1
|
Freitas CDT, Demarco D, Oliveira JS, Ramos MV. Review: Laticifer as a plant defense mechanism. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112136. [PMID: 38810884 DOI: 10.1016/j.plantsci.2024.112136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Laticifers have been utilized as paradigms to enhance comprehension of specific facets of plant ecology and evolution. From the beginning of seedling growth, autonomous laticifer networks are formed throughout the plant structure, extending across all tissues and organs. The vast majority of identified products resulting from laticifer chemistry and metabolism are linked to plant defense. The latex, which is the fluid contained within laticifers, is maintained under pressure and has evolved to serve as a defense mechanism against both aggressors and invaders, irrespective of their capabilities or tactics. Remarkably, the latex composition varies among different species. The current goal is to understand the specific functions of various latex components in combating plant enemies. Therefore, the study of latex's chemical composition and proteome plays a critical role in advancing our understanding about plant defense mechanisms. Here, we will discuss some of these aspects.
Collapse
Affiliation(s)
- Cleverson D T Freitas
- Department of Biochemistry and Molecular Biology, Federal University of Ceara. Campus do Pici, Bloco 907, Fortaleza, Ceará CEP 60451-970, Brazil.
| | - Diego Demarco
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Jefferson S Oliveira
- Federal University of Delta of Parnaíba, Campus Ministro Reis Velloso, Parnaíba, PI, Brazil
| | - Márcio V Ramos
- Department of Biochemistry and Molecular Biology, Federal University of Ceara. Campus do Pici, Bloco 907, Fortaleza, Ceará CEP 60451-970, Brazil.
| |
Collapse
|
2
|
Freitas CDT, Souza DP, Grangeiro TB, Sousa JS, Lima IVM, Souza PFN, Lima CS, Gomes ADS, Monteiro-Moreira ACO, Aguiar TKB, Ramos MV. Proteomic analysis of Cryptostegia grandiflora latex, purification, characterization, and biological activity of two osmotin isoforms. Int J Biol Macromol 2023; 252:126529. [PMID: 37633557 DOI: 10.1016/j.ijbiomac.2023.126529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Although latex fluids are found in >20,000 plant species, the biochemical composition and biological function of their proteins are still poorly explored. Thus, this work aimed to conduct a proteomic analysis of Cryptostegia grandiflora latex (CgLP) for subsequent purification and characterization of an antifungal protein. After 2D-SDS-PAGE and mass spectrometry, 27 proteins were identified in CgLP, including a polygalacturonase inhibitor, cysteine peptidases, pathogenesis-related proteins (PR-4), and osmotins. Then, two osmotin isoforms (CgOsm) were purified, and a unique N-terminal sequence was determined (1ATFDIRSNCPYTVWAAAVPGGGRRLDRGQTWTINVAPGTA40). The PCR products revealed a cDNA sequence of 609 nucleotides for CgOsm, which encoded a polypeptide with 203 amino acid residues. The structure of CgOsm has features of typical osmotin or thaumatin-like proteins (TLPs), such as 16 conserved Cys residues, REDDD and FF motifs, an acidic cleft, and three main domains. Atomic force microscopy (AFM) and bioinformatics suggested that CgOsm is associated with three chain units. This result was interesting since the literature describes osmotins and TLPs as monomers. AFM also showed that Fusarium falciforme spores treated with CgOsm were drastically damaged. Therefore, it is speculated that CgOsm forms pores in the membrane of these cells, causing the leakage of cytoplasmic content.
Collapse
Affiliation(s)
- Cleverson D T Freitas
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Bloco 907, Fortaleza, Ceará CEP 60451-970, Brazil.
| | - Diego P Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Bloco 907, Fortaleza, Ceará CEP 60451-970, Brazil
| | - Thalles B Grangeiro
- Departamento de Biologia, Universidade Federal do Ceará, Campus do Pici, Bloco 906, Fortaleza, Ceará, Brazil
| | - Jeanlex S Sousa
- Departamento de Física, Universidade Federal do Ceará, Campus do Pici, Fortaleza, Ceará, Brazil
| | - Isis V M Lima
- Departamento de Física, Universidade Federal do Ceará, Campus do Pici, Fortaleza, Ceará, Brazil
| | - Pedro Filho N Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Bloco 907, Fortaleza, Ceará CEP 60451-970, Brazil
| | - Cristiano S Lima
- Departamento de Fitotecnia, Universidade Federal do Ceará, , Campus do Pici, Bloco 805, Fortaleza, Ceará, Brazil
| | - Alexandre D'Emery S Gomes
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Bloco 907, Fortaleza, Ceará CEP 60451-970, Brazil
| | - Ana C O Monteiro-Moreira
- Centro de Biologia Experimental (NUBEX), Universidade de Fortaleza (UNIFOR), Fortaleza, Ceará, Brazil
| | - Tawanny K B Aguiar
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Bloco 907, Fortaleza, Ceará CEP 60451-970, Brazil
| | - Márcio V Ramos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Bloco 907, Fortaleza, Ceará CEP 60451-970, Brazil.
| |
Collapse
|
3
|
Anisimova OK, Kochieva EZ, Shchennikova AV, Filyushin MA. Thaumatin-like Protein (TLP) Genes in Garlic (Allium sativum L.): Genome-Wide Identification, Characterization, and Expression in Response to Fusarium proliferatum Infection. PLANTS 2022; 11:plants11060748. [PMID: 35336630 PMCID: PMC8949454 DOI: 10.3390/plants11060748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/01/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022]
Abstract
Plant antifungal proteins include the pathogenesis-related (PR)-5 family of fungi- and other stress-responsive thaumatin-like proteins (TLPs). However, the information on the TLPs of garlic (Allium sativum L.), which is often infected with soil Fusarium fungi, is very limited. In the present study, we identified 32 TLP homologs in the A. sativum cv. Ershuizao genome, which may function in the defense against Fusarium attack. The promoters of A. sativumTLP (AsTLP) genes contained cis-acting elements associated with hormone signaling and response to various types of stress, including those caused by fungal pathogens and their elicitors. The expression of AsTLP genes in Fusarium-resistant and -susceptible garlic cultivars was differently regulated by F. proliferatum infection. Thus, in the roots the mRNA levels of AsTLP7–9 and 21 genes were increased in resistant and decreased in susceptible A. sativum cultivars, suggesting the involvement of these genes in the garlic response to F. proliferatum attack. Our results provide insights into the role of TLPs in garlic and may be useful for breeding programs to increase the resistance of Allium crops to Fusarium infections.
