1
|
Popović M, Gavrović-Jankulović M. Yeast Surface Display Methodology for the Characterization of Food Allergens In Situ. Methods Mol Biol 2024; 2717:41-63. [PMID: 37737977 DOI: 10.1007/978-1-0716-3453-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
High throughput allergen characterization is often based on phage display technique which is limited by the constraints of a prokaryotic expression system such as potential loss of conformational epitopes and lack of post-translational modifications. Replacing the phage display platform with a yeast surface display system could accelerate the immunological characterization of complex structured allergens. Yeast surface display is a powerful technique that allows faster immunochemical characterization of allergens in situ without the need for protein purification. Yeast surface display offers an alternative that could lead to the improvement of standard immunodiagnostic and immunotherapeutic approaches. In this chapter, we describe a protocol on yeast surface display for the characterization of plant-derived food allergens using actinidin (Act d 1), a major kiwifruit allergen, as a model system.
Collapse
Affiliation(s)
- Milica Popović
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Belgrade, Serbia.
| | | |
Collapse
|
2
|
Zelenovic N, Filipovic L, Popovic M. Recent Developments in Bioprocessing of Recombinant Antibody Fragments. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1191-1204. [PMID: 37770388 DOI: 10.1134/s0006297923090018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/12/2023] [Accepted: 08/18/2023] [Indexed: 09/30/2023]
Abstract
Biotechnological and biomedical applications of antibodies have been on a steady rise since the 1980s. As unique and highly specific bioreagents, monoclonal antibodies (mAbs) have been widely exploited and approved as therapeutic agents. However, the use of mAbs has limitations for therapeutic applications. Antibody fragments (AbFs) with preserved antigen-binding sites have a significant potential to overcome the disadvantages of conventional mAbs, such as heterogeneous tissue distribution after systemic administration, especially in solid tumors, and Fc-mediated bystander activation of the immune system. AbFs possess better biodistribution coefficient due to lower molecular weight. They preserve the functional features of mAbs, such as antigen specificity and binding, while at the same time, ensuring much better tissue penetration. An additional benefit of AbFs is the possibility of their production in bacterial and yeast cells due to the small size, more robust structure, and lack of posttranslational modifications. In this review, we described current approaches to the AbF production with recent examples of AbF synthesis in bacterial and yeast expression systems and methods for the production optimization.
Collapse
Affiliation(s)
- Nevena Zelenovic
- Center for Chemistry, Institute for Chemistry, Technology, and Metallurgy, National Institute of Republic of Serbia, University of Belgrade, Belgrade, 11000, Serbia
| | - Lidija Filipovic
- Innovative Centre, Faculty of Chemistry, University of Belgrade, Belgrade, 11000, Serbia
| | - Milica Popovic
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Belgrade, 11000, Serbia.
| |
Collapse
|
3
|
Yuan S, Ke D, Li R, Li X, Wang L, Chen H, Zhang C, Huang Y, Chen L, Hao Q, Yang H, Cao D, Chen S, Guo W, Shan Z, Yang Z, Zhang X, Qiu D, Guan Y, Zhou X. Genome-wide survey of soybean papain-like cysteine proteases and their expression analysis in root nodule symbiosis. BMC PLANT BIOLOGY 2020; 20:517. [PMID: 33183238 PMCID: PMC7659060 DOI: 10.1186/s12870-020-02725-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/26/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Plant papain-like cysteine proteases (PLCPs) are a large class of proteolytic enzymes and play important roles in root nodule symbiosis (RNS), while the whole-genome studies of PLCP family genes in legume are quite limited, and the roles of Glycine max PLCPs (GmPLCPs) in nodulation, nodule development and senescence are not fully understood. RESULTS In the present study, we identified 97 GmPLCPs and performed a genome-wide survey to explore the expansion of soybean PLCP family genes and their relationships to RNS. Nineteen paralogous pairs of genomic segments, consisting of 77 GmPLCPs, formed by whole-genome duplication (WGD) events were identified, showing a high degree of complexity in duplication. Phylogenetic analysis among different species showed that the lineage differentiation of GmPLCPs occurred after family expansion, and large tandem repeat segment were specifically in soybean. The expression patterns of GmPLCPs in symbiosis-related tissues and nodules identified RNS-related GmPLCPs and provided insights into their putative symbiotic functions in soybean. The symbiotic function analyses showed that a RNS-related GmPLCP gene (Glyma.04G190700) really participate in nodulation and nodule development. CONCLUSIONS Our findings improved our understanding of the functional diversity of legume PLCP family genes, and provided insights into the putative roles of the legume PLCPs in nodulation, nodule development and senescence.
