DFT) simulations are used to evaluate the possible use of a graphene oxide-based poly(ethylene glycol) (GO/PEG) nanocomposite as a drug delivery substrate for cephalexin (CEX), an antibiotic drug employed to treat wound infection. First, the stable configuration of the PEGylated system was generated with a binding energy of -25.67 kcal/mol at 1.62 Å through Monte Carlo simulation and DFT calculation for a favorable adsorption site. The most stable configuration shows that PEG interacts with GO through hydrogen bonding of the oxygen atom on the hydroxyl group of PEG with the hydrogen atom of the carboxylic group on GO. Similarly, for the interaction of the CEX drug with the GO/PEG nanocomposite excipient system, the adsorption energies are computed after determining the optimal and thermodynamically favorable configuration. The nitrogen atom from the amine group of the drug binds with a hydrogen atom from the carboxylic group of the GO/PEG nanocomposite at 1.75 Å, with an adsorption energy of -36.17 kcal/mol, in the most stable drug-excipient system. Drug release for tissue regeneration at the predicted target cell is more rapid in moist conditions than in the gas phase. The solubility of the suggested drug in the aqueous media around the open wound is shown by the magnitude of the predicted solvation energy. The findings from this study theoretically validate the potential use of a GO/PEG nanocomposite for wound treatment application as a drug carrier for sustained release of the CEX drug.
Collapse
Affiliation(s)
- Oluwasegun
Chijioke Adekoya
- Institute
of Nanoengineering Research (INER), Department of Chemical, Metallurgical
and Materials Engineering, Faculty of Engineering and the Built Environment, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Gbolahan Joseph Adekoya
- Institute
of Nanoengineering Research (INER), Department of Chemical, Metallurgical
and Materials Engineering, Faculty of Engineering and the Built Environment, Tshwane University of Technology, Pretoria 0001, South Africa
- Centre
for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
| | - Rotimi Emmanuel Sadiku
- Institute
of Nanoengineering Research (INER), Department of Chemical, Metallurgical
and Materials Engineering, Faculty of Engineering and the Built Environment, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Yskandar Hamam
- Department
of Electrical Engineering, Faculty of Engineering and the Built Environment, Tshwane University of Technology, Pretoria 001, South Africa
- École
Supérieure d’Ingénieurs en Électrotechnique
et Électronique, Cité Descartes, 2 Boulevard Blaise Pascal, Noisy-le-Grand, Paris 93160, France
| | - Suprakas Sinha Ray
- Centre
for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
- Department
of Chemical Sciences, University of Johannesburg, Doornforntein, Johannesburg 2028, South
Africa
- , ,
| |
Collapse
|