1
|
Zhou L, Sun X, Iqbal A, Yarra R, Wu Q, Li J, Lv X, Ye J, Yang Y. Revealing the aromatic sonata through terpenoid profiling and gene expression analysis of aromatic and non-aromatic coconut varieties. Int J Biol Macromol 2024; 280:135699. [PMID: 39288860 DOI: 10.1016/j.ijbiomac.2024.135699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Aromatic coconut represents an exceptional variety of coconut known for its distinct and delightful flavor and aroma, both of which are highly cherished by consumers. Despite its popularity, there has been a lack of systematic research on aroma components and the associated synthetic genes. In this report, we developed the metabolite profiles of terpenoids by targeted metabolomics and obtained the expression profile of genes related to terpenoid biosynthesis by RNA-seq during different coconut fruit developmental stages. Totally, we separated 26 different terpenoids in aromatic coconut pulp, among which, geranyl acetate and (-)-isosyngene emerged as the most abundant. The integrated analysis of metabolism and RNA-seq data showed that HMGS2, HMGS3, IPI/IDI1, HMGR1, HMGR3, and CMK2 as potentially key genes involved in the synthesis of terpenoids in aromatic coconut. To validate these findings, qRT-PCR was conducted on terpenoid-related genes. These findings lay a foundation for understanding aroma formation and the molecular mechanism of terpenoids in coconut fruit.
Collapse
Affiliation(s)
- Lixia Zhou
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Hainan Coconut International Joint Research Center, Wenchang 571339, China
| | - Xiwei Sun
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Hainan Coconut International Joint Research Center, Wenchang 571339, China
| | - Amjad Iqbal
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Department of Food Science & Technology, Abdul Wali Khan University Mardan, Pakistan; Hainan Coconut International Joint Research Center, Wenchang 571339, China
| | - Rajesh Yarra
- University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Qiufei Wu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Hainan Coconut International Joint Research Center, Wenchang 571339, China
| | - Jing Li
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Hainan Coconut International Joint Research Center, Wenchang 571339, China
| | - Xiang Lv
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Hainan Coconut International Joint Research Center, Wenchang 571339, China
| | - Jianqiu Ye
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Hainan Coconut International Joint Research Center, Wenchang 571339, China.
| | - Yaodong Yang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Hainan Coconut International Joint Research Center, Wenchang 571339, China.
| |
Collapse
|
2
|
Lin B, Liu T, Luo T. Gold-catalyzed cyclization and cycloaddition in natural product synthesis. Nat Prod Rep 2024; 41:1091-1112. [PMID: 38456472 DOI: 10.1039/d3np00056g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Covering: 2016 to mid 2023Transition metal catalysis, known for its remarkable capacity to expedite the assembly of molecular complexity from readily available starting materials in a single operation, occupies a central position in contemporary chemical synthesis. Within this landscape, gold-catalyzed reactions present a novel and versatile paradigm, offering robust frameworks for accessing diverse structural motifs. In this review, we highlighted a curated selection of publications in the past 8 years, focusing on the deployment of homogeneous gold catalysis in the ring-forming step for the total synthesis of natural products. These investigations are categorized based on the specific ring formations they engender, accentuating the prevailing gold-catalyzed methodologies applied to surmount intricate challenges in natural products synthesis.
Collapse
Affiliation(s)
- Boxu Lin
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Tianran Liu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Tuoping Luo
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| |
Collapse
|
3
|
Wang X, Li W, Cui S, Wu Y, Wei Y, Li J, Hu J. Impact of tps1 Deletion and Overexpression on Terpene Metabolites in Trichoderma atroviride. J Fungi (Basel) 2024; 10:485. [PMID: 39057372 PMCID: PMC11278490 DOI: 10.3390/jof10070485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Terpenoids are structurally diverse natural products that have been widely used in the pharmaceutical, food, and cosmetic industries. Research has shown that fungi produce a variety of terpenoids, yet fungal terpene synthases remain not thoroughly explored. In this study, the tps1 gene, a crucial component of the terpene synthetic pathway, was isolated from Trichoderma atroviride HB20111 through genome mining. The function of this gene in the terpene synthetic pathway was investigated by constructing tps1-gene-deletion- and overexpression-engineered strains and evaluating the expression differences in the tps1 gene at the transcript level. HS-SPME-GC-MS analysis revealed significant variations in terpene metabolites among wild-type, tps1-deleted (Δtps1), and tps1-overexpressed (Otps1) strains; for instance, most sesquiterpene volatile organic compounds (VOCs) were notably reduced or absent in the Δtps1 strain, while nerolidol, β-acorenol, and guaiene were particularly produced by the Otps1 strain. However, both the Δtps1 and Otps1 strains produced new terpene metabolites compared to the wild-type, which indicated that the tps1 gene played an important role in terpene synthesis but was not the only gene involved in T. atroviride HB20111. The TPS1 protein encoded by the tps1 gene could function as a sesquiterpene cyclase through biological information and evolutionary tree analysis. Additionally, fungal inhibition assay and wheat growth promotion assay results suggested that the deletion or overexpression of the tps1 gene had a minimal impact on fungal inhibitory activity, plant growth promotion, and development, as well as stress response. This implies that these activities of T. atroviride HB20111 might result from a combination of multiple metabolites rather than being solely dependent on one specific metabolite. This study offers theoretical guidance for future investigations into the mechanism of terpenoid synthesis and serves as a foundation for related studies on terpenoid metabolic pathways in fungi.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jindong Hu
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China; (X.W.)
| |
Collapse
|
4
|
Zhu L, Wang JP, Hao F, Gan D, Zhang XR, Li CZ, Wang CY, Zhang L, Cai L. A new cyclopentenone derivative from Trichoderma atroviride HH-01. Nat Prod Res 2023; 37:1205-1211. [PMID: 34585648 DOI: 10.1080/14786419.2021.1984912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A new cyclopentenone derivative, atrovinol (1), together with ten known compounds (2-11) were isolated from Trichoderma atroviride HH-01, an endophytic fungus from Illigera rhodantha (Hernandiaceae). Their structures were identified by HRESIMS, 1 D/2D NMR, and electronic circular dichroism (ECD) spectra. Compound 1 exhibited moderate inhibitory activity against Staphylococcus aureus and Bacillus subtilis with MIC values of 8.0 µg/mL and 16.0 µg/mL, respectively.
