1
|
Serine proteases profiles of Leishmania (Viannia) braziliensis clinical isolates with distinct susceptibilities to antimony. Sci Rep 2021; 11:14234. [PMID: 34244581 PMCID: PMC8271011 DOI: 10.1038/s41598-021-93665-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/29/2021] [Indexed: 11/10/2022] Open
Abstract
Glucantime (SbV) is the first-line treatment against American Tegumentary Leishmaniasis. Resistance cases to this drug have been reported and related to host characteristics and parasite phenotypes. In this study, 12 Leishmania (Viannia) braziliensis isolates from patients that presented clinical cure (Responders—R) and relapse or therapeutic failure (Non-responders—NR) after treatment with antimony, were analyzed. These parasites were assessed by in vitro susceptibility to SbIII and SbV, serine proteases activity measured with substrate (z-FR-AMC) and specific inhibitors (TLCK, AEBSF and PMSF). In vitro susceptibility of axenic amastigotes to SbIII showed a significant difference between R and NR groups. The protease assays showed that TLCK inhibited almost 100% of activity in both axenic amastigotes and promastigotes while AEBSF inhibited around 70%, and PMSF showed lower inhibition of some isolates. Principal component and clustering analysis performed with these data yielded one homogeneous cluster with only NR isolates and three heterogeneous clusters with R and NR isolates. Additionally, differential expression of subtilisins (LbrM.13.0860 and LbrM.28.2570) and TXNPx (LbrM.15.1080) was evaluated in promastigotes and axenic amastigotes from both groups. The results showed a higher expression of LbrM.13.0860 and LbrM.15.1080 genes in axenic amastigotes, while LbrM.28.2570 gene had the lowest expression in all isolates, regardless of the parasite form. The data presented here show a phenotypic heterogeneity among the parasites, suggesting that exploration of in vitro phenotypes based on SbIII and serine proteases profiles can aid in the characterization of L. (V.) braziliensis clinical isolates.
Collapse
|
2
|
Galotta MF, Pugliese P, Gutiérrez-Boem FH, Veliz CG, Criado MV, Caputo C, Echeverria M, Roberts IN. Subtilase activity and gene expression during germination and seedling growth in barley. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:197-206. [PMID: 30908971 DOI: 10.1016/j.plaphy.2019.03.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/25/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
Proteases play a main role in the mobilization of storage proteins during seed germination. Until today, there is little information about the involvement of serine proteases, particularly subtilases, in the germination of barley grains. The aims of the present work were to study the contribution of serine proteases to the total proteolytic activity induced during germination of barley grains and evaluate the specific involvement of subtilases in this process. Proteolytic activity assayed against azocasein in the presence of specific inhibitors, showed that serine proteases contributed between 10 and 20% of total activity along germination. Subtilase activity increased from day 1 after imbibition with a peak between days 4-5. Moreover, in vivo determination of subtilase activity in germinating grains revealed increasing activity along germination mainly localized in the seed endosperm and developing rootlets. Finally, the expression of 19 barley genes encoding subtilases was measured by real time PCR during germination. Three of the analyzed genes increased their expression along germination, five showed a transient induction, one was down-regulated, nine remained unchanged and one was not expressed. The present work demonstrates the involvement of subtilases in germination of barley grains and describes the positive association of eight subtilase genes to this process.