Collapse
|
4
|
Freitas CDTD, Nishi BC, do Nascimento CTM, Silva MZR, Bezerra EHS, Rocha BAM, Grangeiro TB, Oliveira JPBD, Souza PFN, Ramos MV. Characterization of Three Osmotin-Like Proteins from Plumeria rubra and Prospection for Adiponectin Peptidomimetics. Protein Pept Lett 2021; 27:593-603. [PMID: 31994998 DOI: 10.2174/0929866527666200129154357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/13/2019] [Accepted: 12/02/2019] [Indexed: 01/28/2023]
Abstract
BACKGROUND Osmotin-Like Proteins (OLPs) have been purified and characterized from different plant tissues, including latex fluids. Besides its defensive role, tobacco osmotin seems to induce adiponectin-like physiological effects, acting as an agonist. However, molecular information about this agonistic effect on adiponectin receptors has been poorly exploited and other osmotins have not been investigated yet. OBJECTIVE AND METHODS The present study involved the characterization of three OLPs from Plumeria rubra latex and molecular docking studies to evaluate the interaction between them and adiponectin receptors (AdipoR1 and AdipoR2). RESULTS P. rubra Osmotin-Like Proteins (PrOLPs) exhibited molecular masses from 21 to 25 kDa and isoelectric points ranging from 4.4 to 7.7. The proteins have 16 cysteine residues, which are involved in eight disulfide bonds, conserved in the same positions as other plant OLPs. The threedimensional (3D) models exhibited the three typical domains of OLPs, and molecular docking analysis showed that two PrOLP peptides interacted with two adiponectin receptors similarly to tobacco osmotin peptide. CONCLUSION As observed for tobacco osmotin, the latex osmotins of P. rubra exhibited compatible interactions with adiponectin receptors. Therefore, these plant defense proteins (without known counterparts in humans) are potential tools to study modulation of glucose metabolism in type II diabetes, where adiponectin plays a pivotal role in homeostasis.
Collapse
Affiliation(s)
- Cleverson D T de Freitas
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal do Ceara, Centro de Ciencias, Bloco 907, Campus do Pici. Fortaleza, Ceara, CEP 60440-900, Brazil
| | - Beatriz C Nishi
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal do Ceara, Centro de Ciencias, Bloco 907, Campus do Pici. Fortaleza, Ceara, CEP 60440-900, Brazil
| | - Camila T M do Nascimento
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal do Ceara, Centro de Ciencias, Bloco 907, Campus do Pici. Fortaleza, Ceara, CEP 60440-900, Brazil
| | - Maria Z R Silva
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal do Ceara, Centro de Ciencias, Bloco 907, Campus do Pici. Fortaleza, Ceara, CEP 60440-900, Brazil
| | - Eduardo H S Bezerra
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal do Ceara, Centro de Ciencias, Bloco 907, Campus do Pici. Fortaleza, Ceara, CEP 60440-900, Brazil
| | - Bruno A M Rocha
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal do Ceara, Centro de Ciencias, Bloco 907, Campus do Pici. Fortaleza, Ceara, CEP 60440-900, Brazil
| | - Thalles B Grangeiro
- Departamento de Biologia, Fortaleza, Universidade Federal de Ceara, Ceara, Brazil
| | - João P B de Oliveira
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal do Ceara, Centro de Ciencias, Bloco 907, Campus do Pici. Fortaleza, Ceara, CEP 60440-900, Brazil
| | - Pedro F Noronha Souza
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal do Ceara, Centro de Ciencias, Bloco 907, Campus do Pici. Fortaleza, Ceara, CEP 60440-900, Brazil
| | - Márcio V Ramos
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal do Ceara, Centro de Ciencias, Bloco 907, Campus do Pici. Fortaleza, Ceara, CEP 60440-900, Brazil
| |
Collapse
|
5
|
TLPdb: A Resource for Thaumatin-Like Proteins. Protein J 2020; 39:301-307. [PMID: 32696292 DOI: 10.1007/s10930-020-09909-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Antifungal proteins and peptides have drawn the attention of numerous plant biologists and Clinicians, owing to their potential value in protecting commercial crops as well as preventing fungal infections in humans. Various proteins and peptides, such as glucanases, chitinases, chitinase-like proteins, lectins, peroxidases, defensins, and lipid transfer proteins have antifungal activities. Thaumatin is a protein from a West African plant Thaumatococcus danielli that is sweet in taste but does not exhibit antifungal activities. Despite the structural similarities between thaumatins and thaumatin-like proteins (TLPs), TLPs are not sweet in taste, unlike thaumatins. We developed a thaumatin-like protein database of various organisms. TLPs are pathogenesis-related proteins (PR) with molecular masses of 20-26 kDa. The amino acid residues of TLPs involved in an antifungal activity remain obscure and make it hard to receive comprehensive information on TLPs. The biggest problem in the wine industry is white haze, an undesirable feature of high-quality wine. Hence, the problem may be figured out with the easy accessibility of amino acid sequences and to generate infest resistant crops. Overall, we aimed to produce a freely accessible TLP database ( https://tlpdb.cftri.com ) that would provide substantive information in understanding the mechanistic facet of TLPs. Briefly, TLPdb contains sequences, structures, and amino acid compositions of validated, published TLP protein sequences (from the plant, fungal as well as animal sources). Thus, this work may yield valuable information that may be useful in understanding the mechanistic aspects of TLP activity and in the evolution of antifungal proteins and fungal resistant crops. TLPdb is a comprehensive thaumatin-like protein resource database of various organisms. The database can serve as a unique Bioinformatics tool for understanding the TLPs. This further may help in understanding and the development of fungal resistant crops. TLPdb is freely available at https://tlpdb.cftri.com .
