1
|
Feineis D, Bringmann G. Structural variety and pharmacological potential of naphthylisoquinoline alkaloids. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2024; 91:1-410. [PMID: 38811064 DOI: 10.1016/bs.alkal.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Naphthylisoquinoline alkaloids are a fascinating class of natural biaryl compounds. They show characteristic mono- and dimeric scaffolds, with chiral axes and stereogenic centers. Since the appearance of the last comprehensive overview on these secondary plant metabolites in this series in 1995, the number of discovered representatives has tremendously increased to more than 280 examples known today. Many novel-type compounds have meanwhile been discovered, among them naphthylisoquinoline-related follow-up products like e.g., the first seco-type (i.e., ring-opened) and ring-contracted analogues. As highlighted in this review, the knowledge on the broad structural chemodiversity of naphthylisoquinoline alkaloids has been decisively driven forward by extensive phytochemical studies on the metabolite pattern of Ancistrocladus abbreviatus from Coastal West Africa, which is a particularly "creative" plant. These investigations furnished a considerable number of more than 80-mostly new-natural products from this single species, with promising antiplasmodial activities and with pronounced cytotoxic effects against human leukemia, pancreatic, cervical, and breast cancer cells. Another unique feature of naphthylisoquinoline alkaloids is their unprecedented biosynthetic origin from polyketidic precursors and not, as usual for isoquinoline alkaloids, from aromatic amino acids-a striking example of biosynthetic convergence in nature. Furthermore, remarkable botanical results are presented on the natural producers of naphthylisoquinoline alkaloids, the paleotropical Dioncophyllaceae and Ancistrocladaceae lianas, including first investigations on the chemoecological role of these plant metabolites and their storage and accumulation in particular plant organs.
Collapse
Affiliation(s)
- Doris Feineis
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Germany
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
2
|
Kim M, Paik JH, Lee H, Kim MJ, Eum SM, Kim SY, Choi S, Park HY, Jeong HG, Jeong TS. Ancistrocladus tectorius Extract Inhibits Obesity by Promoting Thermogenesis and Mitochondrial Dynamics in High-Fat Diet-Fed Mice. Int J Mol Sci 2024; 25:3743. [PMID: 38612554 PMCID: PMC11011498 DOI: 10.3390/ijms25073743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Root extracts of Ancistrocladus tectorius (AT), a shrub native to China, have been shown to have antiviral and antitumor activities, but the anti-obesity effects of AT aerial parts, mainly the leaves and stems, have not been investigated. This study is the first to investigate the anti-obesity effects and molecular mechanism of AT 70% ethanol extract in 3T3-L1 adipocytes and high-fat diet (HFD)-fed C57BL/6J mice. Treatment with AT extract inhibited lipid accumulation in 3T3-L1 cells and decreased the expression of adipogenesis-related genes. AT extract also upregulated the mRNA expression of genes related to mitochondrial dynamics in 3T3-L1 adipocytes. AT administration for 12 weeks reduced body weight and organ weights, including liver, pancreas, and white and brown adipose tissue, and improved plasma profiles such as glucose, insulin, homeostasis model assessment of insulin resistance, triglyceride (TG), and total cholesterol in HFD-fed mice. AT extract reduced HFD-induced hepatic steatosis with levels of liver TG and lipogenesis-related genes. AT extract upregulated thermogenesis-related genes such as Cidea, Pgc1α, Ucp1, Prdm16, Adrb1, and Adrb3 and mitochondrial dynamics-related genes such as Mff, Opa1, and Mfn2 in brown adipose tissue (BAT). Therefore, AT extract effectively reduced obesity by promoting thermogenesis and the mitochondrial dynamics of BAT in HFD-fed mice.
Collapse
Affiliation(s)
- Minju Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (M.K.); (H.L.); (M.J.K.); (H.-Y.P.)
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin Hyub Paik
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (J.H.P.); (S.M.E.); (S.Y.K.); (S.C.)
| | - Hwa Lee
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (M.K.); (H.L.); (M.J.K.); (H.-Y.P.)
| | - Min Ji Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (M.K.); (H.L.); (M.J.K.); (H.-Y.P.)
| | - Sang Mi Eum
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (J.H.P.); (S.M.E.); (S.Y.K.); (S.C.)
| | - Soo Yong Kim
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (J.H.P.); (S.M.E.); (S.Y.K.); (S.C.)
| | - Sangho Choi
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (J.H.P.); (S.M.E.); (S.Y.K.); (S.C.)
| | - Ho-Yong Park
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (M.K.); (H.L.); (M.J.K.); (H.-Y.P.)
| | - Hye Gwang Jeong
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Tae-Sook Jeong
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (M.K.); (H.L.); (M.J.K.); (H.-Y.P.)
| |
Collapse
|
3
|
Moyo P, Invernizzi L, Mianda SM, Rudolph W, Andayi AW, Wang M, Crouch NR, Maharaj VJ. Prioritised identification of structural classes of natural products from higher plants in the expedition of antimalarial drug discovery. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:37. [PMID: 37821775 PMCID: PMC10567616 DOI: 10.1007/s13659-023-00402-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/01/2023] [Indexed: 10/13/2023]
Abstract
The emergence and spread of drug-recalcitrant Plasmodium falciparum parasites threaten to reverse the gains made in the fight against malaria. Urgent measures need to be taken to curb this impending challenge. The higher plant-derived sesquiterpene, quinoline alkaloids, and naphthoquinone natural product classes of compounds have previously served as phenomenal chemical scaffolds from which integral antimalarial drugs were developed. Historical successes serve as an inspiration for the continued investigation of plant-derived natural products compounds in search of novel molecular templates from which new antimalarial drugs could be developed. The aim of this study was to identify potential chemical scaffolds for malaria drug discovery following analysis of historical data on phytochemicals screened in vitro against P. falciparum. To identify these novel scaffolds, we queried an in-house manually curated database of plant-derived natural product compounds and their in vitro biological data. Natural products were assigned to different structural classes using NPClassifier. To identify the most promising chemical scaffolds, we then correlated natural compound class with bioactivity and other data, namely (i) potency, (ii) resistance index, (iii) selectivity index and (iv) physicochemical properties. We used an unbiased scoring system to rank the different natural product classes based on the assessment of their bioactivity data. From this analysis we identified the top-ranked natural product pathway as the alkaloids. The top three ranked super classes identified were (i) pseudoalkaloids, (ii) naphthalenes and (iii) tyrosine alkaloids and the top five ranked classes (i) quassinoids (of super class triterpenoids), (ii) steroidal alkaloids (of super class pseudoalkaloids) (iii) cycloeudesmane sesquiterpenoids (of super class triterpenoids) (iv) isoquinoline alkaloids (of super class tyrosine alkaloids) and (v) naphthoquinones (of super class naphthalenes). Launched chemical space of these identified classes of compounds was, by and large, distinct from that of 'legacy' antimalarial drugs. Our study was able to identify chemical scaffolds with acceptable biological properties that are structurally different from current and previously used antimalarial drugs. These molecules have the potential to be developed into new antimalarial drugs.