Collapse
Affiliation(s)
- María Florencia Galotta
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Paulina Pugliese
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Flavio H Gutiérrez-Boem
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Cintia G Veliz
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - María Victoria Criado
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Carla Caputo
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Mariela Echeverria
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Irma N Roberts
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Urs AP, Rudresha GV, Manjuprasanna VN, Suvilesh KN, Gowda MDM, Yariswamy M, Hiremath V, Ramakrishnan C, Savitha MN, Jayachandra K, Sharanappa P, Vishwanath BS. Plant latex thrombin‐like cysteine proteases alleviates bleeding by bypassing factor VIII in murine model. J Cell Biochem 2019; 120:12843-12858. [DOI: 10.1002/jcb.28555] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/23/2018] [Accepted: 01/07/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Amog P. Urs
- Department of Studies in Biochemistry University of Mysore, Manasagangothri Mysuru Karnataka India
| | - G. V. Rudresha
- Department of Studies in Biochemistry University of Mysore, Manasagangothri Mysuru Karnataka India
| | - V. N. Manjuprasanna
- Department of Studies in Biochemistry University of Mysore, Manasagangothri Mysuru Karnataka India
| | - K. N. Suvilesh
- Department of Studies in Biochemistry University of Mysore, Manasagangothri Mysuru Karnataka India
| | - M. D. Milan Gowda
- Department of Studies in Biochemistry University of Mysore, Manasagangothri Mysuru Karnataka India
| | - M. Yariswamy
- Department of Surgery University of Missouri Columbia Missouri
| | - Vilas Hiremath
- Vijayashree Diagnostics, Specialized Coagulation Lab Bengaluru India
| | - Chandrasekaran Ramakrishnan
- Department of Biotechnology Bhupat and Jyoti Mehta School of Biosciences Indian Institute of Technology Madras Chennai India
| | - M. N. Savitha
- Department of Studies in Biochemistry University of Mysore, Manasagangothri Mysuru Karnataka India
| | - K. Jayachandra
- Department of Studies in Biochemistry University of Mysore, Manasagangothri Mysuru Karnataka India
| | - P. Sharanappa
- Department of Studies in Botany University of Mysore Hassan Karnataka India
| | - B. S. Vishwanath
- Department of Studies in Biochemistry University of Mysore, Manasagangothri Mysuru Karnataka India
| |
Collapse
|
4
|
Poret M, Chandrasekar B, van der Hoorn RAL, Déchaumet S, Bouchereau A, Kim TH, Lee BR, Macquart F, Hara-Nishimura I, Avice JC. A Genotypic Comparison Reveals That the Improvement in Nitrogen Remobilization Efficiency in Oilseed Rape Leaves Is Related to Specific Patterns of Senescence-Associated Protease Activities and Phytohormones. FRONTIERS IN PLANT SCIENCE 2019; 10:46. [PMID: 30778361 PMCID: PMC6369165 DOI: 10.3389/fpls.2019.00046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/14/2019] [Indexed: 05/24/2023]
Abstract
Oilseed rape (Brassica napus L.) is an oleoproteaginous crop characterized by low N use efficiency (NUE) that is mainly related to a weak Nitrogen Remobilization Efficiency (NRE) during the sequential leaf senescence of the vegetative stages. Based on the hypothesis that proteolysis efficiency is crucial for the improvement of leafNRE, our objective was to characterize key senescence-associated proteolytic mechanisms of two genotypes (Ténor and Samouraï) previously identified with contrasting NREs. To reach this goal, biochemical changes, protease activities and phytohormone patterns were studied in mature leaves undergoing senescence in two genotypes with contrasting NRE cultivated in a greenhouse under limiting or ample nitrate supply. The genotype with the higher NRE (Ténor) possessed enhanced senescence processes in response to nitrate limitation, and this led to greater degradation of soluble proteins compared to the other genotype (Samouraï). This efficient proteolysis is associated with (i) an increase in serine and cysteine protease (CP) activities and (ii) the appearance of new CP activities (RD21-like, SAG12-like, RD19-like, cathepsin-B, XBCP3-like and aleurain-like proteases) during senescence induced by N limitation. Compared to Samouraï, Ténor has a higher hormonal ratio ([salicylic acid] + [abscisic acid])/([cytokinins]) that promotes senescence, particularly under low N conditions, and this is correlated with the stronger protein degradation and serine/CP activities observed during senescence. Short statement: The improvement in N recycling during leaf senescence in a genotype of Brassica napus L. characterized by a high nitrogen remobilization efficiency is related to a high phytohormonal ratio ([salicylic acid] + [abscisic acid])/([cytokinins]) that promotes leaf senescence and is correlated with an increase or the induction of specific serine and cysteine protease activities.