Collapse
|
6
|
Ramos MV, Demarco D, da Costa Souza IC, de Freitas CDT. Laticifers, Latex, and Their Role in Plant Defense. TRENDS IN PLANT SCIENCE 2019; 24:553-567. [PMID: 30979674 DOI: 10.1016/j.tplants.2019.03.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
Latex, a sap produced by cells called laticifers, occurs in plants of wide taxonomic diversity. Plants exude latex sap in response to physical damage. Questions about the function of latex or the underlying mechanisms persist, but a role in defense is likely. The presence of constitutive peptidases in latex sap in addition to inducible and de novo synthesized pathogenesis-related proteins (PR-proteins), raises the question about the role that each sap component plays to protect plants and how synergism occurs among sap proteins in the course of herbivory or infection. Here we discuss a variety of functions for laticifer and latex in plant defense. We propose that latex peptidases build the front line of defense against herbivores or pathogens.
Collapse
Affiliation(s)
- Márcio Viana Ramos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Bloco 907, Fortaleza-Ceará, CEP 60451-970, Brazil.
| | - Diego Demarco
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, CEP 05508-090, Brazil
| | - Isabel Cristina da Costa Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Bloco 907, Fortaleza-Ceará, CEP 60451-970, Brazil
| | - Cleverson Diniz Teixeira de Freitas
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Bloco 907, Fortaleza-Ceará, CEP 60451-970, Brazil
| |
Collapse
|
7
|
Abouzed TK, Sadek KM, Ayoub MM, Saleh EA, Nasr SM, El-Sayed YS, Shoukry M. Papaya extract upregulates the immune and antioxidants-related genes, and proteins expression in milk somatic cells of Friesian dairy cows. J Anim Physiol Anim Nutr (Berl) 2018; 103:407-415. [DOI: 10.1111/jpn.13032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 10/29/2018] [Accepted: 11/04/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Tarek K. Abouzed
- Department of Biochemistry, Faculty of Veterinary Medicine; Kafr El-Sheikh University; Kafr El-Sheikh Egypt
| | - Kadry M. Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine; Damanhour University; Damanhour Egypt
| | - Mousa M. Ayoub
- Department of Animal Hygiene and Zoonosis, Faculty of Veterinary Medicine; Damanhour University; Damanhour Egypt
| | - Ebeed A. Saleh
- Department of Milk and Meat Hygiene, Faculty of Veterinary Medicine; Damanhour University; Damanhour Egypt
| | - Sherif M. Nasr
- Department of Molecular Biology and Genetics, Faculty of Veterinary Medicine; Damanhour University; Damanhour Egypt
| | - Yasser S. El-Sayed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine; Damanhour University; Damanhour Egypt
| | - Moustafa Shoukry
- Department of Physiology, Faculty of Veterinary Medicine; Kafr El-Sheikh University; Kafr El-Sheikh Egypt
| |
Collapse
|
8
|
Wanderley LF, Batista KLR, Carvalho JFD, Lima ADS, Landulfo GA, Soares AMDS, Costa Junior LM. The first assessment of the stress inducible defense of Leucaena leucocephala with acaricidal potential effect against Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA 2017; 26:171-176. [DOI: 10.1590/s1984-29612017026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/13/2017] [Indexed: 11/22/2022]
Abstract
Abstract Plants respond to wounding caused by mechanical stress or herbivory by synthesizing defense proteins. There are no studies reporting the action of induced plant proteins against ticks. The aim of this study was to investigate the effect of mechanically wounded Leucaena leucocephala leaves against Rhipicephalus (Boophilus) microplus. Initially, we carried out time course experiments to evaluate the impact of mechanical wounding on the protein content and the peroxidase, catalase and protease inhibitor activities in L. leucocephala. We then evaluated the acaricidal activity on R. (B.) microplus from protein extract collected from L. leucocephala after mechanical wounding. L. leucocephala leaves were artificially wounded, and after 6, 12, 24 and 48h, the leaves were collected for protein extraction. Quantitative and qualitative analyses of the proteins were performed. The protein content and peroxidase and protease activities increased 12h after wounding, and the acaricidal activity of this protein extract was evaluated using engorged R. (B.) microplus females. The protein extract obtained after wounding reduced egg production (8.5%) compared to those without wounding. Furthermore, the extract reduced egg hatching by 47.7% and showed an overall efficacy of 56.3% at 0.1 mgP/mL of the protein. We demonstrated that L. leucocephala defensive proteins could be effective against R. (B.) microplus.