Collapse
Affiliation(s)
- Phanankosi Moyo
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, Biodiscovery Center, University of Pretoria, Private Bag X 20, Hatfield, Pretoria, 0028, South Africa
| | - Luke Invernizzi
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, Biodiscovery Center, University of Pretoria, Private Bag X 20, Hatfield, Pretoria, 0028, South Africa
| | - Sephora M Mianda
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, Biodiscovery Center, University of Pretoria, Private Bag X 20, Hatfield, Pretoria, 0028, South Africa
| | - Wiehan Rudolph
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, Biodiscovery Center, University of Pretoria, Private Bag X 20, Hatfield, Pretoria, 0028, South Africa
| | - Andrew W Andayi
- Department of Physical and Biological Sciences, Murang'a University of Technology Murang'a, Murang'a, Kenya
| | - Mingxun Wang
- Computer Science and Engineering, University of California Riverside, 900 University Ave, Riverside, CA, 92521, USA
| | - Neil R Crouch
- Biodiversity Research and Monitoring Directorate, South African National Biodiversity Institute, Berea Road, P.O. Box 52099, Durban, 4007, South Africa
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Vinesh J Maharaj
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, Biodiscovery Center, University of Pretoria, Private Bag X 20, Hatfield, Pretoria, 0028, South Africa.
| |
Collapse
|
4
|
Wang QQ, Wang L, Zhang WB, Tang CP, Chen XQ, Zheng YM, Yao S, Gao ZB, Ye Y. Naphthylisoquinoline alkaloids, a new structural template inhibitor of Nav1.7 sodium channel. Acta Pharmacol Sin 2023; 44:1768-1776. [PMID: 37142682 PMCID: PMC10462648 DOI: 10.1038/s41401-023-01084-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Voltage-gated sodium channel 1.7 (Nav1.7) remains one of the most promising drug targets for pain relief. In the current study, we conducted a high-throughput screening of natural products in our in-house compound library to discover novel Nav1.7 inhibitors, then characterized their pharmacological properties. We identified 25 naphthylisoquinoline alkaloids (NIQs) from Ancistrocladus tectorius to be a novel type of Nav1.7 channel inhibitors. Their stereostructures including the linkage modes of the naphthalene group at the isoquinoline core were revealed by a comprehensive analysis of HRESIMS, 1D, and 2D NMR spectra as well as ECD spectra and single-crystal X-ray diffraction analysis with Cu Kα radiation. All the NIQs showed inhibitory activities against the Nav1.7 channel stably expressed in HEK293 cells, and the naphthalene ring in the C-7 position displayed a more important role in the inhibitory activity than that in the C-5 site. Among the NIQs tested, compound 2 was the most potent with an IC50 of 0.73 ± 0.03 µM. We demonstrated that compound 2 (3 µM) caused dramatical shift of steady-state slow inactivation toward the hyperpolarizing direction (V1/2 values were changed from -39.54 ± 2.77 mV to -65.53 ± 4.39 mV, which might contribute to the inhibition of compound 2 against the Nav1.7 channel. In acutely isolated dorsal root ganglion (DRG) neurons, compound 2 (10 μM) dramatically suppressed native sodium currents and action potential firing. In the formalin-induced mouse inflammatory pain model, local intraplantar administration of compound 2 (2, 20, 200 nmol) dose-dependently attenuated the nociceptive behaviors. In summary, NIQs represent a new type of Nav1.7 channel inhibitors and may act as structural templates for the following analgesic drug development.
Collapse
Affiliation(s)
- Qiao-Qiao Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Natural Product Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Long Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210046, China
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wen-Bo Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210046, China
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chun-Ping Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Natural Product Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xue-Qin Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yue-Ming Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Sheng Yao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Natural Product Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Zhongshan Institute of Drug Discovery, Institution for Drug Discovery Innovation, Chinese Academy of Science, Zhongshan, 528400, China.
| | - Zhao-Bing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210046, China.
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Zhongshan Institute of Drug Discovery, Institution for Drug Discovery Innovation, Chinese Academy of Science, Zhongshan, 528400, China.
| | - Yang Ye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Natural Product Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Feineis D, Bringmann G. Asian Ancistrocladus Lianas as Creative Producers of Naphthylisoquinoline Alkaloids. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 119:1-335. [PMID: 36587292 DOI: 10.1007/978-3-031-10457-2_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This book describes a unique class of secondary metabolites, the mono- and dimeric naphthylisoquinoline alkaloids. They occur in lianas of the paleotropical Ancistrocladaceae and Dioncophyllaceae families, exclusively. Their unprecedented structures include stereogenic centers and rotationally hindered, and thus likewise stereogenic, axes. Extended recent investigations on six Ancistrocladus species from Asia, as reported in this review, shed light on their fascinating phytochemical productivity, with over 100 such intriguing natural products. This high chemodiversity arises from a likewise unique biosynthesis from acetate-malonate units, following a novel polyketidic pathway to plant-derived isoquinoline alkaloids. Some of the compounds show most promising antiparasitic activities. Likewise presented are strategies for the regio- and stereoselective total synthesis of the alkaloids, including the directed construction of the chiral axis.
Collapse
Affiliation(s)
- Doris Feineis
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
6
|
Kingston DGI, Cassera MB. Antimalarial Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2022; 117:1-106. [PMID: 34977998 DOI: 10.1007/978-3-030-89873-1_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Natural products have made a crucial and unique contribution to human health, and this is especially true in the case of malaria, where the natural products quinine and artemisinin and their derivatives and analogues, have saved millions of lives. The need for new drugs to treat malaria is still urgent, since the most dangerous malaria parasite, Plasmodium falciparum, has become resistant to quinine and most of its derivatives and is becoming resistant to artemisinin and its derivatives. This volume begins with a short history of malaria and follows this with a summary of its biology. It then traces the fascinating history of the discovery of quinine for malaria treatment and then describes quinine's biosynthesis, its mechanism of action, and its clinical use, concluding with a discussion of synthetic antimalarial agents based on quinine's structure. The volume then covers the discovery of artemisinin and its development as the source of the most effective current antimalarial drug, including summaries of its synthesis and biosynthesis, its mechanism of action, and its clinical use and resistance. A short discussion of other clinically used antimalarial natural products leads to a detailed treatment of other natural products with significant antiplasmodial activity, classified by compound type. Although the search for new antimalarial natural products from Nature's combinatorial library is challenging, it is very likely to yield new antimalarial drugs. The chapter thus ends by identifying over ten natural products with development potential as clinical antimalarial agents.
