1
|
Chauhan K, Bhalla P, Bhadoriya K, Varshney VK. Untargeted metabolomic profiling of Prinsepia utilis Royle leaves by Ultra-Performance Liquid Chromatography-Quadrupole-Time of Flight-Mass Spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5075. [PMID: 38989744 DOI: 10.1002/jms.5075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/29/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
Prinsepia utilis Royle, native to the Himalayas, is esteemed in Chinese and Indian folk medicine for its diverse medicinal benefits, targeting arthritis, pain relief, bone disorders, and joint discomfort. This study examined the 25% aqueous methanol extract of P. utilis leaves using UPLC-Q-TOF-MS/MS, identifying 78 metabolites, 76 of which were reported for the first time in P. utilis. These included 64 phenolics represented by 56 flavonoids, 5 phenolic acids, 3 phenolic glycosides, 4 terpenoids, 2 lignan glycosides, and 8 other compounds, expanding the knowledge of its chemical composition. These findings lay a foundation for further research, providing insights into potential bioactive compounds and opening avenues for applications in natural product drug discovery, traditional medicine, and nutraceutical development, leveraging the plant's established traditional uses.
Collapse
Affiliation(s)
- Kiran Chauhan
- Chemistry and Bioprospecting Division, ICFRE-Forest Research Institute, Dehradun, 248006, India
| | - Piyush Bhalla
- Chemistry and Bioprospecting Division, ICFRE-Forest Research Institute, Dehradun, 248006, India
| | - Khushaboo Bhadoriya
- Chemistry and Bioprospecting Division, ICFRE-Forest Research Institute, Dehradun, 248006, India
| | - Vinay Kumar Varshney
- Chemistry and Bioprospecting Division, ICFRE-Forest Research Institute, Dehradun, 248006, India
| |
Collapse
|
2
|
Chauhan K, Bhalla P, Chitme HR, Varshney VK. Exploring the therapeutic potential of Prinsepia utilis Royle seed oil: A comprehensive study on chemical composition, physicochemical properties, anti-inflammatory, and analgesic activities. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117312. [PMID: 37844743 DOI: 10.1016/j.jep.2023.117312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Prinsepiautilis (PU) Royle, native to the Himalayan region, is a deciduous thorny shrub with numerous traditional uses of its roots, leaves and seeds for treatment of conditions such as rheumatic pain, joint pain, arthritis, and inflammation. AIM OF THE STUDY Keeping in mind the growing demand of products of natural origin as alternate medicine, the present study was undertaken to scientifically validate for the first time the traditional claims of healing pain and inflammation by evaluating the fatty oil isolated from the seeds using established in vitro and in vivo models. MATERIALS AND METHODS PU Seeds were Soxhlet extracted using n-hexane and fatty oil was isolated. Chemical composition of the oil was established with the aid of Gas Chromatography-Flame Ionization Detection (GC-FID) and Gas Chromatography-Mass Spectrometry (GC-MS). The oil was then subjected to in vitro anti-inflammatory activity by following the established protocols of trypsin inhibitory and bovine serum albumin denaturation assays. The acute toxicity of the oil was also studied using OECD guidelines 423. The anti-inflammatory property of the oil was further evaluated using carrageenan-induced and formalin-induced edema in the rat paw. Moreover, hot plate latency and tail immersion assay were employed to evaluate analgesic activity of the oil. To establish the quality of the oil, various physicochemical properties were also studied. RESULTS GC-FID and GC-MS analysis of the oil revealed the presence of linoleic acid (59.06 ± 0.00%), oleic acid (28.11 ± 0.01%), palmitic acid (9.51 ± 0.01%) and stearic acid (3.32 ± 0.01%). In vitro trypsin inhibitory and bovine serum albumin denaturation assay revealed dose-dependent notable activity of the oil with IC50 value of 63.57 μg/mL and 518.14 μg/mL, respectively. The physico-chemical characterization demonstrated that the oil possesses a low acidity and a high oxidative stability index. The oil was found to be non-toxic and displayed effective anti-inflammatory activities with significant inhibition till 4 h in carrageenan-induced and formalin-induced rat paw edema at maximum tested dose of 200 mg/kg b.w. The oil also exhibited significant results in hot plate latency and tail immersion assay with positive effects showing up to 4 h after dose administration. CONCLUSION These findings, besides supporting the traditional claims, suggest that P. utilis seed oil has potential therapeutic applications as a natural anti-inflammatory and analgesic agent. Further studies are warranted to explore its mechanisms of action and potential use in pharmaceutical and nutraceutical industries.