Collapse
|
9
|
Gai YP, Zhao YN, Zhao HN, Yuan CZ, Yuan SS, Li S, Zhu BS, Ji XL. The Latex Protein MLX56 from Mulberry ( Morus multicaulis) Protects Plants against Insect Pests and Pathogens. FRONTIERS IN PLANT SCIENCE 2017; 8:1475. [PMID: 28878804 PMCID: PMC5572373 DOI: 10.3389/fpls.2017.01475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 08/08/2017] [Indexed: 05/06/2023]
Abstract
Biotic stresses are major constraints limiting the leaf quality and productivity of mulberry. MLX56 is a unique chitin-binding protein isolated from Shin-Ichinose (Morus alba) latex that displays toxicity against lepidopteran caterpillars. In this study, the full-length cDNA encoding MLX56 was isolated from Husang 32 (M. multicaulis) and designated HMLX56. Amino acid sequence analysis and protein modeling of three MLX56 proteins showed that they were highly conserved among Morus species. Tissue expression pattern analysis showed that the HMLX56 gene was strongly expressed in mulberry bark and leaves but only slightly expressed in fruits. In addition, analysis of GUS expression indicated that the promoter of HMLX56 showed higher transcriptional activity along the vascular strands, and its activity can be regulated by various environmental factors. Like the MLX56 protein from M. alba, the HMLX56 protein showed toxicity to Plutella xylostella. Moreover, when the HMLX56 gene was ectopically expressed in Arabidopsis, the transgenic plants showed enhanced resistance to aphids, the fungal pathogen Botrytis cinerea and the bacterial pathogen Pseudomonas syringae pv. tomato DC3000. Our data suggest that the HMLX56 protein has a lectin-like molecular structure consisting of two hevein-like chitin-binding domains which provide not only chitin-binding activities but also other mechanisms of defense. The information provided here improves our understanding of the potential functions and defense mechanisms of MLX56 proteins, enabling in-depth functional analysis of latex exudates and perhaps facilitating mulberry genetic improvement in the future.
Collapse
Affiliation(s)
- Ying-Ping Gai
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityTai’an, China
| | - Ya-Nan Zhao
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityTai’an, China
| | - Huai-Ning Zhao
- College of Forestry, Shandong Agricultural UniversityTai’an, China
| | - Chuan-Zhong Yuan
- College of Forestry, Shandong Agricultural UniversityTai’an, China
| | - Shuo-Shuo Yuan
- College of Forestry, Shandong Agricultural UniversityTai’an, China
| | - Shuo Li
- College of Forestry, Shandong Agricultural UniversityTai’an, China
| | - Bing-Sen Zhu
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityTai’an, China
| | - Xian-Ling Ji
- College of Forestry, Shandong Agricultural UniversityTai’an, China
- Mountain Tai Forest Ecosystem Research Station of State Forestry AdministrationTai’an, China
- *Correspondence: Xian-Ling Ji,
| |
Collapse
|
10
|
Freitas CDT, Silva MZR, Bruno-Moreno F, Monteiro-Moreira ACO, Moreira RA, Ramos MV. New constitutive latex osmotin-like proteins lacking antifungal activity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 96:45-52. [PMID: 26231325 DOI: 10.1016/j.plaphy.2015.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/17/2015] [Accepted: 07/15/2015] [Indexed: 05/23/2023]
Abstract
Proteins that share similar primary sequences to the protein originally described in salt-stressed tobacco cells have been named osmotins. So far, only two osmotin-like proteins were purified and characterized of latex fluids. Osmotin from Carica papaya latex is an inducible protein lacking antifungal activity, whereas the Calotropis procera latex osmotin is a constitutive antifungal protein. To get additional insights into this subject, we investigated osmotins in latex fluids of five species. Two potential osmotin-like proteins in Cryptostegia grandiflora and Plumeria rubra latex were detected by immunological cross-reactivity with polyclonal antibodies produced against the C. procera latex osmotin (CpOsm) by ELISA, Dot Blot and Western Blot assays. Osmotin-like proteins were not detected in the latex of Thevetia peruviana, Himatanthus drasticus and healthy Carica papaya fruits. Later, the two new osmotin-like proteins were purified through immunoaffinity chromatography with anti-CpOsm immobilized antibodies. Worth noting the chromatographic efficiency allowed for the purification of the osmotin-like protein belonging to H. drasticus latex, which was not detectable by immunoassays. The identification of the purified proteins was confirmed after MS/MS analyses of their tryptic digests. It is concluded that the constitutive osmotin-like proteins reported here share structural similarities to CpOsm. However, unlike CpOsm, they did not exhibit antifungal activity against Fusarium solani and Colletotrichum gloeosporioides. These results suggest that osmotins of different latex sources may be involved in distinct physiological or defensive events.
Collapse
Affiliation(s)
- Cleverson D T Freitas
- Departamento de Bioquímica e Biologia Molecular da Universidade Federal do Ceará, Campus do Pici, Cx. Postal 6033, Fortaleza, Ceará, CEP 60451-970, Brazil.
| | - Maria Z R Silva
- Departamento de Bioquímica e Biologia Molecular da Universidade Federal do Ceará, Campus do Pici, Cx. Postal 6033, Fortaleza, Ceará, CEP 60451-970, Brazil
| | | | | | - Renato A Moreira
- Centro de Ciências da Saúde, Universidade de Fortaleza, Unifor, Fortaleza-CE, Brazil
| | - Márcio V Ramos
- Departamento de Bioquímica e Biologia Molecular da Universidade Federal do Ceará, Campus do Pici, Cx. Postal 6033, Fortaleza, Ceará, CEP 60451-970, Brazil.
| |
Collapse
|
11
|
Hamama H, Yiu C, Burrow M. Current update of chemomechanical caries removal methods. Aust Dent J 2014; 59:446-56; quiz 525. [PMID: 25131424 DOI: 10.1111/adj.12214] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2014] [Indexed: 11/27/2022]
Abstract
Chemomechanical caries removal is an excellent method for minimally invasive caries excavation, and the removal agents are either sodium hypochlorite (NaOCl)- or enzyme-based. The NaOCl-based agents include GK-101, GK-101E (Caridex) and Carisolv, and the enzyme-based agents include Papacarie and the experimental material, Biosolv. This review outlines the changes in chemomechanical caries removal methods and focuses on recently published laboratory and clinical studies. The historical development, mechanism of action, excavation time and biological effects on pulp and dental hard tissues are described. Based on existing evidence, the currently available chemomechanical caries removal methods are viable alternatives to conventional rotary instrument methods. Chemomechanical methods could be extremely useful in very anxious, disabled and paediatric patients. It does seem some of these agents would still benefit from quicker excavation times in order to achieve more universal acceptance. However, as a means of conserving the caries-affected dentine, chemomechanical caries removal is possibly much more successful than conventional rotary instrumentation.