Collapse
Affiliation(s)
- David G I Kingston
- Department of Chemistry and the Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Maria Belen Cassera
- Department of Biochemistry and Molecular Biology, and Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
7
|
Tajuddeen N, Bringmann G. N, C-Coupled naphthylisoquinoline alkaloids: a versatile new class of axially chiral natural products. Nat Prod Rep 2021; 38:2154-2186. [PMID: 34212956 DOI: 10.1039/d1np00020a] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Covering: up to April 2021During the past decades, a plethora of natural products with restricted rotation about a biaryl axis have been discovered, among them the naphthylisoquinoline (NIQ) alkaloids, mostly C,C-coupled and having remarkable bioactivities. Within this fascinating class of naturally occurring biaryl compounds, NIQ alkaloids bearing an N,C-heterobiaryl axis have attracted particular attention. They are structurally and biosynthetically unprecedented, with interesting stereochemical implications and biological activities. In contrast to existing articles and reviews about axially chiral - yet C,C-coupled - natural products, this is the first, comprehensive review on the new subclass of N,C-coupled NIQs, their isolation and structural elucidation, their N,C-axial chirality, their biosynthetic origin, their promising antiparasitic and antileukemic activities, and their total synthesis.
Collapse
Affiliation(s)
- Nasir Tajuddeen
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| |
Collapse
|
8
|
Andrade JT, Lima WG, Sousa JF, Saldanha AA, Nívea Pereira De Sá, Morais FB, Prates Silva MK, Ribeiro Viana GH, Johann S, Soares AC, Araújo LA, Antunes Fernandes SO, Cardoso VN, Siqueira Ferreira JM. Design, synthesis, and biodistribution studies of new analogues of marine alkaloids: Potent in vitro and in vivo fungicidal agents against Candida spp. Eur J Med Chem 2021; 210:113048. [PMID: 33316690 DOI: 10.1016/j.ejmech.2020.113048] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/26/2020] [Accepted: 11/23/2020] [Indexed: 12/28/2022]
Abstract
Invasive candidiasis, such as intra-abdominal candidiasis (IAC), is a significant cause of morbidity and mortality worldwide. IAC is still poorly understood, and its treatment represents a challenge for public health. In this study, we showed the in vitro anti-Candida activity of four alkaloid synthetic derivatives and their antifungal potential in a murine model of IAC. The biological effects of alkaloids were evaluated against Candida spp. through the determination of the minimum inhibitory concentration (MIC). For the alkaloids that showed antifungal activity, the fungicidal concentration, time-kill curve, synergism with azoles and polyenes, phenotypic effects, and the effect against virulence factors were also determined. The most active alkaloids were selected for in vivo assays. The compounds 6a and 6b were active against C. albicans, C. glabrata, and C. tropicalis (MIC 7.8 μg/mL) and showed promising antifungal activity against C. krusei (MIC 3.9 μg/mL). The compound 6a presented a potent fungicidal effect in vitro, eliminating the yeast C. albicans after 8 h of incubation at MIC. An important in vitro synergistic effect with ketoconazole was observed for these two alkaloids. They also induced the lysis of fungal cells by binding to the ergosterol of the membrane. Besides that, 6a and 6b were able to reduce yeast-to-hyphal transition in C. albicans, as well as inhibit the biofilm formation of this pathogen. In the in vivo assay, the compound 6a did not show acute toxicity and was mainly absorbed by the liver, spleen, and lung after a parenteral administration. Also, this analogue significantly reduced the fungal load of C. albicans on the kidney and spleen of animals with IAC. Therefore, these results showed that the compound 6a is a potent anti-Candida agent in vitro and in vivo.
Collapse
Affiliation(s)
- Jéssica Tauany Andrade
- Laboratório de Microbiologia Médica, Campus Universidade Federal de São João Del-Rei (UFSJ), Centro-Oeste Dona Lindu, Divinópolis, Minas Gerais, Brazil
| | - William Gustavo Lima
- Laboratório de Microbiologia Médica, Campus Universidade Federal de São João Del-Rei (UFSJ), Centro-Oeste Dona Lindu, Divinópolis, Minas Gerais, Brazil; Laboratório de Radioisótopos, Departamento de Análises Clinicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jaqueline França Sousa
- Laboratório de Compostos Bioativos e Catalíticos, Campus Universidade Federal de São João Del-Rei (UFSJ), Centro-Oeste Dona Lindu, Divinópolis, Minas Gerais, Brazil
| | - Aline Aparecida Saldanha
- Laboratório de Farmacologia da Dor e Inflamação, Campus Universidade Federal de São João Del-Rei (UFSJ), Centro-Oeste Dona Lindu, Divinópolis, Minas Gerais, Brazil
| | - Nívea Pereira De Sá
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fernanda Barbara Morais
- Laboratório de Microbiologia Médica, Campus Universidade Federal de São João Del-Rei (UFSJ), Centro-Oeste Dona Lindu, Divinópolis, Minas Gerais, Brazil
| | - Mayra Karla Prates Silva
- Laboratório de Microbiologia Médica, Campus Universidade Federal de São João Del-Rei (UFSJ), Centro-Oeste Dona Lindu, Divinópolis, Minas Gerais, Brazil
| | - Gustavo Henrique Ribeiro Viana
- Laboratório de Compostos Bioativos e Catalíticos, Campus Universidade Federal de São João Del-Rei (UFSJ), Centro-Oeste Dona Lindu, Divinópolis, Minas Gerais, Brazil
| | - Susana Johann
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Adriana Cristina Soares
- Laboratório de Farmacologia da Dor e Inflamação, Campus Universidade Federal de São João Del-Rei (UFSJ), Centro-Oeste Dona Lindu, Divinópolis, Minas Gerais, Brazil
| | - Leonardo Allan Araújo
- Serviço de Recursos Vegetais e Opoterápicos (SRVO), Diretoria de Pesquisa (DPD), Fundação Ezequiel Dias (FUNED), Belo Horizonte, MG, Brazil
| | - Simone Odília Antunes Fernandes
- Laboratório de Radioisótopos, Departamento de Análises Clinicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Valbert Nascimento Cardoso
- Laboratório de Radioisótopos, Departamento de Análises Clinicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jaqueline Maria Siqueira Ferreira
- Laboratório de Microbiologia Médica, Campus Universidade Federal de São João Del-Rei (UFSJ), Centro-Oeste Dona Lindu, Divinópolis, Minas Gerais, Brazil.