Collapse
Affiliation(s)
- Li Zhu
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan, Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Jia-Peng Wang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan, Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Feng Hao
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan, Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Dong Gan
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan, Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Xiao-Ran Zhang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan, Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Chen-Zhe Li
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan, Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Cheng-Yao Wang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan, Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Liang Zhang
- Yunnan University Hospital, Yunnan University, Kunming, P.R. China
| | - Le Cai
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan, Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| |
Collapse
|
5
|
Li H, Liu X, Hu Z, Wang L. Novel Sesquiterpene and Diterpene Aminoglycosides from the Deep-Sea-Sediment Fungus Trichoderma sp. SCSIOW21. Mar Drugs 2022; 21:md21010007. [PMID: 36662180 PMCID: PMC9863909 DOI: 10.3390/md21010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Six new sesquiterpene aminoglycosides, trichaspside F (2) and cyclonerosides A-E (5-9), two new diterpene aminoglycosides, harzianosides A and B (10, 11), and three known sesquiterpenes, trichodermoside (1), cycloneran-3,7,10,11-tetraol (3), and cyclonerodiol (4), have been isolated from the n-butanol extract of Trichoderma sp. SCSIOW21 (Hypocreaceae), a deep-sea-sediment-derived fungus. The structures and relative configurations of the new compounds were determined using spectroscopic techniques and comparisons with those reported in the literature. The absolute configurations of the aglycone part of cyclonerosides A-E (5-9) were tentatively proposed based on optical rotation and biogenic considerations. Cyclonerosides A-E (5-9) represent the first glycosides of cyclonelane-type sesquiterpenes generated from Trichoderma. The NO-production-inhibitory activities were evaluated using macrophage RAW264.7 cells. Among the isolated compounds, trichaspside F (2) and cyclonerosides B-E (6-9) exhibited the strongest NO-production-inhibitory activities with IC50 values of 54.8, 50.7, 57.1, 42.0, and 48.0 µM, respectively, compared to the IC50 value of 30.8 µM for the positive control (quercetin). When tested for anti-fungal activities against several pathogenic fungi, none of the compounds exhibited significant activities at a concentration of 100 µM.
Collapse
Affiliation(s)
- Hongxu Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xinyi Liu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Liyan Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Correspondence: ; Tel.: +86-755-2601-2653
| |
Collapse
|
6
|
Amirzakariya BZ, Shakeri A. Bioactive terpenoids derived from plant endophytic fungi: An updated review (2011-2020). PHYTOCHEMISTRY 2022; 197:113130. [PMID: 35183568 DOI: 10.1016/j.phytochem.2022.113130] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/17/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Plant endophytes have been considered as novel sources of naturally occurring compounds with various biological activities, including cytotoxic, antimicrobial, anti-inflammatory, anticancer, herbicides, antileishmanial and antioxidant. A variety of specialised products, comprising terpenoids, alkaloids, polyketides, phenolic compounds, coumarins, and quinone derivatives have been reported from various strains. An increasing number of products, especially terpenoids, are being isolated from endophytes. Herein, the isolated new terpenoids from plant endophytic fungi, their hosts, as well as biological activities, from January 2011 until the end of 2020 are reviewed. In this period, 516 terpenoids are classified into monoterpenes (5), sesquiterpenes (299), diterpenes (76), sesterterpens (22), meroterpenes (83), triterpenes (29), and other terpenoids (2), were isolated from different plant endophytic fungi species.
Collapse
Affiliation(s)
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Abstract
Terpenoids constitute a broad class of natural compounds with tremendous variability in structure and bioactivity, which resulted in a strong interest of the chemical community to this class of natural products over the last 150 years. The presence of strained small rings renders the terpenoid targets interesting for chemical synthesis, due to limited number of available methods and stability issues. In this feature article, a number of recent examples of total syntheses of terpenoids with complex carbon frameworks featuring small rings are discussed. Specific emphasis is given to the new developments in strategical and tactical approaches to construction of such systems.
Collapse
Affiliation(s)
- Gleb A Chesnokov
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - Karl Gademann
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
8
|
Zhang FL, Feng T. Diterpenes Specially Produced by Fungi: Structures, Biological Activities, and Biosynthesis (2010–2020). J Fungi (Basel) 2022; 8:jof8030244. [PMID: 35330246 PMCID: PMC8951520 DOI: 10.3390/jof8030244] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 12/11/2022] Open
Abstract
Fungi have traditionally been a very rewarding source of biologically active natural products, while diterpenoids from fungi, such as the cyathane-type diterpenoids from Cyathus and Hericium sp., the fusicoccane-type diterpenoids from Fusicoccum and Alternaria sp., the guanacastane-type diterpenoids from Coprinus and Cercospora sp., and the harziene-type diterpenoids from Trichoderma sp., often represent unique carbon skeletons as well as diverse biological functions. The abundances of novel skeletons, biological activities, and biosynthetic pathways present new opportunities for drug discovery, genome mining, and enzymology. In addition, diterpenoids peculiar to fungi also reveal the possibility of differing biological evolution, although they have similar biosynthetic pathways. In this review, we provide an overview about the structures, biological activities, evolution, organic synthesis, and biosynthesis of diterpenoids that have been specially produced by fungi from 2010 to 2020. We hope this review provides timely illumination and beneficial guidance for future research works of scholars who are interested in this area.
Collapse
|
9
|
Li H, Liu X, Li X, Hu Z, Wang L. Novel Harziane Diterpenes from Deep-Sea Sediment Fungus Trichoderma sp. SCSIOW21 and Their Potential Anti-Inflammatory Effects. Mar Drugs 2021; 19:md19120689. [PMID: 34940688 PMCID: PMC8705903 DOI: 10.3390/md19120689] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/27/2022] Open
Abstract
Five undescribed harziane-type diterpene derivatives, namely harzianol K (1), harzianol L (4), harzianol M (5), harzianol N (6), harzianol O (7), along with two known compounds, hazianol J (2) and harzianol A (3) were isolated from the deep-sea sediment-derived fungus Trichoderma sp. SCSIOW21. The relative configurations were determined by meticulous spectroscopic methods including 1D, 2D NMR spectroscopy, and HR-ESI-MS. The absolute configurations were established by the ECD curve calculations and the X-ray crystallographic analysis. These compounds (1, and 4–7) contributed to increasing the diversity of the caged harziane type diterpenes with highly congested skeleton characteristics. Harzianol J (2) exhibited a weak anti-inflammatory effect with 81.8% NO inhibition at 100 µM.
Collapse
Affiliation(s)
- Hongxu Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (H.L.); (X.L.); (Z.H.)
- Key Laboratory of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xinyi Liu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (H.L.); (X.L.); (Z.H.)
| | - Xiaofan Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (H.L.); (X.L.); (Z.H.)
- Correspondence: (X.L.); (L.W.); Tel.: +86-755-2601-2653 (L.W.)
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (H.L.); (X.L.); (Z.H.)
- Key Laboratory of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Liyan Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (H.L.); (X.L.); (Z.H.)
- Correspondence: (X.L.); (L.W.); Tel.: +86-755-2601-2653 (L.W.)
| |
Collapse
|
10
|
Mai PY, Le Goff G, Poupon E, Lopes P, Moppert X, Costa B, Beniddir MA, Ouazzani J. Solid-Phase Extraction Embedded Dialysis (SPEED), an Innovative Procedure for the Investigation of Microbial Specialized Metabolites. Mar Drugs 2021; 19:md19070371. [PMID: 34206861 PMCID: PMC8304039 DOI: 10.3390/md19070371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
Solid-phase extraction embedded dialysis (SPEED technology) is an innovative procedure developed to physically separate in-situ, during the cultivation, the mycelium of filament forming microorganisms, such as actinomycetes and fungi, and the XAD-16 resin used to trap the secreted specialized metabolites. SPEED consists of an external nylon cloth and an internal dialysis tube containing the XAD resin. The dialysis barrier selects the molecular weight of the trapped compounds, and prevents the aggregation of biomass or macromolecules on the XAD beads. The external nylon promotes the formation of a microbial biofilm, making SPEED a biofilm supported cultivation process. SPEED technology was applied to the marine Streptomyces albidoflavus 19-S21, isolated from a core of a submerged Kopara sampled at 20 m from the border of a saltwater pond. The chemical space of this strain was investigated effectively using a dereplication strategy based on molecular networking and in-depth chemical analysis. The results highlight the impact of culture support on the molecular profile of Streptomyces albidoflavus 19-S21 secondary metabolites.