Collapse
Affiliation(s)
- H Hamama
- Faculty of Dentistry, Prince Philip Dental Hospital, University of Hong Kong, Hong Kong SAR, China; Department of Conservative Dentistry, Faculty of Dentistry, Mansoura University, Egypt
| | | | | |
Collapse
|
12
|
Singh NK, Kumar KRR, Kumar D, Shukla P, Kirti PB. Characterization of a pathogen induced thaumatin-like protein gene AdTLP from Arachis diogoi, a wild peanut. PLoS One 2013; 8:e83963. [PMID: 24367621 PMCID: PMC3868660 DOI: 10.1371/journal.pone.0083963] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 11/11/2013] [Indexed: 01/06/2023] Open
Abstract
Peanut (Arachis hypogaea L) is one of the widely cultivated and leading oilseed crops of the world and its yields are greatly affected by various biotic and abiotic stresses. Arachis diogoi, a wild relative of peanut, is an important source of genes for resistance against various stresses that affect peanut. In our previous study a thaumatin-like protein gene was found to be upregulated in a differential expression reverse transcription PCR (DDRT-PCR) study using the conidial spray of the late leaf spot pathogen, Phaeoisariopsis personata. In the present study, the corresponding full length cDNA was cloned using RACE-PCR and has been designated as AdTLP. It carried an open reading frame of 726 bp potentially capable of encoding a polypeptide of 241 amino acids with 16 conserved cysteine residues. The semi-quantitative RT-PCR analysis showed that the transcript level of AdTLP increased upon treatment with the late leaf spot pathogen of peanut, P. personata and various hormone treatments indicating its involvement in both, biotic and abiotic stresses. The antifungal activity of the purified recombinant protein was checked against different fungal pathogens, which showed enhanced anti-fungal activity compared to many other reported TLP proteins. The recombinant AdTLP-GFP fusion protein was found to be predominantly localized to extracellular spaces. Transgenic tobacco plants ectopically expressing AdTLP showed enhanced resistance to fungal pathogen, Rhizoctonia solani. The seedling assays showed enhanced tolerance of AdTLP transgenic plants against salt and oxidative stress. The transcript analysis of various defense related genes highlighted constitutively higher level expression of PR1a, PI-I and PI-II genes in transgenic plants. These results suggest that the AdTLP is a good candidate gene for enhancing stress resistance in crop plants.
Collapse
Affiliation(s)
| | | | - Dilip Kumar
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Pawan Shukla
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - P. B. Kirti
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
13
|
Ashok Kumar HG, Venkatesh YP. In silico analyses of structural and allergenicity features of sapodilla (Manilkara zapota) acidic thaumatin-like protein in comparison with allergenic plant TLPs. Mol Immunol 2013; 57:119-28. [PMID: 24091295 DOI: 10.1016/j.molimm.2013.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/14/2013] [Accepted: 08/18/2013] [Indexed: 10/26/2022]
Abstract
Thaumatin-like proteins (TLPs) belong to the pathogenesis-related family (PR-5) of plant defense proteins. TLPs from only 32 plant genera have been identified as pollen or food allergens. IgE epitopes on allergens play a central role in food allergy by initiating cross-linking of specific IgE on basophils/mast cells. A comparative analysis of pollen- and food-allergenic TLPs is lacking. The main objective of this investigation was to study the structural and allergenicity features of sapodilla (Manilkara zapota) acidic TLP (TLP 1) by in silico methods. The allergenicity prediction of composite sequence of sapodilla TLP 1 (NCBI B3EWX8.1, G5DC91.1) was performed using FARRP, Allermatch and Evaller web tools. A homology model of the protein was generated using banana TLP template (1Z3Q) by HHPRED-MODELLER. B-cell linear epitope prediction was performed using BCpreds and BepiPred. Sapodilla TLP 1 matched significantly with allergenic TLPs from olive, kiwi, bell pepper and banana. IgE epitope prediction as performed using AlgPred indicated the presence of 2 epitopes (epitope 1: residues 36-48; epitope 2: residues 51-63), and a comprehensive analysis of all allergenic TLPs displayed up to 3 additional epitopes on other TLPs. It can be inferred from these analyses that plant allergenic TLPs generally carry 2-3 IgE epitopes. ClustalX alignments of allergenic TLPs indicate that IgE epitopes 1 and 2 are common in food allergenic TLPs, and IgE epitopes 2 and 3 are common in pollen allergenic TLPs; IgE epitope 2 overlaps with a portion of the thaumatin family signature. The secondary structural elements of TLPs vary markedly in regions 1 and 2 which harbor all the predicted IgE epitopes in all food and pollen TLPs in either of the region. Further, based on the number of IgE epitopes, food TLPs are grouped into rosid and non-rosid clades. The number and distribution of the predicted IgE epitopes among the allergenic TLPs may explain the specificity of food or pollen allergy as well as the varied degree of cross-reactivity among plant foods and/or pollens.