| |
Collapse
|
9
|
Fayez S, Cacciatore A, Sun S, Kim M, Aké Assi L, Feineis D, Awale S, Bringmann G. Ancistrobrevidines A-C and related naphthylisoquinoline alkaloids with cytotoxic activities against HeLa and pancreatic cancer cells, from the liana Ancistrocladus abbreviatus. Bioorg Med Chem 2020; 30:115950. [PMID: 33383442 DOI: 10.1016/j.bmc.2020.115950] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 01/28/2023]
Abstract
From the leaves of Ancistrocladus abbreviatus (Ancistrocladaceae), six 5,1'-coupled naphthyldihydroisoquinoline alkaloids were isolated, ancistrobrevidines A-C (5-7), 5-epi-dioncophyllidine C2 (10), 6-O-methylhamatinine (8), and 6-O-methylancistectorine A3 (9); the two latter compounds were already known from related plants. Most strikingly, this series comprises alkaloids belonging to three different subclasses of naphthylisoquinolines. Ancistrobrevidine C (7) and the alkaloids 8 and 9, displaying the S-configuration at C-3 and an oxygen function at C-6, are three further representatives of the large subgroup of 5,1'-coupled Ancistrocladaceae-type compounds found in nature. 5-epi-Dioncophyllidine C2 (10), lacking an oxygen function at C-6 and having the R-configuration at C-3, is only the third representative of a 5,1'-linked Dioncophyllaceae-type naphthylisoquinoline. Likewise rare are 5,1'-coupled hybrid-type alkaloids, which are 6-oxygenated and 3R-configured. The ancistrobrevidines A (5) and B (6) are the only second and third examples of such 5,1'-linked naphthylisoquinolines in Ancistrocladus species showing the landmarks of both, Ancistrocladaceae- and Dioncophyllaceae-type naphthylisoquinolines. In the roots of A. abbreviatus, two further unprecedented 5,1'-coupled alkaloids were discovered, ancistrobreviquinones A (11) and B (12), consisting of a 3,4-naphthoquinone portion coupled to a tetrahydroisoquinoline subunit. They are the very first quinoid naphthylisoquinolines possessing an ortho-diketone entity. Ancistrobrevidine C (7) exerted pronounced antiproliferative activities against HeLa cervical cancer cells and preferential cytotoxicity towards PANC-1 human pancreatic cancer cells under nutrient-deprived conditions following the antiausterity approach. Moreover, 7 suppressed the migration of PANC-1 cells and significantly inhibited colony formation under nutrient-rich conditions in a concentration-dependent manner, and induced dramatic alteration in cell morphology, leading to cell death.
Collapse
Affiliation(s)
- Shaimaa Fayez
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany; Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street 1, 11566 Cairo, Egypt
| | - Alessia Cacciatore
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Sijia Sun
- Division of Natural Drug Discovery, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Minjo Kim
- Division of Natural Drug Discovery, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Laurent Aké Assi
- Centre National de Floristique, Conservatoire et Jardin Botaniques, Université d' Abidjan, Abidjan 08, Cote d'Ivoire
| | - Doris Feineis
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Suresh Awale
- Division of Natural Drug Discovery, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| |
Collapse
|
10
|
Induction of apoptosis in breast cancer cells by naphthylisoquinoline alkaloids. Toxicol Appl Pharmacol 2020; 409:115297. [PMID: 33091442 DOI: 10.1016/j.taap.2020.115297] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/01/2020] [Accepted: 10/16/2020] [Indexed: 02/05/2023]
Abstract
Breast cancer is one of the most common types of cancer in the world and a major cause of mortality. Present therapeutic strategies against breast cancer have severe drawbacks such as allergies, damage to healthy tissues, reoccurrence of cancer, and emergence of drug resistance. Naphthylisoquinoline alkaloids are a group of structurally unique natural products produced by tropical lianas belonging to the plant families Dioncophyllaceae and Ancistrocladaceae indigenous to Asia and Africa. These secondary metabolites have been reported to show anti-infective activity, but they also act against leukemic and pancreatic cancer cells. In the present study we have tested the potential of eleven mono- and dimeric naphthylisoquinoline compounds against two breast cancer cell lines, MCF-7 and MDA-MB-231. Three out of the compounds (agents 1, 4, and 11) showed significant activities against both tested cancer cell lines. Further mechanistic investigations revealed that all of the three substances induce apoptotic cell death via its intrinsic pathway by causing deformation of the nuclear membrane, disruption of the mitochondrial membrane potential (MMP), and elevated reactive oxygen species (ROS) production in both cell lines. Flow cytometric analysis using Annexin V - FITC/PI double staining showed an increased number of apoptotic cells in both, the early and the late phases.
Collapse
|
11
|
Bringmann G, Fayez S, Shamburger W, Feineis D, Winiarczyk S, Janecki R, Adaszek Ł. Naphthylisoquinoline alkaloids and their synthetic analogs as potent novel inhibitors against Babesia canis in vitro. Vet Parasitol 2020; 283:109177. [PMID: 32629205 DOI: 10.1016/j.vetpar.2020.109177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 10/24/2022]
Abstract
Babesia canis is the predominant and clinically relevant canine Babesia species in Europe. Transmitted by vector ticks, the parasite enters red blood cells and induces a severe, potentially fatal hemolytic anemia. Here, we report on the antibabesial activities of three extracts of the West African tropical plant species Triphyophyllum peltatum (Dioncophyllaceae) and Ancistrocladus abbreviatus (Ancistrocladaceae) and of 13 genuine naphthylisoquinoline alkaloids isolated thereof. Two of the extracts and eight of the alkaloids were found to display strong activities against Babesia canis in vitro. Among the most potent compounds were the C,C-coupled dioncophyllines A (1a) and C (2) and the N,C-linked alkaloids ancistrocladium A (3) and B (4), with half-maximum inhibition concentration (IC50) values of 0.48 μM for 1a, 0.85 μM for 2, 1.90 μM for 3, and 1.23 μM for 4. Structure-activity relationship (SAR) studies on a small library of related genuine analogs and non-natural synthetic derivatives of 1a and 2 revealed the likewise naturally occurring alkaloid N-methyl-7-epi-dioncophylline A (6b) to be the most potent (IC50, 0.14 μM) among the investigated compounds. Although none of the tested naphthylisoquinolines showed 100 % inhibition of parasite infection - as displayed by imidocarb dipropionate (IC50, 0.07 μM), which was used as a positive control - the antibabesial potential of the dioncophyllines A (1a) and C (2) and related compounds such as 6b, its atropo-diastereomer 6a (IC50, 1.45 μM), and 8-O-(p-nitrobenzyl)dioncophylline A (14) (IC50, 0.82 μM) is to be considered as high. The SAR results showed that N-methylation and axial chirality exert a strong impact on the antibabasial activities of the naphthylisoquinolines presented here, whereas dimerization, as in jozimine A2 (5) (IC50, 140 μM), leads to a significant decrease of activity against B. canis. Alkaloids displaying good to high activities against B. canis like the dioncophyllines 1a, 2, 6a, and 6b were found to cause only a small degree of hemolysis (< 0.7 %), whereas compounds with moderate to weak antibabesial activities such as 6-O-methyl-4'-O-demethylancistrocladine (15a) (IC50, 14.0 μM) and its atropo-diastereomer 6-O-methyl-4'-O-demethylhamatine (15b) (IC50, 830 μM) caused a high degree of hemolysis (7.3 % for 15a and 11.2 % for 15b). In this respect, the most effective anti-Babesia naphthylisoquinolines are also the safest ones.
