1
|
Kolodziejczyk-Czepas J. Clovamide and Its Derivatives-Bioactive Components of Theobroma cacao and Other Plants in the Context of Human Health. Foods 2024; 13:1118. [PMID: 38611422 PMCID: PMC11011365 DOI: 10.3390/foods13071118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Clovamide (N-caffeoyl-L-3,4-dihydroxyphenylalanine, N-caffeoyldopamine, N-caffeoyl-L-DOPA) is a derivative of caffeic acid, belonging to phenolamides (hydroxycinnamic acid amides). Despite a growing interest in the biological activity of natural polyphenolic substances, studies on the properties of clovamide and related compounds, their significance as bioactive components of the diet, as well as their effects on human health are a relatively new research trend. On the other hand, in vitro and in vivo evidence indicates the considerable potential of these substances in the context of maintaining human health or using them as pharmacophores. The name "clovamide" directly derives from red clover (Trifolium pratense L.), being the first identified source of this compound. In the human diet, clovamides are mainly present in chocolate and other cocoa-containing products. Furthermore, their occurrence in some medicinal plants has also been confirmed. The literature reports deal with the antioxidant, anti-inflammatory, neuroprotective, antiplatelet/antithrombotic and anticancer properties of clovamide-type compounds. This narrative review summarizes the available data on the biological activity of clovamides and their potential health-supporting properties, including prospects for the use of these compounds for therapeutic purposes.
Collapse
Affiliation(s)
- Joanna Kolodziejczyk-Czepas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
2
|
Atanassova M, Martorell M, Sharopov F, Atanassov L, Kumar P, Sharifi-Rad J, Tejada-Gavela S, Iriti M, Pezzani R, Varoni EM. Cocoa as immunomodulatory agent: an update. Nat Prod Res 2023:1-12. [PMID: 37909175 DOI: 10.1080/14786419.2023.2272025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/03/2023] [Indexed: 11/02/2023]
Abstract
Cocoa is rich in polyphenols, mainly flavonoids, which correlate with several health benefits mediated by their antioxidant, anti-inflammatory and immunomodulatory properties. Cocoa and chocolate consumption have been reported to impact the regulation of the immune system, both in preclinical studies and in human trials. The mechanisms for immunomodulation can involve different effects of cocoa polyphenols on the immune system, acting as anti-inflammatory, antioxidant and anti-allergic agents, as well as the direct influence of cocoa on innate and acquired immunity, with cytokines production and activation of both lymphocyte-dependent and -independent pathways. Cocoa intake has been also correlated to changes in gut microbiota ecology and composition, also affecting the intestinal immune system. This review summarises the updates of the last two decades on cocoa as immunomodulatory agent and explores the health-related benefits of cocoa and chocolate intake.
Collapse
Affiliation(s)
- Maria Atanassova
- Scientific Consulting, Chemical Engineering, UCTM, Sofia, Bulgaria
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, Unidad de Desarrollo Tecnológico, UDT, University of Concepción, Concepción, Chile
| | - Farukh Sharopov
- Research Institution "Chinese-Tajik Innovation Center for Natural Products", Academy of Sciences of the Republic of Tajikistan, Dushanbe, Tajikistan
| | - Lyubomir Atanassov
- Faculty of International Relations, St. Petersburg State University, St. Petersburg, Russia
| | - Pradeep Kumar
- Department of Botany, University of Lucknow, Lucknow, India
| | | | - Silvia Tejada-Gavela
- Laboratory of Neurophysiology, Department of Biology, University of the Balearic Islands (UIB), and Health Research Institute of the Balearic Islands (IdISBa), IdISBa, Palma, España
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Marcello Iriti
- Department of Biomedical, Surgical and Dental Sciences, Milan State University, Milan, Italy
| | - Raffaele Pezzani
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base, Padova, Italy
- Phytotherapy Lab, Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Elena Maria Varoni
- Department of Biomedical, Surgical and Dental Sciences, Milan State University, Milan, Italy
| |
Collapse
|
3
|
Maciejewska-Turska M, Zgórka G. In-depth phytochemical and biological studies on potential AChE inhibitors in red and zigzag clover dry extracts using reversed-phase liquid chromatography (RP-LC) coupled with photodiode array (PDA) and electron spray ionization-quadrupole/time of flight-mass spectrometric (ESI-QToF/MS-MS) detection and thin-layer chromatography-bioautography. Food Chem 2021; 375:131846. [PMID: 34920306 DOI: 10.1016/j.foodchem.2021.131846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 01/21/2023]
Abstract
In the study, Trifolium medium L. and T. pratense L. were used to obtain lyophilisates which were named as TML and TPL, respectively. The former clover taxon represents a little explored species, while the latter one is often found in dietary supplements and functional foods due to the content of isoflavones that alleviate various menopausal symptoms. Detailed phytochemical profiles of both lyophilisates were examined and compared using coupled chromatographic (RP-LC) and spectroscopic PDA/ESI-QToF/MS-MS methods. A total of 54 and 55 compounds were identified in TML and TPL, respectively. Close chemotaxonomic similarities were confirmed for both clover taxa examined, especially in terms of the most abundant isoflavones and hydroxycinnamates. For the first time, neurotropic polyphenols (AChE inhibitors) were identified in clover extracts using TLC-bioautography. In this group, caffeoylmalic acid exhibited significant AChE inhibitory effect confirming the potential of TPL and TML to support physiological functions of the endocrine and nervous systems.