Collapse
Affiliation(s)
- Hassan G Ashok Kumar
- Department of Biochemistry & Nutrition, CSIR - Central Food Technological Research Institute, Mysore 570020, Karnataka, India.
| | | |
Collapse
|
14
|
Huet J, Teinkela Mbosso EJ, Soror S, Meyer F, Looze Y, Wintjens R, Wohlkönig A. High-resolution structure of a papaya plant-defense barwin-like protein solved by in-house sulfur-SAD phasing. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2017-26. [PMID: 24100320 DOI: 10.1107/s0907444913018015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/29/2013] [Indexed: 11/11/2022]
Abstract
The first crystal structure of a barwin-like protein, named carwin, has been determined at high resolution by single-wavelength anomalous diffraction (SAD) phasing using the six intrinsic S atoms present in the protein. The barwin-like protein was purified from Carica papaya latex and crystallized in the orthorhombic space group P212121. Using in-house Cu Kα X-ray radiation, 16 cumulative diffraction data sets were acquired to increase the signal-to-noise level and thereby the anomalous scattering signal. A sequence-database search on the papaya genome identified two carwin isoforms of 122 residues in length, both containing six S atoms that yield an estimated Bijvoet ratio of 0.93% at 1.54 Å wavelength. A systematic analysis of data quality and redundancy was performed to assess the capacity to locate the S atoms and to phase the data. It was observed that the crystal decay was low during data collection and that successful S-SAD phasing could be obtained with a relatively low data multiplicity of about 7. Using a synchrotron source, high-resolution data (1 Å) were collected from two different crystal forms of the papaya latex carwin. The refined structures showed a central β-barrel of six strands surrounded by several α-helices and loops. The β-barrel of carwin appears to be a common structural module that is shared within several other unrelated proteins. Finally, the possible biological function of the protein is discussed.
Collapse
Affiliation(s)
- Joëlle Huet
- Laboratoire des Biopolymères et des Nanomatériaux Supramoléculaires (CP206/04), Faculté de Pharmacie, Université Libre de Bruxelles, B-1050 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
15
|
Hamama HH, Yiu CKY, Burrow MF, King NM. Chemical, morphological and microhardness changes of dentine after chemomechanical caries removal. Aust Dent J 2013; 58:283-92. [DOI: 10.1111/adj.12093] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2012] [Indexed: 11/27/2022]
Affiliation(s)
- HH Hamama
- Paediatric Dentistry and Orthodontics; Faculty of Dentistry; University of Hong Kong; Hong Kong SAR; China
| | - CKY Yiu
- Paediatric Dentistry and Orthodontics; Faculty of Dentistry; University of Hong Kong; Hong Kong SAR; China
| | - MF Burrow
- Oral Diagnosis and Polyclinics; Faculty of Dentistry; University of Hong Kong; Hong Kong SAR; China
| | - NM King
- Paediatric Dentistry; School of Dentistry; Western Australia; Perth; Western Australia
| |
Collapse
|
16
|
Bruno-Moreno F, Sombra Basílio de Oliveira R, de Azevedo Moreira R, Pinto Lobo MD, Teixeira de Freitas CD, Viana Ramos M, Barbosa Grangeiro T, Oliveira Monteiro-Moreira AC. Crystallization and X-ray diffraction analysis of an antifungal laticifer protein. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:646-9. [PMID: 23722843 PMCID: PMC3668584 DOI: 10.1107/s1744309113011378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 04/25/2013] [Indexed: 11/10/2022]
Abstract
An osmotin (CpOsm) from the latex of Calotropis procera has been crystallized in both tetragonal and trigonal forms suitable for structure determination. Crystallographic studies of CpOsm are of great interest because limited information is available concerning the structure of latex proteins and CpOsm has previously been shown to interact with the spore membranes of some plant pathogenic fungi, thus impairing spore germination and hyphal growth. CpOsm crystals were grown using 0.1 M HEPES buffer pH 7.5, 26% PEG 4000, 0.2 M ammonium sulfate (space group P4(3)) or using 0.1 M HEPES buffer pH 7.5, 35% MPD, 0.7 M ammonium sulfate (space group P3(1)12). X-ray diffraction data were collected to 2.17 Å (P4(3)) and 1.80 Å (P3(1)12) resolution and molecular-replacement analyses produced initial phases for both crystal forms.
Collapse
Affiliation(s)
- Frederico Bruno-Moreno
- Centro de Ciências da Saúde, Universidade de Fortaleza, Avenida Washington Soares 1321, Bairro Edson Queiroz, 60811-905 Fortaleza-CE, Brazil
| | | | - Renato de Azevedo Moreira
- Centro de Ciências da Saúde, Universidade de Fortaleza, Avenida Washington Soares 1321, Bairro Edson Queiroz, 60811-905 Fortaleza-CE, Brazil
| | | | | | - Márcio Viana Ramos
- Universidade Federal do Ceará, Campus do Pici, 60451-970 Fortaleza-CE, Brazil
| | | | | |
Collapse
|
17
|
Zare H, Moosavi-Movahedi AA, Salami M, Mirzaei M, Saboury AA, Sheibani N. Purification and autolysis of the ficin isoforms from fig (Ficus carica cv. Sabz) latex. PHYTOCHEMISTRY 2013; 87:16-22. [PMID: 23312458 PMCID: PMC3755362 DOI: 10.1016/j.phytochem.2012.12.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/05/2012] [Accepted: 12/10/2012] [Indexed: 05/15/2023]
Abstract
Ficin (EC 3.4.22.3), a cysteine endoproteolytic protease in fig trees' latex, has multiple isoforms. Until now, no data on autolysis of individual ficins (ficin isoforms) are available. Following purification, ficins' autolysis was determined by HPLC chromatogram changes and ultrafiltrations at different temperatures and storage times. These results showed that the number of HPLC peaks in latex proteins purification of Ficus carica cv. Sabz varied from previous fig varieties or cultivars. Proteolytic activity of ficins was inhibited by specific cysteine protease inhibitors, confirming the participation of the cysteine residue in the active site. The zeta potential of the first two eluted peaks (I and II) was negative, while that of other peaks were positive. All ficins were susceptible to autolysis when stored at high temperatures. In contrast, only the last two ficins (B, C) were prone to autolysis at cold temperature after long storage period. The rate of degradation of the ficins was significantly increased with the increased storage time. The ficin (A) related to peak (III) had the highest and the lowest surface hydrophobic patches and ratio of autolytic to proteolytic activity, respectively.