Collapse
Affiliation(s)
- Phuong-Y. Mai
- CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 1, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France; (P.-Y.M.); (G.L.G.); (P.L.)
- Équipe “Chimie des Substances Naturelles” BioCIS, CNRS, Université Paris-Saclay, 5 Rue J.-B. Clément, 92290 Châtenay-Malabry, France; (E.P.); (M.A.B.)
| | - Géraldine Le Goff
- CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 1, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France; (P.-Y.M.); (G.L.G.); (P.L.)
| | - Erwan Poupon
- Équipe “Chimie des Substances Naturelles” BioCIS, CNRS, Université Paris-Saclay, 5 Rue J.-B. Clément, 92290 Châtenay-Malabry, France; (E.P.); (M.A.B.)
| | - Philippe Lopes
- CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 1, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France; (P.-Y.M.); (G.L.G.); (P.L.)
| | - Xavier Moppert
- PACIFIC BIOTECH SAS, BP 140 289, 98 701 Arue, Tahiti, French Polynesia; (X.M.); (B.C.)
| | - Bernard Costa
- PACIFIC BIOTECH SAS, BP 140 289, 98 701 Arue, Tahiti, French Polynesia; (X.M.); (B.C.)
| | - Mehdi A. Beniddir
- Équipe “Chimie des Substances Naturelles” BioCIS, CNRS, Université Paris-Saclay, 5 Rue J.-B. Clément, 92290 Châtenay-Malabry, France; (E.P.); (M.A.B.)
| | - Jamal Ouazzani
- CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 1, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France; (P.-Y.M.); (G.L.G.); (P.L.)
- Correspondence: ; Tel.: +33-6-82-81-65-90
| |
Collapse
|
11
|
Tyagi G, Kapoor N, Chandra G, Gambhir L. Cure lies in nature: medicinal plants and endophytic fungi in curbing cancer. 3 Biotech 2021; 11:263. [PMID: 33996375 DOI: 10.1007/s13205-021-02803-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
Success of targeted cancer treatment modalities has generated an ambience of plausible cure for cancer. However, cancer remains to be the major cause of mortality across the globe. The emergence of chemoresistance, relapse after treatment and associated adverse effects has posed challenges to the present therapeutic regimes. Thus, investigating new therapeutic agents of natural origin and delineating the underlying mechanism of action is necessary. Since ages and still in continuum, the phytochemicals have been the prime source of identifying bioactive agents against cancer. They have been exploited for isolating targeted specific compounds to modulate the key regulating signaling pathways of cancer pathogenesis and progression. Capsaicin (alkaloid compound in chilli), catechin, epicatechin, epigallocatechin and epigallocatechin-3-gallate (phytochemicals in green tea), lutein (carotenoid found in yellow fruits), Garcinol (phenolic compound present in kokum tree) and many other naturally available compounds are also very valuable to develop the drugs to treat the cancer. An alternate repository of similar chemical diversity exists in the form of endophytic fungi inhabiting the medicinal plants. There is a high diversity of plant associated endophytic fungi in nature which are potent producers of anti-cancer compounds and offers even stronger hope for the discovery of an efficient anti-cancer drug. These fungi provide various bioactive molecules, such as terpenoids, flavonoids, alkaloids, phenolic compounds, quinines, steroids etc. exhibiting anti-cancerous property. The review discusses the relevance of phytochemicals in chemoprevention and as modulators of miRNA. The perspective advocates the imperative role of anti-cancerous secondary metabolites containing repository of endophytic fungi, as an alternative route of drug discovery.
Collapse
Affiliation(s)
- Garima Tyagi
- Department of Biotechnology, School of Basic & Applied Sciences, Shri Guru Ram Rai University, Dehradun, Uttrakhand 248001 India
| | - Neha Kapoor
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan 302017 India
| | - Girish Chandra
- Department of Seed Science and Technology, School of Agricultural Sciences, Shri Guru Ram Rai University, Dehradun, Uttrakhand 248001 India
| | - Lokesh Gambhir
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan 302017 India
| |
Collapse
|
12
|
Tu Q, Wang Z, Zhang Z, Huang J, Yang Z. Synthetic Strategy for Construction of Highly Congested Tetracyclic Core (6-5-7-4) of Harziane Diterpenoids. Org Lett 2021; 23:4088-4093. [PMID: 33988367 DOI: 10.1021/acs.orglett.1c00769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structurally intriguing tetracyclic core of complex harziane diterpenoid was constructed in 14 steps from commercially available 3-ethoxycyclohex-2-en-1-one. The key steps were a Mn/Cu-mediated oxidative 1,3-dicarbonyl radical cascade cyclization reaction, which diastereoselectively formed the core of dimethylbicyclo[3.2.1]octane structure, and a Au-catalyzed diastereoselective formal [2 + 2] cycloaddition for construction of the harziane diterpenoid tetracyclic framework. The developed method paves the way for achieving total synthesis of this type of complex natural product.
Collapse
Affiliation(s)
- Qian Tu
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zheyuan Wang
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhongchao Zhang
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jun Huang
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhen Yang
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China.,Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
13
|
Zou JX, Song YP, Zeng ZQ, Ji NY. Proharziane and Harziane Derivatives from the Marine Algicolous Fungus Trichoderma asperelloides RR-dl-6-11. JOURNAL OF NATURAL PRODUCTS 2021; 84:1414-1419. [PMID: 33755460 DOI: 10.1021/acs.jnatprod.1c00188] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
One new proharziane and three new harziane derivatives (1-4) together with six known ones (5-10) were isolated from the marine-alga-derived ascomycete Trichoderma asperelloides RR-dl-6-11. Their structures and relative configurations were determined via spectroscopic techniques, and the absolute configurations were ascertained by analysis of ECD curves. This is the first report on the secondary metabolites of T. asperelloides, and the new isolates (1-4), especially seco-harziane 4, greatly add to the structural diversity of harziane diterpenes as well as their precursors and catabolites. Compounds 1-5 inhibited four marine phytoplankton species, and the structure-activity relationship of harziane derivatives is analyzed.
Collapse
Affiliation(s)
- Ji-Xue Zou
- Yantai Institute of Coastal Zone Research, Center for Ocean Mega-Science, Chinese Academy of Sciences, Yantai 264003, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yin-Ping Song
- Yantai Institute of Coastal Zone Research, Center for Ocean Mega-Science, Chinese Academy of Sciences, Yantai 264003, People's Republic of China
| | - Zhao-Qing Zeng
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Nai-Yun Ji
- Yantai Institute of Coastal Zone Research, Center for Ocean Mega-Science, Chinese Academy of Sciences, Yantai 264003, People's Republic of China
| |
Collapse
|
14
|
Fei X, Qi Y, Lei Y, Wang S, Hu H, Wei A. Transcriptome and Metabolome Dynamics Explain Aroma Differences between Green and Red Prickly Ash Fruit. Foods 2021; 10:391. [PMID: 33579038 PMCID: PMC7916813 DOI: 10.3390/foods10020391] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/04/2022] Open
Abstract
Green prickly ash (Zanthoxylum armatum) and red prickly ash (Zanthoxylum bungeanum) fruit have unique flavor and aroma characteristics that affect consumers' purchasing preferences. However, differences in aroma components and relevant biosynthesis genes have not been systematically investigated in green and red prickly ash. Here, through the analysis of differentially expressed genes (DEGs), differentially abundant metabolites, and terpenoid biosynthetic pathways, we characterize the different aroma components of green and red prickly ash fruits and identify key genes in the terpenoid biosynthetic pathway. Gas chromatography-mass spectrometry (GC-MS) was used to identify 41 terpenoids from green prickly ash and 61 terpenoids from red prickly ash. Piperitone was the most abundant terpenoid in green prickly ash fruit, whereas limonene was most abundant in red prickly ash. Intergroup correlation analysis and redundancy analysis showed that HDS2, MVK2, and MVD are key genes for terpenoid synthesis in green prickly ash, whereas FDPS2 and FDPS3 play an important role in the terpenoid synthesis of red prickly ash. In summary, differences in the composition and content of terpenoids are the main factors that cause differences in the aromas of green and red prickly ash, and these differences reflect contrasting expression patterns of terpenoid synthesis genes.