Collapse
Affiliation(s)
- Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, D-97074, Würzburg, Germany.
| | - Shaimaa Fayez
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, D-97074, Würzburg, Germany; Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street 1, 11566, Cairo, Egypt
| | - William Shamburger
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, D-97074, Würzburg, Germany
| | - Doris Feineis
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, D-97074, Würzburg, Germany
| | - Stanislaw Winiarczyk
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, ul. Głęboka 30, 20-612, Lublin, Poland
| | - Radoslaw Janecki
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, ul. Głęboka 30, 20-612, Lublin, Poland
| | - Łukasz Adaszek
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, ul. Głęboka 30, 20-612, Lublin, Poland.
| |
Collapse
|
12
|
Tajuddeen N, Van Heerden FR. Antiplasmodial natural products: an update. Malar J 2019; 18:404. [PMID: 31805944 PMCID: PMC6896759 DOI: 10.1186/s12936-019-3026-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/21/2019] [Indexed: 11/25/2022] Open
Abstract
Background Malaria remains a significant public health challenge in regions of the world where it is endemic. An unprecedented decline in malaria incidences was recorded during the last decade due to the availability of effective control interventions, such as the deployment of artemisinin-based combination therapy and insecticide-treated nets. However, according to the World Health Organization, malaria is staging a comeback, in part due to the development of drug resistance. Therefore, there is an urgent need to discover new anti-malarial drugs. This article reviews the literature on natural products with antiplasmodial activity that was reported between 2010 and 2017. Methods Relevant literature was sourced by searching the major scientific databases, including Web of Science, ScienceDirect, Scopus, SciFinder, Pubmed, and Google Scholar, using appropriate keyword combinations. Results and Discussion A total of 1524 compounds from 397 relevant references, assayed against at least one strain of Plasmodium, were reported in the period under review. Out of these, 39% were described as new natural products, and 29% of the compounds had IC50 ≤ 3.0 µM against at least one strain of Plasmodium. Several of these compounds have the potential to be developed into viable anti-malarial drugs. Also, some of these compounds could play a role in malaria eradication by targeting gametocytes. However, the research into natural products with potential for blocking the transmission of malaria is still in its infancy stage and needs to be vigorously pursued.
Collapse
Affiliation(s)
- Nasir Tajuddeen
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa
| | - Fanie R Van Heerden
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa.
| |
Collapse
|
13
|
Tshitenge DT, Bruhn T, Feineis D, Schmidt D, Mudogo V, Kaiser M, Brun R, Würthner F, Awale S, Bringmann G. Ealamines A-H, a Series of Naphthylisoquinolines with the Rare 7,8'-Coupling Site, from the Congolese Liana Ancistrocladus ealaensis, Targeting Pancreatic Cancer Cells. JOURNAL OF NATURAL PRODUCTS 2019; 82:3150-3164. [PMID: 31630523 DOI: 10.1021/acs.jnatprod.9b00755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
From the twigs and leaves of the Central African liana Ancistrocladus ealaensis (Ancistrocladaceae), a series of ten 7,8'-coupled naphthylisoquinoline alkaloids were isolated, comprising eight new compounds, named ealamines A-H (4a, 4b, 5-10), and two known ones, 6-O-demethylancistrobrevine A (11) and yaoundamine A (12), which had previously been found in related African Ancistrocladus species. Only one of the new compounds within this series, ealamine H (10), is a typical Ancistrocladaceae-type alkaloid, with 3S-configuration at C-3 and an oxygen function at C-6, whereas seven of the new alkaloids are the first 7,8'-linked "hybrid-type" naphthylisoquinoline alkaloids, i.e., 3R-configured and 6-oxygenated in the tetrahydroisoquinoline part. The discovery of such a broad series of 7,8'-coupled naphthyltetrahydroisoquinolines is unprecedented, because representatives of this subclass of alkaloids are normally found in Nature quite rarely. The stereostructures of the new ealamines were assigned by HRESIMS, 1D and 2D NMR, oxidative degradation, and experimental and quantum-chemical ECD investigations, and-in the case of ealamine A (4a)-also confirmed by X-ray diffraction analysis. Ealamines A-D exhibited distinct-and specific-antiplasmodial activities, and they displayed pronounced preferential cytotoxic effects toward PANC-1 human pancreatic cancer cells in nutrient-deprived medium, without causing toxicity under normal, nutrient-rich conditions, with ealamine C (5) as the most potent agent.
Collapse
Affiliation(s)
- Dieudonné Tshitenge Tshitenge
- Institute of Organic Chemistry , University of Würzburg , Am Hubland , D-97074 Würzburg , Germany
- Faculty of Pharmaceutical Sciences , University of Kinshasa , B.P. 212 Kinshasa XI, Democratic Republic of the Congo
- Medicinal Chemistry , Bayer AG, Pharmaceuticals , Aprather Weg 18a , D-42096 Wuppertal , Germany
| | - Torsten Bruhn
- Institute of Organic Chemistry , University of Würzburg , Am Hubland , D-97074 Würzburg , Germany
- Federal Institute for Risk Assessment , Max-Dohrn-Straße 8-10 , D-10589 Berlin , Germany
| | - Doris Feineis
- Institute of Organic Chemistry , University of Würzburg , Am Hubland , D-97074 Würzburg , Germany
| | - David Schmidt
- Institute of Organic Chemistry , University of Würzburg , Am Hubland , D-97074 Würzburg , Germany
| | - Virima Mudogo
- Faculté des Sciences , Université de Kinshasa , B.P. 202 , Kinshasa XI, Democratic Republic of the Congo
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute , Socinstrasse 57 , CH-4002 Basel , Switzerland
- University of Basel , Petersplatz 1 , CH-4003 Basel , Switzerland
| | - Reto Brun
- Swiss Tropical and Public Health Institute , Socinstrasse 57 , CH-4002 Basel , Switzerland
- University of Basel , Petersplatz 1 , CH-4003 Basel , Switzerland
| | - Frank Würthner
- Institute of Organic Chemistry , University of Würzburg , Am Hubland , D-97074 Würzburg , Germany
| | - Suresh Awale
- Division of Natural Drug Discovery, Institute of Natural Medicine , University of Toyama , 2630 Sugitani , Toyama 930-0194 , Japan
| | - Gerhard Bringmann
- Institute of Organic Chemistry , University of Würzburg , Am Hubland , D-97074 Würzburg , Germany
| |
Collapse
|
14
|
Lombe BK, Feineis D, Bringmann G. Dimeric naphthylisoquinoline alkaloids: polyketide-derived axially chiral bioactive quateraryls. Nat Prod Rep 2019; 36:1513-1545. [DOI: 10.1039/c9np00024k] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This is the first review on dimeric naphthylisoquinolines, a group of structurally intriguing, biosynthetically unique, and pharmacologically promising alkaloids.