Collapse
Affiliation(s)
- Magdalena Maciejewska-Turska
- Medical University of Lublin, Department of Pharmacognosy with the Medicinal Plant Garden, 1 Chodźki Street, 20-093 Lublin, Poland.
| | - Grażyna Zgórka
- Medical University of Lublin, Department of Pharmacognosy with the Medicinal Plant Garden, 1 Chodźki Street, 20-093 Lublin, Poland
| |
Collapse
|
4
|
Sullivan ML, Knollenberg BJ. Red Clover HDT, a BAHD Hydroxycinnamoyl-Coenzyme A:L-3,4-Dihydroxyphenylalanine (L-DOPA) Hydroxycinnamoyl Transferase That Synthesizes Clovamide and Other N-Hydroxycinnamoyl-Aromatic Amino Acid Amides. FRONTIERS IN PLANT SCIENCE 2021; 12:727461. [PMID: 34868112 PMCID: PMC8641662 DOI: 10.3389/fpls.2021.727461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/13/2021] [Indexed: 05/16/2023]
Abstract
Red clover leaves accumulate high levels (up to 1 to 2% of dry matter) of two caffeic acid derivatives: phaselic acid (2-O-caffeoyl-L-malate) and clovamide [N-caffeoyl-L-3,4-dihydroxyphenylalanine (L-DOPA)]. These likely play roles in protecting the plant from biotic and abiotic stresses but can also help preserve protein during harvest and storage of the forage via oxidation by an endogenous polyphenol oxidase. We previously identified and characterized, a hydroxycinnamoyl-coenzyme A (CoA):malate hydroxycinnamoyl transferase (HMT) from red clover. Here, we identified a hydroxycinnamoyl-CoA:L-DOPA hydroxycinnamoyl transferase (HDT) activity in unexpanded red clover leaves. Silencing of the previously cloned HMT gene reduced both HMT and HDT activities in red clover, even though the HMT enzyme lacks HDT activity. A combination of PCR with degenerate primers based on BAHD hydroxycinnamoyl-CoA transferase sequences and 5' and 3' rapid amplification of cDNA ends was used to clone two nearly identical cDNAs from red clover. When expressed in Escherichia coli, the encoded proteins were capable of transferring hydroxycinnamic acids (p-coumaric, caffeic, or ferulic) from the corresponding CoA thioesters to the aromatic amino acids L-Phe, L-Tyr, L-DOPA, or L-Trp. Kinetic parameters for these substrates were determined. Stable expression of HDT in transgenic alfalfa resulted in foliar accumulation of p-coumaroyl- and feruloyl-L-Tyr that are not normally present in alfalfa, but not derivatives containing caffeoyl or L-DOPA moieties. Transient expression of HDT in Nicotiana benthamiana resulted in the production of caffeoyl-L-Tyr, but not clovamide. Coexpression of HDT with a tyrosine hydroxylase resulted in clovamide accumulation, indicating the host species' pool of available amino acid (and hydroxycinnamoyl-CoA) substrates likely plays a major role in determining HDT product accumulation in planta. Finally, that HDT and HMT proteins share a high degree of identity (72%), but differ substantially in substrate specificity, is promising for further investigation of structure-function relationships of this class of enzymes, which could allow the rational design of BAHD enzymes with specific and desirable activities.