Collapse
Affiliation(s)
- Hamid Zare
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Ali Akbar Moosavi-Movahedi
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
- Center of Excellence in Biothermodynamics (CEBiotherm), University of Tehran, Tehran, Iran
- Corresponding author at: Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran. Tel.: +98 21 6640 3957; fax: +98 21 6640 4680. , (A.A. Moosavi-Movahedi)
| | - Maryam Salami
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Morteza Mirzaei
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences (BMSU), Tehran, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
- Center of Excellence in Biothermodynamics (CEBiotherm), University of Tehran, Tehran, Iran
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
18
|
Mohamed Sadek K. Antioxidant and immunostimulant effect of carica papaya linn. Aqueous extract in acrylamide intoxicated rats. Acta Inform Med 2012; 20:180-5. [PMID: 23322975 PMCID: PMC3508853 DOI: 10.5455/aim.2012.20.180-185] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 07/30/2012] [Indexed: 11/07/2022] Open
Abstract
INTRODUCTION The present study was conducted to evaluate the antioxidant and immunostimulant effects of The Carica papaya fruit aqueous extract (CPF, Caricaceae) against acrylamide induced oxidative stress and improvement of Immune functions which affected by free radicals liberating acrylamide in rats. MATERIAL AND METHODS Sixty male wistar albino rats (195-230g) were assigned to four groups, (fifteen/group). The first group used as control group and received normal physiological saline orally daily. The second group was supplemented with acrylamide 0.05% in drinking water. The third group was gastro-gavaged with 250 mg/kg of papaya fruit extract orally on daily basis. The fourth group was supplemented with acrylamide 0.05% in drinking water and gastro-gavaged with 250 mg/kg of papaya fruit extract orally on daily basis. The chosen dose of papaya fruit extract was based on the active pharmacological dose range obtained from the orientation study earlier conducted. The experimental period was extended to forty day. At the expiration of the experimental period and night fasting, blood samples were collected from the orbital venous sinus. The sera were separated and used for determining of IgG and IgM and the stomach, liver and kidney homogenates for estimation of MDA, GSH level, SOD and CAT activity as a biomarker of lipid peroxidation and antioxidative stress. RESULTS AND DISCUSSION The obtained results revealed that, acrylamide caused significant increases in MDA and decrease of GSH level, SOD and CAT activity due to the oxidative stress induced by acrylamide on membrane polyunsaturated fatty acids in rat's stomach, liver and kidney while administration of CPF aqueous extract, was significantly ameliorated the increased levels of MDA and decline of GSH, SOD and CAT activity in the stomach, liver and kidney tissues caused by acrylamide toxicity. Meanwhile, CPF aqueous extract significantly increased immune functions (IgG and IgM) while acrylamide significantly decrease it specially IgG. Thus, this study suggests that acrylamide-induced oxidative stress in rats can be ameliorated by administration of CPF aqueous extract.
Collapse
Affiliation(s)
- Kadry Mohamed Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Albostan, Damanhur University, Egypt
| |
Collapse
|
19
|
Azarkan M, Matagne A, Wattiez R, Bolle L, Vandenameele J, Baeyens-Volant D. Selective and reversible thiol-pegylation, an effective approach for purification and characterization of five fully active ficin (iso)forms from Ficus carica latex. PHYTOCHEMISTRY 2011; 72:1718-1731. [PMID: 21665232 DOI: 10.1016/j.phytochem.2011.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 05/13/2011] [Accepted: 05/16/2011] [Indexed: 05/28/2023]
Abstract
The latex of Ficus carica constitutes an important source of many proteolytic components known under the general term of ficin (EC 3.4.22.3) which belongs to the cysteine proteases of the papain family. So far, no data on the purification and characterization of individual forms of these proteases are available. An effective strategy was used to fractionate and purify to homogeneity five ficin forms, designated A, B, C, D1 and D2 according to their sequence of elution from a cation-exchange chromatographic support. Following rapid fractionation on a SP-Sepharose Fast Flow column, the different ficin forms were chemically modified by a specific and reversible monomethoxypolyethylene glycol (mPEG) reagent. In comparison with their un-derivatized counterparts, the mPEG-protein derivatives behaved differently on the ion-exchanger, allowing us for the first time to obtain five highly purified ficin molecular species titrating 1mol of thiol group per mole of enzyme. The purified ficins were characterized by de novo peptide sequencing and peptide mass fingerprinting analyzes, using mass spectrometry. Circular dichroism measurements indicated that all five ficins were highly structured, both in term of secondary and tertiary structure. Furthermore, analysis of far-UV CD spectra allowed calculation of their secondary structural content. Both these data and the molecular masses determined by MS reinforce the view that the enzymes belong to the family of papain-like proteases. The five ficin forms also displayed different specific amidase activities against small synthetic substrates like dl-BAPNA and Boc-Ala-Ala-Gly-pNA, suggesting some differences in their active site organization. Enzymatic activity of the five ficin forms was completely inhibited by specific cysteine and cysteine/serine proteases inhibitors but was unaffected by specific serine, aspartic and metallo proteases inhibitors.