Collapse
Affiliation(s)
- Marine Poret
- Université de Caen Normandie, UMR INRA–UCBN 950 Ecophysiologie Végétale, Agronomie & Nutritions N.C.S., FED 4277 Normandie Végétal, Caen, France
| | - Balakumaran Chandrasekar
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Sylvain Déchaumet
- INRA, UMR 1349 Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université de Rennes 1, Rennes, France
| | - Alain Bouchereau
- INRA, UMR 1349 Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université de Rennes 1, Rennes, France
| | - Tae-Hwan Kim
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Bok-Rye Lee
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Flavien Macquart
- Université de Caen Normandie, UMR INRA–UCBN 950 Ecophysiologie Végétale, Agronomie & Nutritions N.C.S., FED 4277 Normandie Végétal, Caen, France
| | - Ikuko Hara-Nishimura
- Laboratory of Plant Cell Biology, Faculty of Science and Engineering, Konan University Okamoto, Kobe, Japan
| | - Jean-Christophe Avice
- Université de Caen Normandie, UMR INRA–UCBN 950 Ecophysiologie Végétale, Agronomie & Nutritions N.C.S., FED 4277 Normandie Végétal, Caen, France
| |
Collapse
|
5
|
Muszyńska E, Labudda M, Hanus-Fajerska E. Changes in proteolytic activity and protein carbonylation in shoots of Alyssum montanum ecotypes under multi-metal stress. JOURNAL OF PLANT PHYSIOLOGY 2019; 232:61-64. [PMID: 30537613 DOI: 10.1016/j.jplph.2018.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/31/2018] [Accepted: 11/16/2018] [Indexed: 05/11/2023]
Abstract
The aim of present study was to evaluate the proteolytic response of metallicolous (M) and nonmetallicolous (NM) ecotypes of Alyssum montanum under heavy metals (HMs) stress. Therefore, shoot cultures of tested species grown on medium enriched simultaneously with 0.7 mM ZnSO4, 3.0 μM Pb(NO3)2 and 16.4 μM CdCl2 and these concentration corresponded to the content of their soluble forms marked in calamine substrate. After 8 weeks of cultivation, the overall protease activity (azocaseinolytic) and determination of the proteolytic (gelatinolytic) enzymes profile were estimated in HMs-treated and untreated specimens. The proteins of NM specimens were more susceptible to proteolysis induced by HMs than proteins of M ones. It was found that applied HMs ions caused an increase of protease activity in HMs-treated shoots of NM ecotype that was accompanied by diminished total soluble proteins content and their higher carbonylation. In contrast, the activities of the neutral proteases and metal-dependent serine proteases decreased in HMs-treated shoots of M ecotype. Our results have revealed significant differences at the protein metabolism level in contrasting A. montanum ecotypes cultured in vitro in the presence of HMs.
Collapse
Affiliation(s)
- Ewa Muszyńska
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Mateusz Labudda
- Department of Biochemistry, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland.
| | - Ewa Hanus-Fajerska
- Unit of Botany and Plant Physiology, Institute of Plant Biology and Biotechnology, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425, Krakow, Poland
| |
Collapse
|
6
|
Schaller A, Stintzi A, Rivas S, Serrano I, Chichkova NV, Vartapetian AB, Martínez D, Guiamét JJ, Sueldo DJ, van der Hoorn RAL, Ramírez V, Vera P. From structure to function - a family portrait of plant subtilases. THE NEW PHYTOLOGIST 2018; 218:901-915. [PMID: 28467631 DOI: 10.1111/nph.14582] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/13/2017] [Indexed: 05/20/2023]
Abstract
Contents Summary 901 I. Introduction 901 II. Biochemistry and structure of plant SBTs 902 III. Phylogeny of plant SBTs and family organization 903 IV. Physiological roles of plant SBTs 905 V. Conclusions and outlook 911 Acknowledgements 912 References 912 SUMMARY: Subtilases (SBTs) are serine peptidases that are found in all three domains of life. As compared with homologs in other Eucarya, plant SBTs are more closely related to archaeal and bacterial SBTs, with which they share many biochemical and structural features. However, in the course of evolution, functional diversification led to the acquisition of novel, plant-specific functions, resulting in the present-day complexity of the plant SBT family. SBTs are much more numerous in plants than in any other organism, and include enzymes involved in general proteolysis as well as highly specific processing proteases. Most SBTs are targeted to the cell wall, where they contribute to the control of growth and development by regulating the properties of the cell wall and the activity of extracellular signaling molecules. Plant SBTs affect all stages of the life cycle as they contribute to embryogenesis, seed development and germination, cuticle formation and epidermal patterning, vascular development, programmed cell death, organ abscission, senescence, and plant responses to their biotic and abiotic environments. In this article we provide a comprehensive picture of SBT structure and function in plants.