Collapse
Affiliation(s)
- Songli Yuan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Danxia Ke
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Life Sciences & Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Rong Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiangyong Li
- College of Life Sciences & Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Lei Wang
- College of Life Sciences & Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Haifeng Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Chanjuan Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yi Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Limiao Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Qingnan Hao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Hongli Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Dong Cao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Shuilian Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Wei Guo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Zhihui Shan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Zhonglu Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaojuan Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Dezhen Qiu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yuefeng Guan
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Xinan Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China.
| |
Collapse
|
4
|
Wang P, Yao S, Kosami K, Guo T, Li J, Zhang Y, Fukao Y, Kaneko‐Kawano T, Zhang H, She Y, Wang P, Xing W, Hanada K, Liu R, Kawano Y. Identification of endogenous small peptides involved in rice immunity through transcriptomics- and proteomics-based screening. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:415-428. [PMID: 31301098 PMCID: PMC6953209 DOI: 10.1111/pbi.13208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/30/2019] [Accepted: 07/10/2019] [Indexed: 05/10/2023]
Abstract
Small signalling peptides, generated from larger protein precursors, are important components to orchestrate various plant processes such as development and immune responses. However, small signalling peptides involved in plant immunity remain largely unknown. Here, we developed a pipeline using transcriptomics- and proteomics-based screening to identify putative precursors of small signalling peptides: small secreted proteins (SSPs) in rice, induced by rice blast fungus Magnaporthe oryzae and its elicitor, chitin. We identified 236 SSPs including members of two known small signalling peptide families, namely rapid alkalinization factors and phytosulfokines, as well as many other protein families that are known to be involved in immunity, such as proteinase inhibitors and pathogenesis-related protein families. We also isolated 52 unannotated SSPs and among them, we found one gene which we named immune response peptide (IRP) that appeared to encode the precursor of a small signalling peptide regulating rice immunity. In rice suspension cells, the expression of IRP was induced by bacterial peptidoglycan and fungal chitin. Overexpression of IRP enhanced the expression of a defence gene, PAL1 and induced the activation of the MAPKs in rice suspension cells. Moreover, the IRP protein level increased in suspension cell medium after chitin treatment. Collectively, we established a simple and efficient pipeline to discover SSP candidates that probably play important roles in rice immunity and identified 52 unannotated SSPs that may be useful for further elucidation of rice immunity. Our method can be applied to identify SSPs that are involved not only in immunity but also in other plant functions.