Collapse
Affiliation(s)
- Blaise Kimbadi Lombe
- Institute of Organic Chemistry
- University of Würzburg
- D-97074 Würzburg
- Germany
- Faculté des Sciences
| | - Doris Feineis
- Institute of Organic Chemistry
- University of Würzburg
- D-97074 Würzburg
- Germany
| | - Gerhard Bringmann
- Institute of Organic Chemistry
- University of Würzburg
- D-97074 Würzburg
- Germany
| |
Collapse
|
15
|
Ancistrobrevines E-J and related naphthylisoquinoline alkaloids from the West African liana Ancistrocladus abbreviatus with inhibitory activities against Plasmodium falciparum and PANC-1 human pancreatic cancer cells. Fitoterapia 2018; 131:245-259. [DOI: 10.1016/j.fitote.2018.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/07/2018] [Indexed: 01/28/2023]
|
16
|
Kavatsurwa SM, Lombe BK, Feineis D, Dibwe DF, Maharaj V, Awale S, Bringmann G. Ancistroyafungines A-D, 5,8′- and 5,1′-coupled naphthylisoquinoline alkaloids from a Congolese Ancistrocladus species, with antiausterity activities against human PANC-1 pancreatic cancer cells. Fitoterapia 2018; 130:6-16. [DOI: 10.1016/j.fitote.2018.07.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/25/2018] [Indexed: 12/11/2022]
|
17
|
Cheng X, Zhang G, Seupel R, Feineis D, Brünnert D, Chatterjee M, Schlosser A, Bringmann G. Epoxides related to dioncoquinone B: Synthesis, activity against multiple myeloma cells, and search for the target protein. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.04.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Seupel R, Hemberger Y, Feineis D, Xu M, Seo EJ, Efferth T, Bringmann G. Ancistrocyclinones A and B, unprecedented pentacyclic N,C-coupled naphthylisoquinoline alkaloids, from the Chinese liana Ancistrocladus tectorius. Org Biomol Chem 2018; 16:1581-1590. [DOI: 10.1039/c7ob03092d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The pentacyclic berberine-like ancistrocyclinones A and B represent a new subtype of naphthylisoquinoline alkaloids, with an intriguing helical 3D structure.
Collapse
Affiliation(s)
- Raina Seupel
- Institute of Organic Chemistry
- University of Würzburg
- D-97074 Würzburg
- Germany
| | - Yasmin Hemberger
- Institute of Organic Chemistry
- University of Würzburg
- D-97074 Würzburg
- Germany
| | - Doris Feineis
- Institute of Organic Chemistry
- University of Würzburg
- D-97074 Würzburg
- Germany
| | - Minjuan Xu
- Key Laboratory of Systems Biomedicine
- Shanghai Center for Systems Biomedicine
- Shanghai Jia Tong University
- Shanghai 200240
- P.R. China
| | - Ean-Jeong Seo
- Institute of Pharmacy and Biochemistry
- Department of Pharmaceutical Biology
- University of Mainz
- D-55128 Mainz
- Germany
| | - Thomas Efferth
- Institute of Pharmacy and Biochemistry
- Department of Pharmaceutical Biology
- University of Mainz
- D-55128 Mainz
- Germany
| | - Gerhard Bringmann
- Institute of Organic Chemistry
- University of Würzburg
- D-97074 Würzburg
- Germany
| |
Collapse
|
19
|
Bringmann G, Seupel R, Feineis D, Xu M, Zhang G, Kaiser M, Brun R, Seo EJ, Efferth T. Antileukemic ancistrobenomine B and related 5,1′-coupled naphthylisoquinoline alkaloids from the Chinese liana Ancistrocladus tectorius. Fitoterapia 2017; 121:76-85. [DOI: 10.1016/j.fitote.2017.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/02/2017] [Indexed: 11/16/2022]
|
20
|
Li J, Seupel R, Feineis D, Mudogo V, Kaiser M, Brun R, Brünnert D, Chatterjee M, Seo EJ, Efferth T, Bringmann G. Dioncophyllines C 2, D 2, and F and Related Naphthylisoquinoline Alkaloids from the Congolese Liana Ancistrocladus ileboensis with Potent Activities against Plasmodium falciparum and against Multiple Myeloma and Leukemia Cell Lines. JOURNAL OF NATURAL PRODUCTS 2017; 80:443-458. [PMID: 28121440 DOI: 10.1021/acs.jnatprod.6b00967] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Dioncophylline F (1), the first 5,8'-coupled dioncophyllaceous alkaloid (i.e., lacking an oxygen function at C-6 and possessing an R-configuration at C-3), was isolated from the recently described Congolese liana Ancistrocladus ileboensis. Two further, likewise Dioncophyllaceae-type, alkaloids, the dioncophyllines C2 (2) and D2 (3), were identified, along with the Ancistrocladaceae-type compound ancistrocladisine B (4), which is oxygenated at C-6 and S-configured at C-3. The structures of the new compounds were determined by spectroscopic, chemical, and chiroptical methods. The stereostructure of 1 was further confirmed by total synthesis. As a consequence of the lack of a methyl group ortho to their biaryl axes, both dioncophylline F (1) and the 7,8'-coupled dioncophylline D2 (3) occur as pairs of configurationally semistable and, thus, slowly interconverting atropo-diastereomers, whereas dioncophylline C2 (2), with its 5,1'-linkage, is configurationally stable at the axis. Eight further known naphthylisoquinolines were isolated from A. ileboensis, among them dioncophylline A (P-10), its 4'-O-demethyl analogue P-11, and 5'-O-methyldioncophylline D (7), which were found to display strong cytotoxic activities against multiple myeloma INA-6 cells (P-10 even stronger than the standard drug melphalan) and against drug-sensitive acute lymphoblastic CCRF-CEM leukemia cells and their multidrug-resistant subline, CEM/ADR5000. Moreover, the dioncophyllines 1, 3, and 7 showed high-and specific-activities against the malaria parasite Plasmodium falciparum.