Collapse
Affiliation(s)
- Mohamed Azarkan
- Free University of Brussels, Faculty of Medicine, Protein Chemistry Unit, Campus Erasme (CP 609), 808 Route de Lennik, 1070 Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
20
|
de Freitas CDT, Lopes JLDS, Beltramini LM, de Oliveira RSB, Oliveira JTA, Ramos MV. Osmotin from Calotropis procera latex: new insights into structure and antifungal properties. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2501-7. [PMID: 21798235 DOI: 10.1016/j.bbamem.2011.07.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/29/2011] [Accepted: 07/12/2011] [Indexed: 10/18/2022]
Abstract
This study aimed at investigating the structural properties and mechanisms of the antifungal action of CpOsm, a purified osmotin from Calotropis procera latex. Fluorescence and CD assays revealed that the CpOsm structure is highly stable, regardless of pH levels. Accordingly, CpOsm inhibited the spore germination of Fusarium solani in all pH ranges tested. The content of the secondary structure of CpOsm was estimated as follows: α-helix (20%), β-sheet (33%), turned (19%) and unordered (28%), RMSD 1%. CpOsm was stable at up to 75°C, and thermal denaturation (T(m)) was calculated to be 77.8°C. This osmotin interacted with the negatively charged large unilamellar vesicles (LUVs) of 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-1-glycerol (POPG), inducing vesicle permeabilization by the leakage of calcein. CpOsm induced the membrane permeabilization of spores and hyphae from Fusarium solani, allowing for propidium iodide uptake. These results show that CpOsm is a stable protein, and its antifungal activity involves membrane permeabilization, as property reported earlier for other osmotins and thaumatin-like proteins.
Collapse
|
21
|
Souza DP, Freitas CDT, Pereira DA, Nogueira FC, Silva FDA, Salas CE, Ramos MV. Laticifer proteins play a defensive role against hemibiotrophic and necrotrophic phytopathogens. PLANTA 2011; 234:183-193. [PMID: 21394468 DOI: 10.1007/s00425-011-1392-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 02/22/2011] [Indexed: 05/30/2023]
Abstract
Proteins from latex of Calotropis procera (CpLP), Plumeria rubra (PrLP), Carica candamarcensis (P1G10) and Euphorbia tirucalli (EtLP) were tested for antifungal activity against phytopathogens. CpLP and P1G10 inhibited each fungi analyzed. PrLP and EtLP did not exert inhibition. CpLP and P1G10 exhibited preferential inhibitory activity towards R. solani (IC₅₀ = 20.7 and 25.3 µg/ml, respectively). The inhibitory activity was lost after heat treatment or proteolysis, providing evidence for the involvement of proteins in the inhibitory effect. Treatment of CpLP or P1G10 with Dithiothreitol improved both, the endogenous proteolytic activity and the antifungal properties. Conversely, pre-treatment of CpLP or P1G10 with iodoacetamide drastically reduced endogenous proteolytic activities and partially abrogated antifungal activity. Similar results were observed when spores were challenged to germinate in the presence of laticifer proteins. The purified cysteine proteinase CMS2MS2 from Carica candamarcensis latex or papain (E.C. 3.4.22.2), a cysteine proteinase from latex of Carica papaya L., but not trypsin (EC 3.4.21.4) or chymotrypsin (EC 3.4.21.1), two serine proteases, replicated the results obtained with CpLP or P1G10, thus restricting the antifungal property to latex plant cysteine proteinases. CpLP, CMS2MS2 and papain induced production of reactive oxygen species in spores of F. solani, suggesting that inhibition could be linked to oxidative stress. Proteome analysis of CpLP by 2-D electrophoresis and MALDI-TOF-TOF confirmed the existence of various pathogenic-related proteins such as chitinases, peroxidases and osmotins. The results support that laticifer proteins are part of plant defense repertoire against phytopathogenic fungi.
Collapse
Affiliation(s)
- Diego P Souza
- Departamento de Bioquímica e Biologia, Molecular da Universidade Federal do Ceará, Campus do Pici, Cx. Postal 6033, Fortaleza, Ceará, CEP 60451-970, Brazil
| | | | | | | | | | | | | |
Collapse
|
22
|
de Freitas CDT, Nogueira FCS, Vasconcelos IM, Oliveira JTA, Domont GB, Ramos MV. Osmotin purified from the latex of Calotropis procera: biochemical characterization, biological activity and role in plant defense. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:738-43. [PMID: 21334906 DOI: 10.1016/j.plaphy.2011.01.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 01/05/2011] [Accepted: 01/26/2011] [Indexed: 05/20/2023]
Abstract
A protein, similar to osmotin- and thaumatin-like proteins, was purified from Calotropis procera (Ait.) R.Br latex. The isolation procedure required two cation exchange chromatography steps on 50mM Na-acetate buffer (pH 5.0) CM-Sepharose Fast Flow and 25 mM Na-phosphate buffer (pH 6.0) Resource-S, respectively. The protein purity was confirmed by an unique N-terminal sequence [ATFTIRNNCPYTIWAAAVPGGGRRLNSGGTWTINVAPGTA]. The osmotin (CpOsm) appeared as a single band (20,100 Da) in sodium dodecyl sulfate-polyacrylamide gel electrophoresis and as two spots in two-dimensional electrophoresis (pI 8.9 and 9.1). Both polypeptides were further identified by mass spectrometry as two osmotin isoforms with molecular masses of 22,340 and 22,536 Da. The CpOsm exerted antifungal activity against Fusarium solani (IC₅₀=67.0 μg mL⁻¹), Neurospora sp. (IC₅₀=57.5 μg mL⁻¹) and Colletotrichum gloeosporioides (IC₅₀=32.1 μg mL⁻¹). However, this activity was lost when the protein was previously treated with a reducing agent (DTT, Dithiothreitol) suggesting the presence of disulfide bounds stabilizing the protein. The occurrence of osmotin in latex substantiates the defensive role of these fluids.
Collapse
Affiliation(s)
- Cleverson Diniz Teixeira de Freitas
- Departamento de Bioquímica e Biologia Molecular da, Universidade Federal do Ceará, Campus do Pici, Cx., Postal 6033, Fortaleza, Ceará, CEP 60451-970, Brazil.
| | | | | | | | | | | |
Collapse
|
23
|
Le Bourse D, Jégou S, Conreux A, Villaume S, Jeandet P. Review of preparative and analytical procedures for the study of proteins in grape juice and wine. Anal Chim Acta 2010; 667:33-42. [DOI: 10.1016/j.aca.2010.03.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 03/29/2010] [Accepted: 03/30/2010] [Indexed: 01/16/2023]
|