Collapse
Affiliation(s)
- Pingyu Wang
- Shanghai Center for Plant Stress Biology, Center of Excellence for Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Shaolun Yao
- Shanghai Center for Plant Stress Biology, Center of Excellence for Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ken‐ichi Kosami
- Shanghai Center for Plant Stress Biology, Center of Excellence for Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Ting Guo
- Shanghai Center for Plant Stress Biology, Center of Excellence for Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jing Li
- Shanghai Center for Plant Stress Biology, Center of Excellence for Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yuanyuan Zhang
- Shanghai Center for Plant Stress Biology, Center of Excellence for Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yoichiro Fukao
- Department of BioinformaticsRitsumeikan UniversityShigaJapan
| | | | - Heng Zhang
- Shanghai Center for Plant Stress Biology, Center of Excellence for Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Yi‐Min She
- Shanghai Center for Plant Stress Biology, Center of Excellence for Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- Present address:
Centre for Biologics EvaluationBiologics and Genetic Therapies Directorate, Health CanadaOttawaOntarioCanada
| | - Pengcheng Wang
- Shanghai Center for Plant Stress Biology, Center of Excellence for Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Weiman Xing
- Biomolecular Structure and DesignShanghai Center for Plant Stress BiologyShanghaiChina
| | - Kousuke Hanada
- Department of Bioscience and BioinformaticsKyushu Institute of TechnologyFukuokaJapan
| | - Renyi Liu
- Center for Agroforestry Mega Data Science and FAFU‐UCR Joint Center for Horticultural Biology and MetabolomicsHaixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yoji Kawano
- Shanghai Center for Plant Stress Biology, Center of Excellence for Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- Kihara Institute for Biological ResearchYokohama City UniversityKanagawaJapan
- Institute of Plant Science and ResourcesOkayama UniversityOkayamaJapan
| |
Collapse
|
5
|
Prior N, Little SA, Boyes I, Griffith P, Husby C, Pirone-Davies C, Stevenson DW, Tomlinson PB, von Aderkas P. Complex reproductive secretions occur in all extant gymnosperm lineages: a proteomic survey of gymnosperm pollination drops. PLANT REPRODUCTION 2019; 32:153-166. [PMID: 30430247 PMCID: PMC6500509 DOI: 10.1007/s00497-018-0348-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/09/2018] [Indexed: 05/27/2023]
Abstract
KEY MESSAGE Complex protein-containing reproductive secretions are a conserved trait amongst all extant gymnosperms; the pollination drops of most groups include carbohydrate-modifying enzymes and defence proteins. Pollination drops are aqueous secretions that receive pollen and transport it to the ovule interior in gymnosperms (Coniferales, Cycadales, Ginkgoales, Gnetales). Proteins are well established as components of pollination drops in conifers (Coniferales) and Ephedra spp. (Gnetales), but it is unknown whether proteins are also present in the pollination drops of cycads (Cycadales), Ginkgo (Ginkgoales), Gnetum (Gnetales), or in the pollination drops produced by sterile ovules occurring on pollen plants in the Gnetales. We used liquid chromatography-tandem mass spectrometry followed by database-derived protein identification to conduct proteomic surveys of pollination drops collected from: Ceratozamia hildae, Zamia furfuracea and Cycas rumphii (Cycadales); Ginkgo biloba (Ginkgoales); Gnetum gnemon and Welwitschia mirabilis, including pollination drops from both microsporangiate and ovulate plants (Gnetales). We identified proteins in all samples: C. hildae (61), Z. furfuracea (40), C. rumphii (9), G. biloba (57), G. gnemon ovulate (17) and sterile ovules from microsporangiate plants (25) and W. mirabilis fertile ovules (1) and sterile ovules from microsporangiate plants (138). Proteins involved in defence and carbohydrate modification occurred in the drops of most groups, indicating conserved functions for proteins in pollination drops. Our study demonstrates that all extant gymnosperm groups produce complex reproductive secretions containing proteins, an ancient trait that likely contributed to the evolutionary success of seed plants.
Collapse
Affiliation(s)
- Natalie Prior
- Centre for Forest Biology, Department of Biology, University of Victoria, Victoria, Canada
| | - Stefan A Little
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, USA
| | - Ian Boyes
- Centre for Forest Biology, Department of Biology, University of Victoria, Victoria, Canada
| | - Patrick Griffith
- Montgomery Botanical Center, 11901 Old Cutler Road, Coral Gables, FL, USA
| | - Chad Husby
- Montgomery Botanical Center, 11901 Old Cutler Road, Coral Gables, FL, USA
| | - Cary Pirone-Davies
- The Arnold Arboretum of Harvard University, 125 Arborway, Boston, MA, USA
| | | | - P Barry Tomlinson
- Montgomery Botanical Center, 11901 Old Cutler Road, Coral Gables, FL, USA
| | - Patrick von Aderkas
- Centre for Forest Biology, Department of Biology, University of Victoria, Victoria, Canada.