Collapse
Affiliation(s)
- Jun Li
- Institute of Organic Chemistry, University of Würzburg , Am Hubland, D-97074 Würzburg, Germany
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, and Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Urumqi, 830011, People's Republic of China
| | - Raina Seupel
- Institute of Organic Chemistry, University of Würzburg , Am Hubland, D-97074 Würzburg, Germany
| | - Doris Feineis
- Institute of Organic Chemistry, University of Würzburg , Am Hubland, D-97074 Würzburg, Germany
| | - Virima Mudogo
- Faculté des Sciences, Université de Kinshasa , B.P. 202, Kinshasa XI, Democratic Republic of the Congo
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute , Socinstrasse 57, CH-4002 Basel, Switzerland
- University of Basel , Petersplatz 1, CH-4003 Basel, Switzerland
| | - Reto Brun
- Swiss Tropical and Public Health Institute , Socinstrasse 57, CH-4002 Basel, Switzerland
- University of Basel , Petersplatz 1, CH-4003 Basel, Switzerland
| | | | | | - Ean-Jeong Seo
- Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, University of Mainz , Staudinger Weg 5, D-55128 Mainz, Germany
| | - Thomas Efferth
- Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, University of Mainz , Staudinger Weg 5, D-55128 Mainz, Germany
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg , Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
21
|
Bringmann G, Seupel R, Feineis D, Zhang G, Xu M, Wu J, Kaiser M, Brun R, Seo EJ, Efferth T. Ancistectorine D, a naphthylisoquinoline alkaloid with antiprotozoal and antileukemic activities, and further 5,8'- and 7,1'-linked metabolites from the Chinese liana Ancistrocladus tectorius. Fitoterapia 2016; 115:1-8. [DOI: 10.1016/j.fitote.2016.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/14/2016] [Indexed: 10/21/2022]
|
22
|
New naphthalene derivatives and isoquinoline alkaloids from Ancistrocladus cochinchinensis with their anti-proliferative activity on human cancer cells. Bioorg Med Chem Lett 2016; 26:3913-7. [PMID: 27423477 DOI: 10.1016/j.bmcl.2016.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 07/01/2016] [Accepted: 07/05/2016] [Indexed: 11/23/2022]
Abstract
Five new compounds, named ancistronaphtosides A and B (1 and 2), anciscochine (3), anciscochine 6-O-β-d-glucopyranoside (4), and 4'-methoxy-5-epi-ancistecrorine A1 (5), together with tortoside A (6) and 4-hydroxy-2-methoxyphenyl-6-O-syringoyl-β-d-glucopyranoside (7) were isolated from the methanolic extract of Ancistrocladus cochinchinensis. Their chemical structures were established using HR-ESI-MS, NMR spectroscopic, and chiroptical methods. Compound 5 significantly exhibited anti-proliferation against HL-60, LU-1, and SK-MEL-2 cells with IC50 values of 5.0±1.2, 6.5±1.6, and 6.8±2.0μg/mL, respectively.
Collapse
|
23
|
Bringmann G, Xu M, Seupel R, Feineis D, Wu J. Ancistrotectoquinones A and B, the First Quinoid Naphthylisoquinoline Alkaloids, from the Chinese Liana Ancistrocladus tectorius. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601100725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
From the leaves and stems of Ancistrocladus tectorius (Ancistrocladaceae) from the Chinese island Hainan, two novel-type 7,3′-coupled naphthylisoquinolines, named ancistrotectoquinones A (4) and B (5), were isolated. They are the first alkaloids with a 1,4-naphthoquinone portion coupled to an isoquinoline moiety. Due to the lowered degree of steric hindrance next to the biaryl axis and for electronic reasons, 4 and 5 occur as pairs of configurationally semi-stable, and, thus slowly interconverting atropo-diastereomers. The Gibbs free energies of activation between the two atropisomers of ancistrotectoquinone A (4a/b) were determined by measuring the time-dependent decrease of diastereomeric purity of freshly separated samples enriched with the M- or P-atropisomer and, computationally, by DFT calculations. The absolute configurations at the biaryl axes of the atropo-diastereomers of 4a/b and 5a/b were assigned by online LC-CD analysis. The stereostructure of 4a/b was further confirmed by its semi-synthesis from the likewise 7,3′-coupled ‘normal' naphthylisoquinoline alkaloid ancistrotectorine (6), by biomimetic oxidation with Fremy's salt.
Collapse
Affiliation(s)
- Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Minjuan Xu
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jia Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Raina Seupel
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Doris Feineis
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Jun Wu
- Marine Drugs Research Center, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, P.R. China
| |
Collapse
|
24
|
Bringmann G, Manchala N, Büttner T, Hertlein-Amslinger B, Seupel R. First Atroposelective Total Synthesis of Enantiomerically Pure Ancistrocladidine and Ancistrotectorine. Chemistry 2016; 22:9792-6. [DOI: 10.1002/chem.201600701] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Gerhard Bringmann
- Institut für Organische Chemie; Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Narasimhulu Manchala
- Institut für Organische Chemie; Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Tobias Büttner
- Institut für Organische Chemie; Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | | | - Raina Seupel
- Institut für Organische Chemie; Universität Würzburg; Am Hubland 97074 Würzburg Germany
| |
Collapse
|
25
|
Computational study of naphthylisoquinoline alkaloids with antimalarial activity from Dioncophyllaceae and Ancistrodaceae in vacuo. Theor Chem Acc 2016. [DOI: 10.1007/s00214-016-1843-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Ibrahim SR, Mohamed GA. Naphthylisoquinoline alkaloids potential drug leads. Fitoterapia 2015; 106:194-225. [DOI: 10.1016/j.fitote.2015.09.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/11/2015] [Accepted: 09/15/2015] [Indexed: 02/01/2023]
|
27
|
Friesen JB, McAlpine JB, Chen SN, Pauli GF. Countercurrent Separation of Natural Products: An Update. JOURNAL OF NATURAL PRODUCTS 2015; 78:1765-96. [PMID: 26177360 PMCID: PMC4517501 DOI: 10.1021/np501065h] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Indexed: 05/02/2023]
Abstract
This work assesses the current instrumentation, method development, and applications in countercurrent chromatography (CCC) and centrifugal partition chromatography (CPC), collectively referred to as countercurrent separation (CCS). The article provides a critical review of the CCS literature from 2007 since our last review (J. Nat. Prod. 2008, 71, 1489-1508), with a special emphasis on the applications of CCS in natural products research. The current state of CCS is reviewed in regard to three continuing topics (instrumentation, solvent system development, theory) and three new topics (optimization of parameters, workflow, bioactivity applications). The goals of this review are to deliver the necessary background with references for an up-to-date perspective of CCS, to point out its potential for the natural product scientist, and thereby to induce new applications in natural product chemistry, metabolome, and drug discovery research involving organisms from terrestrial and marine sources.