Collapse
Affiliation(s)
- Kiran Chauhan
- Chemistry and Bio-prospecting Division, Forest Research Institute, Dehradun, India.
| | - Piyush Bhalla
- Chemistry and Bio-prospecting Division, Forest Research Institute, Dehradun, India.
| | - H R Chitme
- Faculty of Pharmacy, DIT University, Dehradun, India.
| | - V K Varshney
- Chemistry and Bio-prospecting Division, Forest Research Institute, Dehradun, India.
| |
Collapse
|
3
|
Antibacterial and Antioxidant Activities of Prinsepia utilis Royle Leaf and Seed Extracts. J Trop Med 2022; 2022:3898939. [PMID: 36299663 PMCID: PMC9592217 DOI: 10.1155/2022/3898939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/27/2022] [Accepted: 10/07/2022] [Indexed: 11/22/2022] Open
Abstract
Our study was designed to screen the antibacterial potency of Princepia utilis leaf and seed extract and to measure their antioxidant effects, total phenol content, total flavonoid content, and total carbohydrate content. Collected samples were extracted by cold maceration. Hexane, ethyl acetate, methanol, and distilled water were used as extraction solvents. In the disc diffusion method, P. utilis ethyl acetate leaf extract was most prominent against Staphylococcus epidermis with a zone of inhibition (ZOI) of 13.83 mm. Similarly, methanolic leaf extract was most prominent against Staphylococcus aureus (ZOI-12.33 mm). Furthermore, the methanolic seed extract was most sensitive against Klebsiella pneumoniaee (ZOI-11.66 mm) Escherichia coli (ZOI-9.0 mm). The lowest minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 0.5 mg/mL and 0.6 mg/mL, respectively, were shown by ethyl acetate leaf extract against S. epidermis. Similarly, the highest values of MIC and MBC, i.e., 20.8 mg/mL and 33.3 mg/mL, respectively, were shown by hexane leaf extract against S. epidermidis. On the other hand, evaluation of antioxidant capacity revealed that ethyl acetate leaf extract showed the maximum antioxidant effect (IC50: 66.69 μg/mL). The total flavonoid contents of different extracts were measured in the range of 37 ± 0.74 μg QE/mg dry extract weight (methanolic seed extract) to 321.84 ± 4.82 μg QE/mg dry extract weight (hexane seed extract). Likewise, the total polyphenol content ranged from the hexane leaf extract (17.33 ± 0.642 μg GAE/mg dry extract weight) to ethyl acetate leaf extract (62.56 ± 1.284 μg GAE/mg dry extract weight). We found a variation in total carbohydrate content in the range of 23.55 ± 1.125 μg glucose/mg dry extract weight (hexane leaf extract) to 96.63 ± 2.253 μg glucose/mg dry extract weight (aqueous leaf extract). Overall, this study revealed that leaf and seed extract of P. utilis exhibited noteworthy antibacterial effects against diverse pathogenic microorganisms.
Collapse
|
4
|
Zheng H, Liu Y, Cai J, Zhang M, Wen Y, Guo L. The exploration of anti-Vibrio parahaemolyticus substances from Phellodendri Chinensis Cortex as a preservative for shrimp storage. Front Microbiol 2022; 13:1004262. [PMID: 36177459 PMCID: PMC9514719 DOI: 10.3389/fmicb.2022.1004262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
This study aimed to optimize the ultrasonic-assisted extraction of the anti-Vibrio parahaemolyticus substances of Phellodendri Chinensis Cortex (ASPC), identify their active substances, and investigate their application in shrimp storage. The ultrasonic-assisted extraction conditions of ASPC were optimized through a single-factor experiment combined with response surface methodology. The optimal parameters were the ethanol concentration of 81%, the ultrasonic power of 500 W, the temperature of 80°C, the extraction time of 23 min, and the liquid/solid ratio 25 ml/g. The antibacterial zone diameter of the obtained extract determined by agar well diffusion method was 15.56 ± 0.22 mm, which was not significantly different from the predicted value (15.92 mm). Berberine was identified as one of the main chemical components of ASPC through high-performance liquid chromatography combined with standard control. The minimum inhibitory concentrations of ASPC and berberine determined by the tube dilution method were 0.25 and 0.03 mg/ml, respectively. The application of ASPC in shrimp storage showed that it could effectively inhibit the proliferation of V. parahaemolyticus on shrimps. This report offers good prospects for the use of Phellodendri Chinensis Cortex as a potential preservative against V. parahaemolyticus in aquatic products.