| |
Collapse
|
6
|
Melo IRS, Dias LP, Araújo NMS, Vasconcelos IM, Martins TF, de Morais GA, Gonçalves JFC, Nagano CS, Carneiro RF, Oliveira JTA. ClCPI, a cysteine protease inhibitor purified from Cassia leiandra seeds has antifungal activity against Candida tropicalis by inducing disruption of the cell surface. Int J Biol Macromol 2019; 133:1115-1124. [PMID: 31034905 DOI: 10.1016/j.ijbiomac.2019.04.174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/17/2019] [Accepted: 04/25/2019] [Indexed: 12/13/2022]
Abstract
Infections caused by Candida tropicalis have increased significantly worldwide in parallel with resistance to antifungal drugs. To overcome resistance novel drugs have to be discovered. The objective of this work was to purify and characterize a cysteine protease inhibitor from the seeds of the Amazon rainforest tree Cassia leiandra and test its inhibitory effect against C. tropicalis growth. The inhibitor, named ClCPI, was purified after ion exchange and affinity chromatography followed by ultrafiltration. ClCPI is composed of a single polypeptide chain and is not a glycoprotein. The molecular mass determined by SDS-PAGE in the absence or presence of β-mercaptoethanol and ESI-MS were 16.63 kDa and 18.362 kDa, respectively. ClCPI was stable in the pH range of 7.0-9.0 and thermostable up to 60 °C for 20 min. ClCPI inhibited cysteine proteases, but not trypsin, chymotrypsin neither alpha-amylase. Inhibition of papain was uncompetitive with a Ki of 4.1 × 10-7 M and IC50 of 8.5 × 10-7 M. ClCPI at 2.6 × 10-6 M reduced 50% C. tropicalis growth. ClCPI induced damages and morphological alterations in C. tropicalis cell surface, which led to death. These results suggest that ClCPI have great potential for the development of an antifungal drug against C. tropicalis.
Collapse
Affiliation(s)
- Ivna R S Melo
- Department of Biochemistry and Molecular Biology, Science Center, Federal University of Ceara (UFC), Fortaleza, CE 60020-181, Brazil
| | - Lucas P Dias
- Department of Biochemistry and Molecular Biology, Science Center, Federal University of Ceara (UFC), Fortaleza, CE 60020-181, Brazil.
| | - Nadine M S Araújo
- Department of Biochemistry and Molecular Biology, Science Center, Federal University of Ceara (UFC), Fortaleza, CE 60020-181, Brazil
| | - Ilka M Vasconcelos
- Department of Biochemistry and Molecular Biology, Science Center, Federal University of Ceara (UFC), Fortaleza, CE 60020-181, Brazil
| | - Thiago F Martins
- Department of Biochemistry and Molecular Biology, Science Center, Federal University of Ceara (UFC), Fortaleza, CE 60020-181, Brazil
| | | | | | - Celso S Nagano
- Department of Fisher Engineering, Center of Agricultural Sciences, UFC, Science Center, UFC, Fortaleza, CE 60020-181, Brazil
| | - Rômulo F Carneiro
- Department of Fisher Engineering, Center of Agricultural Sciences, UFC, Science Center, UFC, Fortaleza, CE 60020-181, Brazil
| | - Jose T A Oliveira
- Department of Biochemistry and Molecular Biology, Science Center, Federal University of Ceara (UFC), Fortaleza, CE 60020-181, Brazil.