Collapse
Affiliation(s)
- Andreas Schaller
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Annick Stintzi
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Susana Rivas
- Laboratoire des Interactions Plantes-Microorganismes, LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, 31326, France
| | - Irene Serrano
- Laboratoire des Interactions Plantes-Microorganismes, LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, 31326, France
| | - Nina V Chichkova
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Andrey B Vartapetian
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Dana Martínez
- Instituto de Fisiología Vegetal, Universidad Nacional de La Plata, La Plata, 1900, Argentina
| | - Juan J Guiamét
- Instituto de Fisiología Vegetal, Universidad Nacional de La Plata, La Plata, 1900, Argentina
| | - Daniela J Sueldo
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Renier A L van der Hoorn
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Vicente Ramírez
- Institute for Plant Cell Biology and Biotechnology, Heinrich-Heine University, Düsseldorf, 40225, Germany
| | - Pablo Vera
- Institute for Plant Molecular and Cell Biology, Universidad Politécnica de Valencia-CSIC, Valencia, 46022, Spain
| |
Collapse
|
7
|
Figueiredo J, Sousa Silva M, Figueiredo A. Subtilisin-like proteases in plant defence: the past, the present and beyond. MOLECULAR PLANT PATHOLOGY 2018; 19:1017-1028. [PMID: 28524452 PMCID: PMC6638164 DOI: 10.1111/mpp.12567] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/19/2017] [Accepted: 05/13/2017] [Indexed: 05/13/2023]
Abstract
Subtilisin-like proteases (or subtilases) are a very diverse family of serine peptidases present in many organisms, but mostly in plants. With a broad spectrum of biological functions, ranging from protein turnover and plant development to interactions with the environment, subtilases have been gaining increasing attention with regard to their involvement in plant defence responses against the most diverse pathogens. Over the last 5 years, the number of published studies associating plant subtilases with pathogen resistance and plant immunity has increased tremendously. In addition, the observation of subtilases and serine protease inhibitors secreted by pathogens has also gained prominence. In this review, we focus on the active participation of subtilases in the interactions established by plants with the environment, highlighting their role in plant-pathogen communication.
Collapse
Affiliation(s)
- Joana Figueiredo
- Biosystems & Integrative Sciences Institute (BioISI)Faculdade de Ciências da Universidade de LisboaLisbon 1749‐016Portugal
- Laboratório de FTICR e Espectrometria de Massa EstruturalFaculdade de Ciências da Universidade de LisboaLisbon 1749‐016Portugal
- Centro de Química e BioquímicaFaculdade de Ciências da Universidade de LisboaLisbon 1749‐016Portugal
| | - Marta Sousa Silva
- Laboratório de FTICR e Espectrometria de Massa EstruturalFaculdade de Ciências da Universidade de LisboaLisbon 1749‐016Portugal
- Centro de Química e BioquímicaFaculdade de Ciências da Universidade de LisboaLisbon 1749‐016Portugal
| | - Andreia Figueiredo
- Biosystems & Integrative Sciences Institute (BioISI)Faculdade de Ciências da Universidade de LisboaLisbon 1749‐016Portugal
| |
Collapse
|
8
|
Alici EH, Arabaci G. A novel serine protease from strawberry (Fragaria ananassa): Purification and biochemical characterization. Int J Biol Macromol 2018; 114:1295-1304. [PMID: 29601882 DOI: 10.1016/j.ijbiomac.2018.03.165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/21/2018] [Accepted: 03/27/2018] [Indexed: 12/25/2022]
Abstract
In this study, a protease enzyme was purified from strawberry by using Sepharose-4B-l-tyrosine-p-amino benzoic acid affinity chromatography. The molecular weight of pure protease was determined 65.8 kDa by SDS-PAGE. The single band observed on the gel showed that the enzyme had a single polypeptide chain and was successfully purified. Purification of the protease by the chromatographic method resulted in a 395.6-fold increase in specific activity (3600 U/mg). Optimum pH and temperature for the enzyme were 6 and 40 °C, respectively. The protease was stable at a wide temperature range of 40 to 70 °C and a pH range of 3.0 to 9.0. Co2+ ions stimulated protease activity very strongly. Cu2+, Hg2+, Cd2+ and Mn2+ ions significantly inhibited protease activity. While 2-propanol completely inhibited the enzyme, the enzyme maintained its activity better in the presence of ethanol and methanol. The strawberry protease showed the highest specificity towards hemoglobin among all the natural substrates tested. The specificity of the enzyme towards synthetic substrates was also investigated and it was concluded that it has broad substrate specificity. The obtained results indicated that this purified protease was highly-likely a serine protease and its activity was significantly affected by the presence of metal ions.