Collapse
Affiliation(s)
| | - Benjamin J. Knollenberg
- Department of Plant Sciences, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
5
|
Kolodziejczyk-Czepas J, Kozachok S, Pecio Ł, Marchyshyn S, Oleszek W. Determination of phenolic profiles of Herniaria polygama and Herniaria incana fractions and their in vitro antioxidant and anti-inflammatory effects. PHYTOCHEMISTRY 2021; 190:112861. [PMID: 34325241 DOI: 10.1016/j.phytochem.2021.112861] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The study is based on phytochemical profiling and in vitro evaluation of biological effects of phenolic acid derivatives-rich Herniaria fractions, isolated from two rupturewort (Herniaria L.) species, i.e. Herniaria incana Lam. (syn. H. besseri Fisch. ex Hornem) and H. polygama J. Gay (syn. H. odorata). For the first time, the composition of phenolic compounds of these species was extensively evaluated by both LC-HR-QTOF-ESI-MS and Nuclear Magnetic Resonance spectroscopy (NMR). LC-MS analyses of H. polygama revealed 72 tentatively identified compounds, while H. incana - 63. Only 8% of the metabolites reported in this work have been previously described for Herniaria spp. Most of the identified specialized metabolites were cinnamic and benzoic acid derivatives. Phenolic fraction of H. incana herb contained flavonoids as well. A multi-step chromatographic separation of phenolic fractions from H. polygama yielded three known cinnamic and one benzoic acid derivates, and from H. incana - 4 known flavonoids and one previously undescribed, i.e. rhamnocitrin-3-O-[3-hydroxy-3-methylglutaryl-(1 → 6'')]-[α-rhamnopyranosyl-(1 → 2'')]-β-glucopyranoside. Antioxidant properties of the examined fractions (1-50 μg/ml) were assessed in human blood plasma under the conditions of peroxynitrite-induced oxidative stress. Measurements of well-known biomarkers such as 3-nitrotyrosine, protein thiol groups, thiobarbituric acid-reactive substances and the ferric reducing ability of blood plasma revealed the protective effect of Herniaria fractions against oxidative damage to blood plasma components. Furthermore, the examined fractions effectively ameliorated the inflammatory response of the concanavalin A-stimulated human peripheral blood mononuclear cells (PBMCs). Additionally, cellular safety of the fractions was confirmed in PBMCs.
Collapse
Affiliation(s)
- Joanna Kolodziejczyk-Czepas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Solomiia Kozachok
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100, Puławy, Poland; Department of Pharmacognosy with Medical Botany, I Horbachevsky Ternopil National Medical University, Maidan Voli 1, 46001, Ternopil, Ukraine.
| | - Łukasz Pecio
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100, Puławy, Poland
| | - Svitlana Marchyshyn
- Department of Pharmacognosy with Medical Botany, I Horbachevsky Ternopil National Medical University, Maidan Voli 1, 46001, Ternopil, Ukraine
| | - Wiesław Oleszek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100, Puławy, Poland
| |
Collapse
|
6
|
Madala NE, Kabanda MM. LC-MS based validation and DFT investigation on the antioxidant properties of clovamide: •OH and •OOH scavenging and Cu(II) chelation mechanisms. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
7
|
Pulmonaria obscura and Pulmonaria officinalis Extracts as Mitigators of Peroxynitrite-Induced Oxidative Stress and Cyclooxygenase-2 Inhibitors-In Vitro and In Silico Studies. Molecules 2021; 26:molecules26030631. [PMID: 33530389 PMCID: PMC7865227 DOI: 10.3390/molecules26030631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 01/17/2023] Open
Abstract
The Pulmonaria species (lungwort) are edible plants and traditional remedies for different disorders of the respiratory system. Our work covers a comparative study on biological actions in human blood plasma and cyclooxygenase-2 (COX-2) -inhibitory properties of plant extracts (i.e., phenolic-rich fractions) originated from aerial parts of P. obscura Dumort. and P. officinalis L. Phytochemical profiling demonstrated the abundance of phenolic acids and their derivatives (over 80% of the isolated fractions). Danshensu conjugates with caffeic acid, i.e., rosmarinic, lithospermic, salvianolic, monardic, shimobashiric and yunnaneic acids were identified as predominant components. The examined extracts (1–100 µg/mL) partly prevented harmful effects of the peroxynitrite-induced oxidative stress in blood plasma (decreased oxidative damage to blood plasma components and improved its non-enzymatic antioxidant capacity). The cellular safety of the extracts was confirmed in experimental models of blood platelets and peripheral blood mononuclear cells. COX-2 inhibitor screening evidently suggested a stronger activity of P. officinalis (IC50 of 13.28 and 7.24 µg/mL, in reaction with synthetic chromogen and physiological substrate (arachidonic acid), respectively). In silico studies on interactions of main components of the Pulmonaria extracts with the COX-2 demonstrated the abilities of ten compounds to bind with the enzyme, including rosmarinic acid, menisdaurin, globoidnan A and salvianolic acid H.