| |
Collapse
|
7
|
Siddiqui MF, Bano B. Exposure of carbendazim induces structural and functional alteration in garlic phytocystatin: An in vitro multi-spectroscopic approach. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 145:66-75. [PMID: 29482733 DOI: 10.1016/j.pestbp.2018.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/12/2017] [Accepted: 01/17/2018] [Indexed: 06/08/2023]
Abstract
Carbendazim is a broad spectrum benzimidazole fungicide which is used to ensure plants' protection from pest and pathogens' invasion. The present work describes the impact of carbendazim (CAR) on garlic phytocystatin (GPC) which is a crucial plant regulatory protein. Interaction of carbendazim with GPC has been investigated through various biophysical techniques viz. UV absorption, fluorescence spectroscopy, isothermal titration calorimetry, far-UV circular dichroism and FTIR spectroscopy which showed binding between them with consequent modulatory effects. Functional activity of GPC was monitored by the anti-papain inhibitory assay which suggests that incubation of GPC with the higher concentration of CAR disrupts the inhibitory function of GPC. UV spectroscopy confirmed the formation of GPC-CAR complex. Intrinsic fluorescence suggests binding of CAR to GPC which reflects the changes in microenvironment around tryptophan residues of GPC. Isothermal titration calorimetry suggests that interaction of CAR to GPC is an exothermic reaction. Secondary structure analysis was also performed which confirmed that binding of CAR decreases the alpha-helical content of GPC. Collectively, these results demonstrated that GPC exhibited significant structural and functional alteration upon interaction with carbendazim. Since GPC is involved in various regulatory processes, therefore, its structural or functional alteration may lead to disruption of physiological and biological balance within the plant. Hence, our study signifies that exposure of carbendazim to plant exerts physicochemical alteration within the plant.
Collapse
Affiliation(s)
| | - Bilqees Bano
- Department of Biochemistry, Aligarh Muslim University, Uttar Pradesh, India.
| |
Collapse
|
8
|
Khadeeva NV, Yakovleva EY, Sydoruk KV, Korostyleva TV, Istomina EA, Dunaevsky YE, Odintsova TI, Bogush VG, Belozersky MA. Molecular genetic analysis of collection of transgenic tobacco plants with buckwheat serine proteases inhibitor gene during long-term subculture. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417110047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Molecular Cloning, Recombinant Expression and Antifungal Activity of BnCPI, a Cystatin in Ramie (Boehmeria nivea L.). Genes (Basel) 2017; 8:genes8100265. [PMID: 29019965 PMCID: PMC5664115 DOI: 10.3390/genes8100265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/29/2017] [Accepted: 10/03/2017] [Indexed: 11/24/2022] Open
Abstract
Phytocystatins play multiple roles in plant growth, development and resistance to pests and other environmental stresses. A ramie (Boehmeria nivea L.) phytocystatin gene, designated as BnCPI, was isolated from a ramie cDNA library and its full-length cDNA was obtained by rapid amplification of cDNA ends (RACE). The full-length cDNA sequence (691 bp) consisted of a 303 bp open reading frame (ORF) encoding a protein of 100 amino acids with deduced molecular mass of 11.06 kDa and a theoretical isoelectric point (pI) of 6.0. The alignment of genome DNA (accession No. MF153097) and cDNA sequences of BnCPI showed that an intron (~104 bp) exists in the coding region. The BnCPI protein contains most of the highly conserved blocks including Gly5-Gly6 at the N-terminal, the reactive site motif QxVxG (Q49V50V51S52G53), the L79-W80 block and the [LVI]-[AGT]-[RKE]-[FY]-[AS]-[VI]-x-[EDQV]-[HYFQ]-N (L22G23R24 F25A26V27 D28D29H30 N31) block that is common among plant cystatins. BLAST analysis indicated that BnCPI is similar to cystatins from Glycine max (77%), Glycine soja (76%), Hevea brasiliensis (75%) and Ricinus communis (75%). The BnCPI was subcloned into expression vector pSmart-I and then overexpressed in Escherichia coli BL21 (DE3) as a His-tagged recombinant protein. The purified reBnCPI has a molecular mass of 11.4 kDa determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE). Purified reBnCPI can efficiently inhibit the protease activity of papain and ficin toward BANA (Nα-benzoyl-L-arginine-2-naphthyamide), as well as the mycelium growth of some important plant pathogenic fungi. The data further contribute to our understanding of the molecular functions of BnCPI.