Collapse
Affiliation(s)
- Huifang Zheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Yang Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Jing Cai
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Miao Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Ying Wen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Lei Guo
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
- *Correspondence: Lei Guo,
| |
Collapse
|
5
|
Scotti C, Barlow JW. Natural Products Containing the Nitrile Functional Group and Their Biological Activities. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221099973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The importance of nitriles as a key class of chemicals with applications across the sciences is widely appreciated. The natural world is an underappreciated source of chemically diverse nitriles. With this in mind, this review describes novel nitrile-containing molecules isolated from natural sources from 1998 to 2021, as well as a discussion of the biological activity of these compounds. This study gathers 192 molecules from varied origins across the plant, animal, and microbial worlds. Their biological activity is extremely diverse, with many potential medicinal applications.
Collapse
Affiliation(s)
- Camille Scotti
- Ecole Nationale Supérieure de Chimie de Mulhouse, Université de Haute Alsace, Mulhouse, France
- RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - James W. Barlow
- RCSI University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
6
|
Shi QQ, Lu SY, Peng XR, Zhou L, Qiu MH. Hydroxynitrile Glucosides: Bioactive Constituent Recovery from the Oil Residue of Prinsepia utilis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2438-2443. [PMID: 33591736 DOI: 10.1021/acs.jafc.0c07514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The seed oil of Prinsepia utilis is extensively used as an edible oil by the nationalities of Naxi, Tibetan, and Mosuo in China, which is particularly good for beauty care and has a health protection function. A large amount of industrial waste is thrown away during the production process of seed oil. Therefore, to recover bioactive compounds from the oil residue of P. utilis is environmentally friendly and economically important. For this purpose, the chemical constituents of the P. utilis oil residue were investigated in our research, and five new compounds, prinsepicyanosides F-I (1-4) and prinamoside A (5), together with 16 known compounds (6-21) were isolated. The structures of the new compounds (1-5) were unambiguously confirmed by extensive spectroscopic techniques. Preliminary in vitro pharmacological studies showed that the hydroxynitrile glucosides (3, 9, and 10) exhibited weak α-glucosidase inhibitory activity. To a certain extent, our research provides some evidence for the pharmacological function of γ-hydroxynitrile glucosides and proposes new ideas for recycling of the oil residue of P. utilis.
Collapse
Affiliation(s)
- Qiang-Qiang Shi
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
| | - Shuang-Yang Lu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
| | - Xing-Rong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
| | - Lin Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
| |
Collapse
|
7
|
Phenolic Composition, Antioxidant Properties, and Inhibition toward Digestive Enzymes with Molecular Docking Analysis of Different Fractions from Prinsepia utilis Royle Fruits. Molecules 2018; 23:molecules23123373. [PMID: 30572648 PMCID: PMC6321301 DOI: 10.3390/molecules23123373] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 12/15/2022] Open
Abstract
The present study investigated the phenolic profiles and antioxidant properties of different fractions from Prinsepia utilis Royle fruits using molecular docking analysis to delineate their inhibition toward digestive enzymes. A total of 20 phenolics was identified and quantified. Rutin, quercetin-3-O-glucoside, and isorhamnetin-3-O-rutinoside were the major phenolic compounds in the total phenolic fraction and flavonoid-rich fraction. The anthocyanin-rich fraction mainly contained cyanidin-3-O-glucoside and cyanidin-3-O-rutinoside. All of the fractions exhibited strong radical scavenging activities and good inhibition on cellular reactive oxygen species (ROS) generation in H2O2-induced HepG2 cells, as evaluated by DPPH and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) assays. Moreover, the powerful inhibitory effects of those fractions against pancreatic lipase and α-glucosidase were observed. The major phenolic compounds that were found in the three fractions also showed good digestive enzyme inhibitory activities in a dose-dependent manner. Molecular docking analysis revealed the underlying inhibition mechanisms of those phenolic standards against digestive enzymes, and the theoretical analysis data were consistent with the experimental results.
Collapse
|
8
|
Novel highly oxygenated and B-ring-seco-ent-diterpene glucosides from the seeds of Prinsepia utilis. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.10.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|