Collapse
Affiliation(s)
- Xitong Fei
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang 712100, China; (X.F.); (Y.Q.); (Y.L.); (S.W.); (H.H.)
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang 712100, China
| | - Yichen Qi
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang 712100, China; (X.F.); (Y.Q.); (Y.L.); (S.W.); (H.H.)
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang 712100, China
| | - Yu Lei
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang 712100, China; (X.F.); (Y.Q.); (Y.L.); (S.W.); (H.H.)
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang 712100, China
| | - Shujie Wang
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang 712100, China; (X.F.); (Y.Q.); (Y.L.); (S.W.); (H.H.)
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang 712100, China
| | - Haichao Hu
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang 712100, China; (X.F.); (Y.Q.); (Y.L.); (S.W.); (H.H.)
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang 712100, China
| | - Anzhi Wei
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang 712100, China; (X.F.); (Y.Q.); (Y.L.); (S.W.); (H.H.)
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang 712100, China
| |
Collapse
|
15
|
Chen Z, Rizzacasa MA. 2019 highlights of the structural revision of natural product via total synthesis. Front Chem Sci Eng 2020. [DOI: 10.1007/s11705-020-1971-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Vicente I, Baroncelli R, Morán-Diez ME, Bernardi R, Puntoni G, Hermosa R, Monte E, Vannacci G, Sarrocco S. Combined Comparative Genomics and Gene Expression Analyses Provide Insights into the Terpene Synthases Inventory in Trichoderma. Microorganisms 2020; 8:E1603. [PMID: 33081019 PMCID: PMC7603203 DOI: 10.3390/microorganisms8101603] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022] Open
Abstract
Trichoderma is a fungal genus comprising species used as biocontrol agents in crop plant protection and with high value for industry. The beneficial effects of these species are supported by the secondary metabolites they produce. Terpenoid compounds are key players in the interaction of Trichoderma spp. with the environment and with their fungal and plant hosts; however, most of the terpene synthase (TS) genes involved in their biosynthesis have yet not been characterized. Here, we combined comparative genomics of TSs of 21 strains belonging to 17 Trichoderma spp., and gene expression studies on TSs using T. gamsii T6085 as a model. An overview of the diversity within the TS-gene family and the regulation of TS genes is provided. We identified 15 groups of TSs, and the presence of clade-specific enzymes revealed a variety of terpenoid chemotypes evolved to cover different ecological demands. We propose that functional differentiation of gene family members is the driver for the high number of TS genes found in the genomes of Trichoderma. Expression studies provide a picture in which different TS genes are regulated in many ways, which is a strong indication of different biological functions.
Collapse
Affiliation(s)
- Isabel Vicente
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (R.B.); (G.P.); (G.V.); (S.S.)
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Campus Villamayor, 37185 Salamanca, Spain; (R.B.); (M.E.M.-D.); (R.H.); (E.M.)
| | - Riccardo Baroncelli
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Campus Villamayor, 37185 Salamanca, Spain; (R.B.); (M.E.M.-D.); (R.H.); (E.M.)
| | - María Eugenia Morán-Diez
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Campus Villamayor, 37185 Salamanca, Spain; (R.B.); (M.E.M.-D.); (R.H.); (E.M.)
| | - Rodolfo Bernardi
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (R.B.); (G.P.); (G.V.); (S.S.)
| | - Grazia Puntoni
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (R.B.); (G.P.); (G.V.); (S.S.)
| | - Rosa Hermosa
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Campus Villamayor, 37185 Salamanca, Spain; (R.B.); (M.E.M.-D.); (R.H.); (E.M.)
| | - Enrique Monte
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Campus Villamayor, 37185 Salamanca, Spain; (R.B.); (M.E.M.-D.); (R.H.); (E.M.)
| | - Giovanni Vannacci
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (R.B.); (G.P.); (G.V.); (S.S.)
| | - Sabrina Sarrocco
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (R.B.); (G.P.); (G.V.); (S.S.)
| |
Collapse
|
17
|
Wang X, Jin XY, Zhou JC, Zhu RX, Qiao YN, Zhang JZ, Li Y, Zhang CY, Chen W, Chang WQ, Lou HX. Terpenoids from the Chinese liverwort Heteroscyphus coalitus and their anti-virulence activity against Candida albicans. PHYTOCHEMISTRY 2020; 174:112324. [PMID: 32163786 DOI: 10.1016/j.phytochem.2020.112324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
In this study, 14 previously undescribed terpenoids were isolated from the Chinese liverwort Heteroscyphus coalitus (Hook.) Schiffner, including a rare harziane type diterpenoid, heteroscyphsic acid A; eight ent-clerodane diterpenoids, heteroscyphsic acids B-I; four labdane diterpenoids, heteroscyphins A-D; and one guaiane sesquiterpene, heteroscyphin E; as well as a known ent-junceic acid. Their structures were determined by a combination of MS, NMR spectroscopy, electronic circular dichroism (ECD) and single crystal X-ray diffraction analyses. The anti-virulence activity of the isolated compounds against Candida albicans DSY654 demonstrated that most of them could block hyphal growth at concentrations ranging from 4-32 μg/ml. Further investigation of the most active compound, heteroscyphin D, revealed that it could suppress the ability of C. albicans DSY654 to adhere to A549 cells and form biofilms, and modulate the transcription of related genes in this fungus.