Collapse
|
10
|
Tan Y, Yang Y, Li C, Liang B, Li M, Ma F. Overexpression of MpCYS4, a phytocystatin gene from Malus prunifolia (Willd.) Borkh., delays natural and stress-induced leaf senescence in apple. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 115:219-228. [PMID: 28384562 DOI: 10.1016/j.plaphy.2017.03.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/30/2017] [Accepted: 03/30/2017] [Indexed: 05/23/2023]
Abstract
Phytocystatins are a well-characterized class of naturally occurring protease inhibitors that prevent the catalysis of papain-like cysteine proteases. The action of cystatins in stress tolerance has been studied intensively, but relatively little is known about their functions in plants during leaf senescence. Here, we examined the potential roles of the apple cystatin, MpCYS4, in leaf photosynthesis as well as the concentrations and composition of leaf proteins when plants encounter natural or stress-induced senescence. Overexpression of this gene in apple rootstock M26 effectively slowed the senescence-related declines in photosynthetic activity and chlorophyll concentrations and prevented the action of cysteine proteinases during the process of degrading proteins (e.g., Rubisco) in senescing leaves. Moreover, MpCYS4 alleviated the associated oxidative damage and enhanced the capacity of plants to eliminate reactive oxygen species by activating antioxidant enzymes such as ascorbate peroxidase, peroxidase, and catalase. Consequently, plant cells were protected against damage from free radicals during leaf senescence. Based on these results, we conclude that MpCYS4 functions in delaying natural and stress-induced senescence of apple leaves.
Collapse
Affiliation(s)
- Yanxiao Tan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yingli Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Chao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Bowen Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
11
|
Tan Y, Li M, Yang Y, Sun X, Wang N, Liang B, Ma F. Overexpression of MpCYS4, A Phytocystatin Gene from Malus prunifolia (Willd.) Borkh., Enhances Stomatal Closure to Confer Drought Tolerance in Transgenic Arabidopsis and Apple. FRONTIERS IN PLANT SCIENCE 2017; 8:33. [PMID: 28174579 PMCID: PMC5258747 DOI: 10.3389/fpls.2017.00033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 01/06/2017] [Indexed: 05/22/2023]
Abstract
Phytocystatins (PhyCys) comprise a group of inhibitors for cysteine proteinases in plants. They play a wide range of important roles in regulating endogenous processes and protecting plants against various environmental stresses, but the underlying mechanisms remain largely unknown. Here, we detailed the biological functions of MpCYS4, a member of cystatin genes isolated from Malus prunifolia. This gene was activated under water deficit, heat (40°C), exogenous abscisic acid (ABA), or methyl viologen (MV) (Tan et al., 2014a). At cellular level, MpCYS4 protein was found to be localized in the nucleus, cytoplasm, and plasma membrane of onion epidermal cells. Recombinant MpCYS4 cystatin expressed in Escherichia coli was purified and it exhibited cysteine protease inhibitor activity. Transgenic overexpression of MpCYS4 in Arabidopsis (Arabidopsis thaliana) and apple (Malus domestica) led to ABA hypersensitivity and series of ABA-associated phenotypes, such as enhanced ABA-induced stomatal closing, altered expression of many ABA/stress-responsive genes, and enhanced drought tolerance. Taken together, our results demonstrate that MpCYS4 is involved in ABA-mediated stress signal transduction and confers drought tolerance at least in part by enhancing stomatal closure and up-regulating the transcriptional levels of ABA- and drought-related genes. These findings provide new insights into the molecular mechanisms by which phytocystatins influence plant growth, development, and tolerance to stress.