Collapse
Affiliation(s)
- Esma Hande Alici
- Department of Chemistry, Faculty of Science and Arts, Sakarya University, Serdivan-Sakarya 54187, Turkey.
| | - Gulnur Arabaci
- Department of Chemistry, Faculty of Science and Arts, Sakarya University, Serdivan-Sakarya 54187, Turkey.
| |
Collapse
|
9
|
Roberts IN, Veliz CG, Criado MV, Signorini A, Simonetti E, Caputo C. Identification and expression analysis of 11 subtilase genes during natural and induced senescence of barley plants. JOURNAL OF PLANT PHYSIOLOGY 2017; 211:70-80. [PMID: 28167368 DOI: 10.1016/j.jplph.2017.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 06/06/2023]
Abstract
Subtilases are one of the largest groups of the serine protease family and are involved in many aspects of plant development including senescence. In wheat, previous reports demonstrate an active participation of two senescence-induced subtilases, denominated P1 and P2, in nitrogen remobilization during whole plant senescence. The aim of the present study was to examine the participation of subtilases in senescence-associated proteolysis of barley leaves while comparing different senescence types. With this purpose, subtilase enzymatic activity, immunodetection with a heterologous antiserum and gene expression of 11 subtilase sequences identified in barley databases by homology to P1 were analyzed in barley leaves undergoing dark-induced or natural senescence at the vegetative or reproductive growth phase. Results showed that subtilase specific activity as well as two inmunoreactive bands representing putative subtilases increased in barley leaves submitted to natural and dark-induced senescence. Gene expression analysis showed that two of the eleven subtilase genes analyzed, HvSBT3 and HvSBT6, were up-regulated in all the senescence conditions tested while HvSBT2 was expressed and up-regulated only during dark-induced senescence. On the other hand, HvSBT1, HvSBT4 and HvSBT7 were down-regulated during senescence and two other subtilase genes (HvSBT10 and HvSBT11) showed no significant changes. The remaining subtilase genes were not detected. Results demonstrate an active participation of subtilases in protein degradation during dark-induced and natural leaf senescence of barley plants both at the vegetative and reproductive stage, and, based on their expression profile, postulate HvSBT3 and HvSBT6 as key components of senescence-associated proteolysis.
Collapse
Affiliation(s)
- Irma N Roberts
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina.
| | - Cintia G Veliz
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - María Victoria Criado
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Ana Signorini
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Ester Simonetti
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Carla Caputo
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| |
Collapse
|
10
|
Muthu S, Gopal VB, Soundararajan S, Nattarayan K, S Narayan K, Lakshmikanthan M, Malairaj S, Perumal P. Antibacterial serine protease from Wrightia tinctoria: Purification and characterization. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 112:161-172. [PMID: 28088018 DOI: 10.1016/j.plaphy.2017.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/30/2016] [Accepted: 01/03/2017] [Indexed: 06/06/2023]
Abstract
A serine protease was purified from the leaves of Wrightia tinctoria by sequential flow through method comprising screening, optimization, ammonium sulfate precipitation, gel filtration and ion exchange column chromatography. The yield and purification fold obtained were 11.58% and 9.56 respectively. A single band of serine protease was visualized on SDS-PAGE and 2-D gel electrophoretic analyses were revealed with the molecular mass of 38.5 kDa. Serine protease had an optimum pH of 8.0 and was stable at 45°C with high relative protease activity. The addition of metal ions such as Mg2+ and Mn2+ exhibits a high relative activity. Serine protease had a potent antibacterial activity against both Gram-positive and Gram-negative bacteria. A 10 μg/ml of serine protease was tested against S. aureus, M. luteus, P. aeruginosa and K. pneumoniae which had 21, 20, 18 and 17 mm of zone of inhibition respectively. Serine protease from W. tinctoria degrades the peptidoglycan layer of bacteria which was visualized by transmission electron microscopic analysis.