Collapse
Affiliation(s)
- Xue Wang
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Xue-Yang Jin
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Jin-Chuan Zhou
- School of Pharmacy, Linyi University, Linyi, 276000, China
| | - Rong-Xiu Zhu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250010, China
| | - Ya-Nan Qiao
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Jiao-Zhen Zhang
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Yi Li
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Chun-Yang Zhang
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Wang Chen
- Vitamin D Research Institute, Shanxi University of Technology, Hanzhong, 723000, China
| | - Wen-Qiang Chang
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Hong-Xiang Lou
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China.
| |
Collapse
|
18
|
Shi T, Shao CL, Liu Y, Zhao DL, Cao F, Fu XM, Yu JY, Wu JS, Zhang ZK, Wang CY. Terpenoids From the Coral-Derived Fungus Trichoderma harzianum (XS-20090075) Induced by Chemical Epigenetic Manipulation. Front Microbiol 2020; 11:572. [PMID: 32318046 PMCID: PMC7147461 DOI: 10.3389/fmicb.2020.00572] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/16/2020] [Indexed: 11/13/2022] Open
Abstract
The soft coral-derived fungus Trichoderma harzianum (XS-20090075) was found to be a potential strain to produce substantial new compounds in our previous study. In order to explore its potential to produce more metabolites, chemical epigenetic manipulation was used on this fungus to wake its sleeping genes, leading to the significant changes of its secondary metabolites by using a histone deacetylase (HDAC) inhibitor. The most obvious difference was the original main products harziane diterpenoids were changed into cyclonerane sesquiterpenoids. Three new terpenoids were isolated from the fungal culture treated with 10 μM sodium butyrate, including cleistanthane diterpenoid, harzianolic acid A (1), harziane diterpenoid, harzianone E (2), and cyclonerane sesquiterpenoid, 3,7,11-trihydroxy-cycloneran (3), together with 11 known sesquiterpenoids (4-14). The absolute configurations of 1-3 were determined by single-crystal X-ray diffraction, ECD and OR calculations, and biogenetic considerations. This was the first time to obtain cleistanthane diterpenoid and africane sesquiterpenoid from genus Trichoderma, and this was the first chlorinated cleistanthane diterpenoid. These results demonstrated that the chemical epigenetic manipulation should be an efficient technique for the discovery of new secondary metabolites from marine-derived fungi.
Collapse
Affiliation(s)
- Ting Shi
- Key Laboratory of Marine Drugs, the Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, the Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yang Liu
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Giessen, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - Dong-Lin Zhao
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Fei Cao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, China
| | - Xiu-Mei Fu
- Key Laboratory of Marine Drugs, the Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jia-Yin Yu
- Key Laboratory of Marine Drugs, the Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing-Shuai Wu
- Key Laboratory of Marine Drugs, the Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhen-Kun Zhang
- Key Laboratory of Marine Drugs, the Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, the Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
19
|
Li WY, Liu Y, Lin YT, Liu YC, Guo K, Li XN, Luo SH, Li SH. Antibacterial harziane diterpenoids from a fungal symbiont Trichoderma atroviride isolated from Colquhounia coccinea var. mollis. PHYTOCHEMISTRY 2020; 170:112198. [PMID: 31765875 DOI: 10.1016/j.phytochem.2019.112198] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/14/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Fungal endophytes from plants are an important source for discovery of novel bioactive natural products. In this study, five undescribed harziane diterpenoids with a 4/7/5/6 tetracyclic scaffold, harzianols F‒J and three known derivatives, were obtained from the liquid fermentation of an endophytic fungus Trichoderma atroviride B7, which was isolated from the healthy flower of a Lamiaceae plant Colquhounia coccinea var. mollis. Their structures were elucidated by comprehensive spectroscopic analyses and X-ray crystallographic diffraction in the case of harzianol F. Harzianol I exhibited significant antibacterial effect against the growth of Staphylococcus aureus (EC50 = 7.7 ± 0.8 μg/mL), Bacillus subtilis (EC50 = 7.7 ± 1.0 μg/mL), and Micrococcus luteus (EC50 = 9.9 ± 1.5 μg/mL). Meanwhile, cytotoxic activity of harzianol I against three cancer cell lines was also observed. A plausible biosynthetic pathway for harziane diterpenoids was proposed.
Collapse
Affiliation(s)
- Wen-Yuan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yan Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
| | - Yu-Tian Lin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
| | - Yan-Chun Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
| | - Kai Guo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
| | - Shi-Hong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China; College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
| | - Sheng-Hong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China.
| |
Collapse
|
20
|
Hönig M, Carreira EM. Total Synthesis and Structural Revision of a Harziane Diterpenoid. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Moritz Hönig
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Erick M. Carreira
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| |
Collapse
|
21
|
Hönig M, Carreira EM. Total Synthesis and Structural Revision of a Harziane Diterpenoid. Angew Chem Int Ed Engl 2019; 59:1192-1196. [PMID: 31692208 DOI: 10.1002/anie.201912982] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/03/2019] [Indexed: 01/12/2023]
Abstract
The first total synthesis of nominal harziane diterpenoid 1 is disclosed, whose spectral characteristics did not match those of the reported natural product. Stereochemical analysis and subsequent synthesis of the epimeric tertiary alcohol led to reassignment of configuration of the natural product as shown for 2. At the heart of the synthesis is an enyne cycloisomerization that sets a key quaternary stereocenter within a cyclobutane with high diastereocontrol. The route features strategies for the synthesis of the highly congested 6-5-7-4 carbon skeleton characteristic of the caged harziane diterpenoids.
Collapse
Affiliation(s)
- Moritz Hönig
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Erick M Carreira
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| |
Collapse
|
22
|
Zhao DL, Yang LJ, Shi T, Wang CY, Shao CL, Wang CY. Potent Phytotoxic Harziane Diterpenes from a Soft Coral-Derived Strain of the Fungus Trichoderma harzianum XS-20090075. Sci Rep 2019; 9:13345. [PMID: 31527674 PMCID: PMC6746854 DOI: 10.1038/s41598-019-49778-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 08/29/2019] [Indexed: 11/08/2022] Open
Abstract
Two new harziane diterpene lactones, possessing a 6/5/7/5-fused carbocyclic core containing a lactone ring system, harzianelactones A and B (1 and 2), and five new harziane diterpenes, harzianones A-D (3-6) and harziane (7), were isolated from the soft coral-derived fungus Trichoderma harzianum XS-20090075. Their structures were determined by extensive NMR spectroscopic data, ECD and OR calculations, as well as X-ray diffraction. The isolated compounds exhibited potent phytotoxicity against seedling growth of amaranth and lettuce. Harziane diterpenes were rarely reported for their remarkably bioactivities, and it was the first report to study the phytotoxicity of harziane diterpenes, which provide a new application of such compounds in agriculture for future research.
Collapse
Affiliation(s)
- Dong-Lin Zhao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
- Marine Agricultural Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China
| | - Lu-Jia Yang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Ting Shi
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Chao-Yi Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, People's Republic of China.
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, People's Republic of China.
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, People's Republic of China.
| |
Collapse
|
23
|
Samy MN, Le Goff G, Lopes P, Georgousaki K, Gumeni S, Almeida C, González I, Genilloud O, Trougakos I, Fokialakis N, Ouazzani J. Osmanicin, a Polyketide Alkaloid Isolated from Streptomyces osmaniensis CA-244599 Inhibits Elastase in Human Fibroblasts. Molecules 2019; 24:molecules24122239. [PMID: 31208056 PMCID: PMC6630352 DOI: 10.3390/molecules24122239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 11/30/2022] Open
Abstract
The strain Streptomyces osmaniensis CA-244599 isolated from the Comoros islands was submitted to liquid-state fermentation coupled to in situ solid-phase extraction with amberlite XAD-16 resin. Elution of the trapped compounds on the resin beads by ethyl acetate afforded seven metabolites, osmanicin (1), streptazolin (2), streptazone C (3), streptazone B1 (4), streptenol C (5), nocardamine (6) and desmethylenylnocardamine (7). Osmanicin (1) is a newly reported unusual scaffold combining streptazolin (2) and streptazone C (3) through a Diels-Alder type reaction. Experimental evidence excluded the spontaneous formation of 1 from 2 and 3. The isolated compounds were evaluated for their ability to inhibit elastase using normal human diploid fibroblasts. Compound 1 exhibited the most potent activity with an IC50 of 3.7 μM.