Collapse
|
12
|
Ahmed A, Shamsi A, Bano B. Purification and biochemical characterization of phytocystatin from Brassica alba. J Mol Recognit 2016; 29:223-31. [PMID: 26748819 DOI: 10.1002/jmr.2522] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 10/24/2015] [Accepted: 10/26/2015] [Indexed: 11/10/2022]
Abstract
Phytocystatins belong to the family of cysteine proteinases inhibitors. They are ubiquitously found in plants and carry out various significant physiological functions. These plant derived inhibitors are gaining wide consideration as potential candidate in engineering transgenic crops and in drug designing. Hence it is crucial to identify these inhibitors from various plant sources. In the present study a phytocystatin has been isolated and purified by a simple two-step procedure using ammonium sulfate saturation and gel filtration chromatography on Sephacryl S-100HR from Brassica alba seeds (yellow mustard seeds).The protein was purified to homogeneity with 60.3% yield and 180-fold of purification. The molecular mass of the mustard seed cystatin was estimated to be nearly 26,000 Da by sodium dodecyl sulfate polyacrylamide gel electrophoresis as well as by gel filtration chromatography. The stokes radius and diffusion coefficient of the mustard cystatin were found to be 23A° and 9.4 × 10(-7) cm(2) s(-1) respectively. The isolated phytocystatin was found to be stable in the pH range of 6-8 and is thermostable up to 60 °C. Kinetic analysis revealed that the phytocystatin exhibited non-competitive type of inhibition and inhibited papain more efficiently (K(i) = 3 × 10(-7) M) than ficin (K(i) = 6.6 × 10(-7) M) and bromelain (K(i) = 7.7 × 10(-7) M respectively). CD spectral analysis shows that it possesses 17.11% alpha helical content.
Collapse
Affiliation(s)
- Azaj Ahmed
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Anas Shamsi
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Bilqees Bano
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
13
|
Yuan S, Li R, Wang L, Chen H, Zhang C, Chen L, Hao Q, Shan Z, Zhang X, Chen S, Yang Z, Qiu D, Zhou X. Search for Nodulation and Nodule Development-Related Cystatin Genes in the Genome of Soybean ( Glycine max). FRONTIERS IN PLANT SCIENCE 2016; 7:1595. [PMID: 27826313 PMCID: PMC5078837 DOI: 10.3389/fpls.2016.01595] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/10/2016] [Indexed: 05/12/2023]
Abstract
Nodulation, nodule development and senescence directly affects nitrogen fixation efficiency, and previous studies have shown that inhibition of some cysteine proteases delay nodule senescence, so their nature inhibitors, cystatin genes, are very important in nodulation, nodule development, and senescence. Although several cystatins are actively transcribed in soybean nodules, their exact roles and functional diversities in legume have not been well explored in genome-wide survey studies. In this report, we performed a genome-wide survey of cystatin family genes to explore their relationship to nodulation and nodule development in soybean and identified 20 cystatin genes that encode peptides with 97-245 amino acid residues, different isoelectric points (pI) and structure characteristics, and various putative plant regulatory elements in 3000 bp putative promoter fragments upstream of the 20 soybean cystatins in response to different abiotic/biotic stresses, hormone signals, and symbiosis signals. The expression profiles of these cystatin genes in soybean symbiosis with rhizobium strain Bradyrhizobium japonicum strain 113-2 revealed that 7 cystatin family genes play different roles in nodulation as well as nodule development and senescence. However, these genes were not root nodule symbiosis (RNS)-specific and did not encode special clade cystatin protein with structures related to nodulation and nodule development. Besides, only two of these soybean cystatins were not upregulated in symbiosis after ABA treatment. The functional analysis showed that a candidate gene Glyma.15G227500 (GmCYS16) was likely to play a positive role in soybean nodulation. Besides, evolutionary relationships analysis divided the cystatin genes from Arabidopsis thaliana, Nicotiana tabacum, rice, barley and four legume plants into three groups. Interestingly, Group A cystatins are special in legume plants, but only include one of the above-mentioned 7 cystatin genes related to nodulation and nodule development. Overall, our results provide useful information or clues for our understanding of the functional diversity of legume cystatin family proteins in soybean nodulation and nodule development and for finding nodule-specific cysteine proteases in soybean.