Collapse
Affiliation(s)
- J. Brent Friesen
- Department
of Medicinal Chemistry and Pharmacognosy and Institute for Tuberculosis Research,
College of Pharmacy, University of Illinois
at Chicago, Chicago, Illinois 60612, United
States
- Physical
Sciences Department, Rosary College of Arts and Sciences, Dominican University, River Forest, Illinois 60305, United States
| | - James B. McAlpine
- Department
of Medicinal Chemistry and Pharmacognosy and Institute for Tuberculosis Research,
College of Pharmacy, University of Illinois
at Chicago, Chicago, Illinois 60612, United
States
| | - Shao-Nong Chen
- Department
of Medicinal Chemistry and Pharmacognosy and Institute for Tuberculosis Research,
College of Pharmacy, University of Illinois
at Chicago, Chicago, Illinois 60612, United
States
| | - Guido F. Pauli
- Department
of Medicinal Chemistry and Pharmacognosy and Institute for Tuberculosis Research,
College of Pharmacy, University of Illinois
at Chicago, Chicago, Illinois 60612, United
States
| |
Collapse
|
28
|
Computational Studies on Sirtuins from Trypanosoma cruzi: Structures, Conformations and Interactions with Phytochemicals. PLoS Negl Trop Dis 2014; 8:e2689. [PMID: 24551254 PMCID: PMC3923677 DOI: 10.1371/journal.pntd.0002689] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 12/21/2013] [Indexed: 11/19/2022] Open
Abstract
Background The silent-information regulator 2 proteins, otherwise called sirtuins, are currently considered as emerging anti-parasitic targets. Nicotinamide, a pan-sirtuin inhibitor, is known to cause kinetoplast alterations and the arrested growth of T. cruzi, the protozoan responsible for Chagas disease. These observations suggested that sirtuins from this parasite (TcSir2rp1 and TcSir2rp3) could play an important role in the regulation of the parasitic cell cycle. Thus, their inhibition could be exploited for the development of novel anti-trypanosomal compounds. Methods Homology modeling was used to determine the three-dimensional features of the sirtuin TcSir2rp1 from T. cruzi. The apo-form of human SIRT2 and the same structure solved in complex with its co-substrate NAD+ allowed the modeling of TcSir2rp1 in the open and closed conformational states. Molecular docking studies were then carried out. A library composed of fifty natural and diverse compounds that are known to be active against this parasite, was established based on the literature and virtually screened against TcSir2rp1 and TcSir2rp3, which was previously modeled by our group. Results In this study, two conformational states of TcSir2rp1 were described for the first time. The molecular docking results of compounds capable of binding sirtuins proved to be meaningful when the closed conformation of the protein was taken into account for calculations. This specific conformation was then used for the virtual screening of antritrypanosomal phytochemicals against TcSir2rp1 and TcSir2rp3. The calculations identified a limited number of scaffolds extracted from Vismia orientalis, Cussonia zimmermannii, Amomum aculeatum and Anacardium occidentale that potentially interact with both proteins. Conclusions The study provided reliable models for future structure-based drug design projects concerning sirtuins from T. cruzi. Molecular docking studies highlighted not only the advantages of performing in silico interaction studies on their closed conformations but they also suggested the potential mechanism of action of four phytochemicals known for their anti-trypanosomal activity in vitro. T. cruzi is a protozoan pathogen responsible for Chagas disease. Current therapies rely only on a very small number of drugs, most of which are inadequate because of their severe host toxicity or because of their susceptibility to drug-resistance mechanisms. To determine efficient therapeutic alternatives, the identification of new biotargets and detailed knowledge of their structures are essential. Sirtuins from T. cruzi have been recently considered as promising targets for the development of new treatments for Chagas disease. Inhibition of their activity has been shown to significantly interfere with the life cycle of the parasite. T. cruzi possesses genes encoding two sirtuin-like proteins, TcSIR2rp1 and TcSIR2rp3. The structures of these enzymes were theoretically elucidated in this work, which also focused on the impact of their possible conformational states on computational interaction studies. A small library of phytochemicals that are active against the parasite was built and screened against the most meaningful conformations, identifying a restricted number of scaffolds that potentially interact with the modeled proteins. For these hits, a mechanism of action related to interactions with sirtuins was proposed.
Collapse
|
29
|
Jiang C, Li ZL, Gong P, Kang SL, Liu MS, Pei YH, Jing YK, Hua HM. Five novel naphthylisoquinoline alkaloids with growth inhibitory activities against human leukemia cells HL-60, K562 and U937 from stems and leaves of Ancistrocladus tectorius. Fitoterapia 2013; 91:305-312. [DOI: 10.1016/j.fitote.2013.09.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 09/10/2013] [Accepted: 09/14/2013] [Indexed: 11/29/2022]
|
30
|
Galiana-Roselló C, Bilbao-Ramos P, Dea-Ayuela MA, Rolón M, Vega C, Bolás-Fernández F, García-España E, Alfonso J, Coronel C, González-Rosende ME. In vitro and in vivo antileishmanial and trypanocidal studies of new N-benzene- and N-naphthalenesulfonamide derivatives. J Med Chem 2013; 56:8984-98. [PMID: 24151871 DOI: 10.1021/jm4006127] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report in vivo and in vitro antileishmanial and trypanocidal activities of a new series of N-substituted benzene and naphthalenesulfonamides 1-15. Compounds 1-15 were screened in vitro against Leishmania infantum , Leishmania braziliensis , Leishmania guyanensis , Leishmania amazonensis , and Trypanosoma cruzi . Sulfonamides 6e, 10b, and 10d displayed remarkable activity and selectivity toward T. cruzi epimastigotes and amastigotes. 6e showed significant trypanocidal activity on parasitemia in a murine model of acute Chagas disease. Moreover, 6e, 8c, 9c, 12c, and 14d displayed interesting IC50 values against Leishmania spp promastigotes as well as L. amazonensis and L. infantum amastigotes. 9c showed excellent in vivo activity (up to 97% inhibition of the parasite growth) in a short-term treatment murine model for acute infection by L. infantum. In addition, the effect of compounds 9c and 14d on tubulin as potential target was assessed by confocal microscopy analysis applied to L. infantum promastigotes.
Collapse
Affiliation(s)
- Cristina Galiana-Roselló
- Departamento de Farmacia, Facultad de Ciencias de la Salud, Universidad CEU Cardenal Herrera , Edificio Seminario s/n, 46113-Moncada, Valencia, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zofou D, Ntie-Kang F, Sippl W, Efange SMN. Bioactive natural products derived from the Central African flora against neglected tropical diseases and HIV. Nat Prod Rep 2013; 30:1098-120. [PMID: 23817666 DOI: 10.1039/c3np70030e] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review discusses the medicinal potential of bioactive metabolites isolated from medicinal plants in Central Africa for the treatment of neglected tropical diseases and HIV. A correlation is established between the biological activities of the isolated compounds and the uses of the plants in traditional medicine. Insight is provided on how secondary metabolites from medicinal plants in Central Africa could be exploited for drug discovery.
Collapse
Affiliation(s)
- Denis Zofou
- Biotechnology Unit, Department of Biochemistry and Molecular Biology, University of Buea, P. O. Box 63, Buea, Cameroon
| | | | | | | |
Collapse
|