Collapse
Affiliation(s)
- Mamdouh N Samy
- Institut de Chimie des Substances Naturelles ICSN, Centre National de la Recherche Scientifique, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France.
| | - Géraldine Le Goff
- Institut de Chimie des Substances Naturelles ICSN, Centre National de la Recherche Scientifique, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France.
| | - Philippe Lopes
- Institut de Chimie des Substances Naturelles ICSN, Centre National de la Recherche Scientifique, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France.
| | - Katerina Georgousaki
- Department of Pharmacognosy & Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece.
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece.
| | - Celso Almeida
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, 18016 Granada, Spain.
| | - Ignacio González
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, 18016 Granada, Spain.
| | - Olga Genilloud
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, 18016 Granada, Spain.
| | - Ioannis Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece.
| | - Nikolas Fokialakis
- Department of Pharmacognosy & Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece.
| | - Jamal Ouazzani
- Institut de Chimie des Substances Naturelles ICSN, Centre National de la Recherche Scientifique, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
24
|
Zou JX, Song YP, Ji NY. Deoxytrichodermaerin, a harziane lactone from the marine algicolous fungus Trichoderma longibrachiatum A-WH-20-2. Nat Prod Res 2019; 35:216-221. [PMID: 31140305 DOI: 10.1080/14786419.2019.1622110] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Three metabolites deoxytrichodermaerin (a new harziane lactone), harzianol A and harzianone were obtained from Trichoderma longibrachiatum A-WH-20-2, an endophyte from marine red alga Laurencia okamurai. Their structures and relative configurations were unequivocally assigned by spectroscopic techniques, and the absolute configuration of deoxytrichodermaerin was established by analysis of the ECD curve aided by quantum chemical calculations. Deoxytrichodermaerin represents the second harziane lactone with an ester linkage between C-10 and C-11. Harzianol A occurs as a natural product of Trichoderma for the first time. Harzianone has been previously discovered from T. longibrachiatum cf-11. These isolates exhibited potent inhibition of some marine plankton species.
Collapse
Affiliation(s)
- Ji-Xue Zou
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yin-Ping Song
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Nai-Yun Ji
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| |
Collapse
|
25
|
Song YP, Fang ST, Miao FP, Yin XL, Ji NY. Diterpenes and Sesquiterpenes from the Marine Algicolous Fungus Trichoderma harzianum X-5. JOURNAL OF NATURAL PRODUCTS 2018; 81:2553-2559. [PMID: 30351930 DOI: 10.1021/acs.jnatprod.8b00714] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Six new terpenes, including one harziane diterpene, 3 R-hydroxy-9 R,10 R-dihydroharzianone (1), one proharziane diterpene, 11 R-methoxy-5,9,13-proharzitrien-3-ol (2), three cyclonerane sesquiterpenes, 11-methoxy-9-cycloneren-3,7-diol (3), 10-cycloneren-3,5,7-triol (4), and methyl 3,7-dihydroxy-15-cycloneranate (5), and one acorane sesquiterpene, 8-acoren-3,11-diol (6), were isolated from the culture of Trichoderma harzianum X-5, an endophytic fungus obtained from the marine brown alga Laminaria japonica. Their structures and relative configurations were established by analysis of 1D/2D NMR, HREIMS, and IR data, and the absolute configurations were assigned on the basis of ECD curves or biogenetic considerations. These terpenes possess four different carbon skeletons, and compound 2, with a rarely occurring bicyclic framework, represents a possible precursor of tetracyclic harzianes. Compounds 1-6 exhibited growth inhibition of some marine phytoplankton species.
Collapse
Affiliation(s)
- Yin-Ping Song
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences , Yantai 264003 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Sheng-Tao Fang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences , Yantai 264003 , People's Republic of China
| | - Feng-Ping Miao
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences , Yantai 264003 , People's Republic of China
| | - Xiu-Li Yin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences , Yantai 264003 , People's Republic of China
| | - Nai-Yun Ji
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences , Yantai 264003 , People's Republic of China
| |
Collapse
|
26
|
Song YP, Liu XH, Shi ZZ, Miao FP, Fang ST, Ji NY. Bisabolane, cyclonerane, and harziane derivatives from the marine-alga-endophytic fungus Trichoderma asperellum cf44-2. PHYTOCHEMISTRY 2018; 152:45-52. [PMID: 29730583 DOI: 10.1016/j.phytochem.2018.04.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/25/2018] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
Three undescribed bisabolane derivatives, trichaspin, trichaspsides A and B, three undescribed cyclonerane sesquiterpenes, 9-cycloneren-3,7,11-triol, 11-cycloneren-3,7,10-triol, and 7,10-epoxycycloneran-3,11,12-triol, and one undescribed harziane diterpene, 11-hydroxy-9-harzien-3-one, were obtained from the culture of Trichoderma asperellum cf44-2, an endophyte of the marine brown alga Sargassum sp. Their structures and relative configurations were assigned by analysis of 1D/2D NMR and MS data, and their absolute configurations were established by ECD or specific optical rotation data. Trichaspin features an unprecedented ethylated bisabolane skeleton, while trichaspsides A and B represent the first aminoglycosides of bisabolane and norbisabolane sesquiterpenes, respectively. Nine of the compounds were evaluated for inhibition of five marine-derived pathogenic bacteria and toxicity to a marine zooplankton.
Collapse
Affiliation(s)
- Yin-Ping Song
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Hong Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Zhen-Zhen Shi
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng-Ping Miao
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Sheng-Tao Fang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Nai-Yun Ji
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
27
|
Li SJ, Zhang X, Wang XH, Zhao CQ. Novel natural compounds from endophytic fungi with anticancer activity. Eur J Med Chem 2018; 156:316-343. [PMID: 30015071 DOI: 10.1016/j.ejmech.2018.07.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/02/2018] [Accepted: 07/06/2018] [Indexed: 11/30/2022]
Abstract
Plant endophytes are microorganisms that live in healthy plant tissues in part or all of their life history without causing obvious symptoms of infection in the host plants. Endophytes, a new type of microbial resource that can produce a variety of biological constituents, have great values for research and broad prospects for development. This article reviewed the research and development progress of endophytic fungi with cytotoxic activity between 2014 and 2017, including endophytic fungi sources, microbial taxonomy, compound classification and cytotoxic activity. The results showed that the 109 strains of endophytic fungi belong to 3 phyla, 7 classes and 50 genera. The secondary metabolites mainly contained alkaloids, terpenes, steroids, polyketides, quinones, isocoumarins, esters etc. The results of this study provide references for the development of new antitumor drugs and endophytes resources.