Collapse
Affiliation(s)
- Sakthivel Muthu
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu, India.
| | - Venkatesh Babu Gopal
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu, India
| | - Selvakumar Soundararajan
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu, India
| | - Karthikeyan Nattarayan
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu, India
| | - Karthik S Narayan
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu, India
| | | | - Sathuvan Malairaj
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu, India
| | - Palani Perumal
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu, India.
| |
Collapse
|
11
|
Proteases from Canavalia ensiformis: Active and Thermostable Enzymes with Potential of Application in Biotechnology. BIOTECHNOLOGY RESEARCH INTERNATIONAL 2016; 2016:3427098. [PMID: 27630776 PMCID: PMC5005583 DOI: 10.1155/2016/3427098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/27/2016] [Accepted: 07/10/2016] [Indexed: 01/25/2023]
Abstract
Extracts of leaves, seeds, roots, and stem from a tropical legume, C. ensiformis, were prepared employing buffers and detergent in aqueous solution. Leaf extracts had the highest protein content and the most pronounced peptidase activity with optimal pH in the neutral to alkaline range. All extracts exhibited peaks of activity at various pH values, suggesting the presence of distinctive classes of proteases. N-α-Tosyl-L-arginine methyl ester hydrolysis was maximal at 30°C to 60°C and peptidase activity from all extracts presented very good thermal stability after 24 h incubation at 70°C. C. ensiformis proteases exhibited molecular masses of about 200–57, 40–37, and 20–15 kDa by SDS-PAGE analysis. These enzymes cleaved hemoglobin, bovine serum albumin, casein, and gelatin at different levels. Serine and metalloproteases are the major proteases in C. ensiformis extracts, modulated by divalent cations, stable at 1% of surfactant Triton X-100 and at different concentrations of the reducing agent β-mercaptoethanol. Thus, C. ensiformis expresses a particular set of proteases in distinctive organs with high activity and stability, making this legume an important source of proteases with biotechnological potential.
Collapse
|
12
|
Martinez DE, Borniego ML, Battchikova N, Aro EM, Tyystjärvi E, Guiamét JJ. SASP, a Senescence-Associated Subtilisin Protease, is involved in reproductive development and determination of silique number in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:161-74. [PMID: 25371504 DOI: 10.1093/jxb/eru409] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Senescence involves increased expression of proteases, which may participate in nitrogen recycling or cellular signalling. 2D zymograms detected two protein species with increased proteolytic activity in senescing leaves of Arabidopsis thaliana. A proteomic analysis revealed that both protein species correspond to a subtilisin protease encoded by At3g14067, termed Senescence-Associated Subtilisin Protease (SASP). SASP mRNA levels and enzyme activity increase during leaf senescence in leaves senescing during both the vegetative or the reproductive phase of the plant life cycle, but this increase is more pronounced in reproductive plants. SASP is expressed in all above-ground organs, but not in roots. Putative AtSASP orthologues were identified in dicot and monocot crop species. A phylogenetic analysis shows AtSASP and its putative orthologues clustering in one discrete group of subtilisin proteases in which no other Arabidospsis subtilisin protease is present. Phenotypic analysis of two knockout lines for SASP showed that mutant plants develop more inflorescence branches during reproductive development. Both AtSASP and its putative rice orthologue (OsSASP) were constitutively expressed in sasp-1 to complement the mutant phenotype. At maturity, sasp-1 plants produced 25% more inflorescence branches and siliques than either the wild-type or the rescued lines. These differences were mostly due to an increased number of second and third order branches. The increased number of siliques was compensated for by a small decrease (5.0%) in seed size. SASP downregulates branching and silique production during monocarpic senescence, and its function is at least partially conserved between Arabidopsis and rice.
Collapse
Affiliation(s)
- Dana E Martinez
- Instituto de Fisiología Vegetal (INFIVE) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata, Argentina
| | - Maria L Borniego
- Instituto de Fisiología Vegetal (INFIVE) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata, Argentina
| | - Natalia Battchikova
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Esa Tyystjärvi
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Juan J Guiamét
- Instituto de Fisiología Vegetal (INFIVE) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata, Argentina
| |
Collapse
|