Collapse
Affiliation(s)
- Songli Yuan
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Rong Li
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Lei Wang
- Bioinformatics Laboratory, College of Life Sciences, Xinyang Normal UniversityXinyang, China
| | - Haifeng Chen
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Chanjuan Zhang
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Limiao Chen
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Qingnan Hao
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Zhihui Shan
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Xiaojuan Zhang
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Shuilian Chen
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Zhonglu Yang
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Dezhen Qiu
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
| | - Xinan Zhou
- Key Laboratory of Oil Crop Biology, Ministry of AgricultureWuhan, China
- Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhan, China
- *Correspondence: Xinan Zhou
| |
Collapse
|
14
|
Wei L, Guohua H. Kiwi fruit (Actinidia chinensis) quality determination based on surface acoustic wave resonator combined with electronic nose. Bioengineered 2015; 6:53-61. [PMID: 25551334 DOI: 10.1080/21655979.2014.996430] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
In this study, electronic nose (EN) combined with a 433 MHz surface acoustic wave resonator (SAWR) was used to determine Kiwi fruit quality under 12-day storage. EN responses to Kiwi samples were measured and analyzed by principal component analysis (PCA) and stochastic resonance (SR) methods. SAWR frequency eigen values were also measured to predict freshness. Kiwi fruit sample's weight loss index and human sensory evaluation were examined to characteristic its quality and freshness. Kiwi fruit's quality predictive models based on EN, SAWR, and EN combined with SAWR were developed, respectively. Weight loss and human sensory evaluation results demonstrated that Kiwi fruit's quality decline and overall acceptance decrease during the storage. Experiment result indicated that the PCA method could qualitatively discriminate all Kiwi fruit samples with different storage time. Both SR and SAWR frequency analysis methods could successfully discriminate samples with high regression coefficients (R = 0.98093 and R = 0.99014, respectively). The validation experiment results showed that the mixed predictive model developed using EN combined with SAWR present higher quality prediction accuracy than the model developed either by EN or by SAWR. This method exhibits some advantages including high accuracy, non-destructive, low cost, etc. It provides an effective way for fruit quality rapid analysis.
Collapse
Affiliation(s)
- Liu Wei
- a Zhejiang Gongshang University ; Hangzhou , China
| | | |
Collapse
|
15
|
Gobara M, Baraka A, Zaghloul B. Inhibition of mild steel corrosion in sulfuric acid solution using collagen. RESEARCH ON CHEMICAL INTERMEDIATES 2014. [DOI: 10.1007/s11164-014-1809-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Tan Y, Wang S, Liang D, Li M, Ma F. Genome-wide identification and expression profiling of the cystatin gene family in apple (Malus × domestica Borkh.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 79:88-97. [PMID: 24704986 DOI: 10.1016/j.plaphy.2014.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 03/11/2014] [Indexed: 05/01/2023]
Abstract
Cystatins or phytocystatins (PhyCys) comprise a family of plant-specific inhibitors of cysteine proteinases. Such inhibitors are thought to be involved in the regulation of several endogenous processes as well as defense against biotic or abiotic stresses. However, information about this family is limited in apple. We identified 26 PhyCys genes within the entire apple genome. They were clustered into three distinct groups distributed across several chromosomes. All of their putative proteins contained one or two typical cystatin domains, which shared the characteristic motifs of PhyCys. Eight selected genes displayed differential expression patterns in various tissues. Moreover, their transcript levels were also up-regulated significantly in leaves during maturation, senescence or in response to treatment with one or more abiotic stresses. Our results indicated that members of this family may function in tissue development, leaf senescence, and adaptation to adverse environments in apple.
Collapse
Affiliation(s)
- Yanxiao Tan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Suncai Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China; College of Life Science and Chemistry, Tianshui Normal University, Tianshui, Gansu 748100, PR China
| | - Dong Liang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|