Collapse
Affiliation(s)
- Shou-Jie Li
- Beijing Key Laboratory of Gene Engineering Drugs & Biological Technology, College of Life Science, Beijing Normal University, Beijing, 100875, PR China
| | - Xuan Zhang
- Beijing Key Laboratory of Gene Engineering Drugs & Biological Technology, College of Life Science, Beijing Normal University, Beijing, 100875, PR China
| | - Xiang-Hua Wang
- Beijing Key Laboratory of Gene Engineering Drugs & Biological Technology, College of Life Science, Beijing Normal University, Beijing, 100875, PR China
| | - Chang-Qi Zhao
- Beijing Key Laboratory of Gene Engineering Drugs & Biological Technology, College of Life Science, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
28
|
Vlachou P, Le Goff G, Alonso C, Álvarez PA, Gallard JF, Fokialakis N, Ouazzani J. Innovative Approach to Sustainable Marine Invertebrate Chemistry and a Scale-Up Technology for Open Marine Ecosystems. Mar Drugs 2018; 16:md16050152. [PMID: 29734790 PMCID: PMC5983283 DOI: 10.3390/md16050152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/28/2018] [Accepted: 05/04/2018] [Indexed: 11/16/2022] Open
Abstract
Isolation of marine compounds from living invertebrates represents a major challenge for sustainable and environmentally friendly exploitation of marine bio-resources. To develop innovative technology to trap invertebrate compounds in the open sea, the proof of concept of a system combining external continuous circulation of water with XAD-amberlite solid-phase extraction was validated in an aquarium. In this work, we reported the elicitation of guanidine alkaloid production of Crambe crambe in the presence of Anemonia sulcata, both collected from the Mediterranean Sea. Besides the previously reported crambescidin 359 (1), and crambescidin acid (2), three new compounds were isolated; one carboxylated analog of 1 named crambescidin 401 (3), and two analogs of crambescin B, crambescin B 281 (4) and crambescin B 253 (5). Based on these results, a technology named Somartex® for “Self Operating MARine Trapping Extractor” was patented and built to transfer the concept from closed aquarium systems to open marine ecosystems.
Collapse
Affiliation(s)
- Pinelopi Vlachou
- Department of Pharmacognosy & Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece.
| | - Géraldine Le Goff
- Institut de Chimie des Substances Naturelles ICSN, Centre National de la Recherche Scientifique, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France.
| | | | | | - Jean-François Gallard
- Institut de Chimie des Substances Naturelles ICSN, Centre National de la Recherche Scientifique, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France.
| | - Nikolas Fokialakis
- Department of Pharmacognosy & Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece.
| | - Jamal Ouazzani
- Institut de Chimie des Substances Naturelles ICSN, Centre National de la Recherche Scientifique, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
29
|
|
30
|
Barra L, Dickschat JS. Harzianone Biosynthesis by the Biocontrol Fungus Trichoderma. Chembiochem 2017; 18:2358-2365. [PMID: 28944564 DOI: 10.1002/cbic.201700462] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Indexed: 12/22/2022]
Abstract
Analysis of the volatile terpenes produced by seven fungal strains of the genus Trichoderma by use of a closed-loop stripping apparatus (CLSA) revealed a common production of harzianone, a bioactive, structurally unique diterpenoid consisting of a fused tetracyclic 4,7,5,6-membered ring system. The terpene cyclization mechanism was studied by feeding experiments using selectively 13 C- and 2 H-labeled synthetic mevalonolactone isotopologues, followed by analysis of the incorporation patterns by 13 C NMR spectroscopy and GC/MS. The structure of harzianone was further supported from a 13 C,13 C COSY experiment of the in-vivo-generated fully 13 C-labeled diterpene.
Collapse
Affiliation(s)
- Lena Barra
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - Jeroen S Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| |
Collapse
|
31
|
Isolation of the antibiotic methyl (R,E)-3-(1-hydroxy-4-oxocyclopent-2-en-1-yl)-acrylate EA-2801 from Trichoderma atroviridae. J Antibiot (Tokyo) 2017; 70:1053-1056. [PMID: 28928475 DOI: 10.1038/ja.2017.107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/30/2017] [Accepted: 08/06/2017] [Indexed: 11/09/2022]
Abstract
The endophytic Trichoderma atroviridae UB-LMA was isolated as a symbiont of Taxus baccata and analyzed for its antimicrobial activity. By applying an original approach consisting of solid-state cultivation coupled with solid-phase extraction, a new methyl (R,E)-3-(1-hydroxy-4-oxocyclopent-2-en-1-yl)-acrylate derivative named EA-2801 (1) was isolated together with the previously reported isonitrin A and dermadin methyl ester. The chemical structure of 1 was determined by NMR and MS. Compound 1 showed antimicrobial activity against a panel of Gram-positive and -negative bacteria.
Collapse
|
32
|
Le Goff G, Adelin E, Arcile G, Ouazzani J. Total synthesis of the antibiotic 4-hydroxycyclopent-2-en-1-one acrylate derivative EA-2801. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.04.086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Zhang M, Liu J, Chen R, Zhao J, Xie K, Chen D, Feng K, Dai J. Two Furanharzianones with 4/7/5/6/5 Ring System from Microbial Transformation of Harzianone. Org Lett 2017; 19:1168-1171. [PMID: 28218857 DOI: 10.1021/acs.orglett.7b00204] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Furanharzianones A and B (2 and 3), two new harziane-type diterpenoids with a tetrahydrofuran and unusual 4/7/5/6/5 ring system, were obtained from the microbial transformation of harzianone (1) by a bacterial strain Bacillus sp. IMM-006. The structures, including the stereochemistry, of the two new compounds were elucidated by extensive spectroscopic analysis. The absolute configuration of 2 was unambiguously determined by single-crystal X-ray diffraction. In addition, a plausible bioconversion pathway was proposed.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, ‡Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission, and §Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College , 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Jimei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, ‡Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission, and §Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College , 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Ridao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, ‡Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission, and §Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College , 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Jinlian Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, ‡Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission, and §Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College , 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Kebo Xie
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, ‡Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission, and §Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College , 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Dawei Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, ‡Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission, and §Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College , 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Keping Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, ‡Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission, and §Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College , 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Jungui Dai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, ‡Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission, and §Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College , 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| |
Collapse
|
34
|
Zhang M, Liu JM, Zhao JL, Li N, Chen RD, Xie KB, Zhang WJ, Feng KP, Yan Z, Wang N, Dai JG. Two new diterpenoids from the endophytic fungus Trichoderma sp. Xy24 isolated from mangrove plant Xylocarpus granatum. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2016.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
35
|
Abstract
The widely used biotechnologically important fungi belonging to the genus Trichoderma are rich sources of secondary metabolites. Even though the genomes of several Trichoderma spp. have been published, and data are available on the genes involved in biosynthesis of non-ribosomal peptide synthetases and polyketide synthases, no genome-wide data are available for the terpenoid biosynthesis machinery in these organisms. In the present study, we have identified the genes involved in terpene biosynthesis in the genomes of three Trichoderma spp., viz., T. virens, T. atroviride and T. reesei. While the genes involved in the condensation steps are highly conserved across the three species, these fungi differed in the number and organization of terpene cyclases. T. virens genome harbours eleven terpene cyclases, while T. atroviride harbours seven, and T. reeseisix in their genomes; seven, three and two being part of putative secondary metabolism related gene clusters.
Collapse
Affiliation(s)
- Ravindra Bansal
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Prasun Kumar Mukherjee
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| |
Collapse
|
36
|
Abstract
This review covers the isolation and chemistry of diterpenoids from terrestrial as opposed to marine sources and includes, labdanes, clerodanes, pimaranes, abietanes, kauranes, gibberellins, cembranes and their cyclization products. The literature from January to December, 2014 is reviewed.
Collapse
|
37
|
Mak JYW, Pouwer RH, Williams CM. Naturstoffe mit Anti-Bredt- und Brückenkopf-Doppelbindung. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201400932] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
38
|
Mak JYW, Pouwer RH, Williams CM. Natural products with anti-Bredt and bridgehead double bonds. Angew Chem Int Ed Engl 2014; 53:13664-88. [PMID: 25399486 DOI: 10.1002/anie.201400932] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/25/2014] [Indexed: 11/11/2022]
Abstract
Well over a hundred years ago, Professor Julius Bredt embarked on a career pursuing and critiquing bridged bicyclic systems that contained ring strain induced by the presence of a bridgehead olefin. These endeavors founded what we now know as Bredt's rule (Bredtsche Regel). Physical, theoretical, and synthetic organic chemists have intensely studied this premise, pushing the boundaries of such systems to arrive at a better understood physical phenomenon. Mother nature has also seen fit to construct molecules containing bridgehead double bonds that encompass Bredt's rule. For the first time, this topic is reviewed in a natural product context.
Collapse
Affiliation(s)
- Jeffrey Y W Mak
- Institute for Molecular Bioscience, The University of Queensland, Brisbane (Australia)
| | | | | |
Collapse
|
39
|
Röhrich CR, Jaklitsch WM, Voglmayr H, Iversen A, Vilcinskas A, Nielsen KF, Thrane U, von Döhren H, Brückner H, Degenkolb T. Front line defenders of the ecological niche! Screening the structural diversity of peptaibiotics from saprotrophic and fungicolous Trichoderma/Hypocrea species. FUNGAL DIVERS 2014; 69:117-146. [PMID: 25722662 PMCID: PMC4338523 DOI: 10.1007/s13225-013-0276-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Approximately 950 individual sequences of non-ribosomally biosynthesised peptides are produced by the genus Trichoderma/Hypocrea that belong to a perpetually growing class of mostly linear antibiotic oligopeptides, which are rich in the non-proteinogenic α-aminoisobutyric acid (Aib). Thus, they are comprehensively named peptaibiotics. Notably, peptaibiotics represent ca. 80 % of the total inventory of secondary metabolites currently known from Trichoderma/Hypocrea. Their unique membrane-modifying bioactivity results from amphipathicity and helicity, thus making them ideal candidates in assisting both colonisation and defence of the natural habitats by their fungal producers. Despite this, reports on the in vivo-detection of peptaibiotics have scarcely been published in the past. In order to evaluate the significance of peptaibiotic production for a broader range of potential producers, we screened nine specimens belonging to seven hitherto uninvestigated fungicolous or saprotrophic Trichoderma/Hypocrea species by liquid chromatography coupled to electrospray high resolution mass spectrometry. Sequences of peptaibiotics found were independently confirmed by analysing the peptaibiome of pure agar cultures obtained by single-ascospore isolation from the specimens. Of the nine species examined, five were screened positive for peptaibiotics. A total of 78 peptaibiotics were sequenced, 56 (=72 %) of which are new. Notably, dihydroxyphenylalaninol and O-prenylated tyrosinol, two C-terminal residues, which have not been reported for peptaibiotics before, were found as well as new and recurrent sequences carrying the recently described tyrosinol residue at their C-terminus. The majority of peptaibiotics sequenced are 18- or 19-residue peptaibols. Structural homologies with 'classical representatives' of subfamily 1 (SF1)-peptaibiotics argue for the formation of transmembrane ion channels, which are prone to facilitate the producer capture and defence of its substratum.
Collapse
Affiliation(s)
- Christian R Röhrich
- Bioresources Project Group, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Winchesterstrasse 2, 35394 Giessen, Germany. Present Address: AB SCIEX Germany GmbH, Landwehrstrasse 54, 64293 Darmstadt, Germany
| | - Walter M Jaklitsch
- Department of Systematic and Evolutionary Botany, Faculty Centre of Biodiversity, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Hermann Voglmayr
- Department of Systematic and Evolutionary Botany, Faculty Centre of Biodiversity, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Anita Iversen
- Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark. Present Address: Danish Emergency Management Agency, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Andreas Vilcinskas
- Bioresources Project Group, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Winchesterstrasse 2, 35394 Giessen, Germany; Interdisciplinary Research Centre for BioSystems, Land Use and Nutrition (IFZ), Department of Applied Entomology, Institute of Phytopathology and Applied Zoology (IPAZ), University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Kristian Fog Nielsen
- Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark
| | - Ulf Thrane
- Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark
| | - Hans von Döhren
- Biochemistry and Molecular Biology OE 2, Institute of Chemistry, Technical University of Berlin, Franklinstrasse 29, 10587 Berlin, Germany
| | - Hans Brückner
- Interdisciplinary Research Centre for BioSystems, Land Use and Nutrition (IFZ), Department of Food Sciences, Institute of Nutritional Science, University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Thomas Degenkolb
- Interdisciplinary Research Centre for BioSystems, Land Use and Nutrition (IFZ), Department of Applied Entomology, Institute of Phytopathology and Applied Zoology (IPAZ), University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| |
Collapse
|
40
|
Meknaci R, Lopes P, Servy C, Le Caer JP, Andrieu JP, Hacène H, Ouazzani J. Agar-supported cultivation of Halorubrum sp. SSR, and production of halocin C8 on the scale-up prototype Platotex. Extremophiles 2014; 18:1049-55. [DOI: 10.1007/s00792-014-0682-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 07/24/2014] [Indexed: 11/29/2022]
|
41
|
Ludwig-Müller J, Jahn L, Lippert A, Püschel J, Walter A. Improvement of hairy root cultures and plants by changing biosynthetic pathways leading to pharmaceutical metabolites: strategies and applications. Biotechnol Adv 2014; 32:1168-79. [PMID: 24699436 DOI: 10.1016/j.biotechadv.2014.03.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/17/2014] [Accepted: 03/24/2014] [Indexed: 12/20/2022]
Abstract
A plethora of bioactive plant metabolites has been explored for pharmaceutical, food chemistry and agricultural applications. The chemical synthesis of these structures is often difficult, so plants are favorably used as producers. While whole plants can serve as a source for secondary metabolites and can be also improved by metabolic engineering, more often cell or organ cultures of relevant plant species are of interest. It should be noted that only in few cases the production for commercial application in such cultures has been achieved. Their genetic manipulation is sometimes faster and the production of a specific metabolite is more reliable, because of less environmental influences. In addition, upscaling in bioreactors is nowadays possible for many of these cultures, so some are already used in industry. There are approaches to alter the profile of metabolites not only by using plant genes, but also by using bacterial genes encoding modifying enzymes. Also, strategies to cope with unwanted or even toxic compounds are available. The need for metabolic engineering of plant secondary metabolite pathways is increasing with the rising demand for (novel) compounds with new bioactive properties. Here, we give some examples of recent developments for the metabolic engineering of plants and organ cultures, which can be used in the production of metabolites with interesting properties.
Collapse
Affiliation(s)
- Jutta Ludwig-Müller
- Technische Universität Dresden, Institut für Botanik, 01062 Dresden, Germany.
| | - Linda Jahn
- Technische Universität Dresden, Institut für Botanik, 01062 Dresden, Germany
| | - Annemarie Lippert
- Technische Universität Dresden, Institut für Botanik, 01062 Dresden, Germany
| | - Joachim Püschel
- Technische Universität Dresden, Institut für Botanik, 01062 Dresden, Germany
| | - Antje Walter
- Technische Universität Dresden, Institut für Botanik, 01062 Dresden, Germany
| |
Collapse
|
42
|
|