Collapse
|
8
|
Ye N, Belli S, Caruso F, Roy G, Rossi M. Antioxidant studies by hydrodynamic voltammetry and DFT, quantitative analyses by HPLC-DAD of clovamide, a natural phenolic compound found in Theobroma Cacao L. beans. Food Chem 2020; 341:128260. [PMID: 33039740 DOI: 10.1016/j.foodchem.2020.128260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/20/2020] [Accepted: 09/27/2020] [Indexed: 11/26/2022]
Abstract
Clovamide (trans-clovamide, (2S)-3-(3,4-dihydroxyphenyl)-2-[[(E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]amino]propanoic acid) is a naturally occurring caffeoyl conjugate and a potent antioxidant found in the phenolic fraction of Theobroma Cacao L. beans. This work quantified clovamide content in single-origin cocoa beans at different production stages (raw, roasted, and winnowed side and end products) by high-performance liquid chromatography with diode array detector (HPLC-DAD). We analyzed the antioxidant activities of clovamide and these extracts by measuring their superoxide radical scavenging capabilities in a Rotating Ring-Disk Electrode (RRDE) electrochemical system against in-situ generated superoxide radical. Our studies concluded a positive correlation between clovamide concentration and the overall antioxidant activities of beans, with the roasting step showing a reduction effect on both. The subsequent refining steps recover the clovamide concentration. Antioxidant studies on clovamide alone by RRDE and density functional theory (DFT) studies led to the conclusion that it is a powerful oxygen radical scavenger, partially contributed by its molecular catechol moieties.
Collapse
Affiliation(s)
- Naike Ye
- Department of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA.
| | - Stuart Belli
- Department of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA.
| | - Francesco Caruso
- Department of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA.
| | - Glenn Roy
- Department of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA.
| | - Miriam Rossi
- Department of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA.
| |
Collapse
|
9
|
Knollenberg BJ, Li GX, Lambert JD, Maximova SN, Guiltinan MJ. Clovamide, a Hydroxycinnamic Acid Amide, Is a Resistance Factor Against Phytophthora spp. in Theobroma cacao. FRONTIERS IN PLANT SCIENCE 2020; 11:617520. [PMID: 33424909 PMCID: PMC7786005 DOI: 10.3389/fpls.2020.617520] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/04/2020] [Indexed: 05/13/2023]
Abstract
The hydroxycinnamic acid amides (HCAAs) are a diverse group of plant-specialized phenylpropanoid metabolites distributed widely in the plant kingdom and are known to be involved in tolerance to abiotic and biotic stress. The HCAA clovamide is reported in a small number of distantly related species. To explore the contribution of specialized metabolites to disease resistance in cacao (Theobroma cacao L., chocolate tree), we performed untargeted metabolomics using liquid chromatography - tandem mass spectrometry (LC-MS/MS) and compared the basal metabolite profiles in leaves of two cacao genotypes with contrasting levels of susceptibility to Phytophthora spp. Leaves of the tolerant genotype 'Scavina 6' ('Sca6') were found to accumulate dramatically higher levels of clovamide and several other HCAAs compared to the susceptible 'Imperial College Selection 1' ('ICS1'). Clovamide was the most abundant metabolite in 'Sca6' leaf extracts based on MS signal, and was up to 58-fold higher in 'Sca6' than in 'ICS1'. In vitro assays demonstrated that clovamide inhibits growth of three pathogens of cacao in the genus Phytophthora, is a substrate for cacao polyphenol oxidase, and is a contributor to enzymatic browning. Furthermore, clovamide inhibited proteinase and pectinase in vitro, activities associated with defense in plant-pathogen interactions. Fruit epidermal peels from both genotypes contained substantial amounts of clovamide, but two sulfated HCAAs were present at high abundance exclusively in 'Sca6' suggesting a potential functional role of these compounds. The potential to breed cacao with increased HCAAs for improved agricultural performance is discussed.
Collapse
Affiliation(s)
- Benjamin J. Knollenberg
- Plant Biology PhD Program ‐ Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
- Department of Plant Sciences, Pennsylvania State University, University Park, PA, United States
| | - Guo-Xing Li
- Department of Chemistry, Pennsylvania State University, University Park, PA, United States
| | - Joshua D. Lambert
- Department of Food Science, Pennsylvania State University, University Park, PA, United States
| | - Siela N. Maximova
- Department of Plant Sciences, Pennsylvania State University, University Park, PA, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Mark J. Guiltinan
- Department of Plant Sciences, Pennsylvania State University, University Park, PA, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
- *Correspondence: Mark J. Guiltinan,
| |
Collapse
|
10
|
Burlec AF, Pecio Ł, Mircea C, Cioancă O, Corciovă A, Nicolescu A, Oleszek W, Hăncianu M. Chemical Profile and Antioxidant Activity of Zinnia elegans Jacq. Fractions. Molecules 2019; 24:E2934. [PMID: 31412649 PMCID: PMC6720917 DOI: 10.3390/molecules24162934] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 12/19/2022] Open
Abstract
Zinnia elegans (syn. Zinnia violacea) is a common ornamental plant of the Asteraceae family, widely cultivated for the impressive range of flower colors and persistent bloom. Given its uncomplicated cultivation and high adaptability to harsh landscape conditions, we investigated the potential use of Z. elegans as a source of valuable secondary metabolites. Preliminary classification of compounds found in a methanolic extract obtained from inflorescences of Z. elegans cv. Caroussel was accomplished using HR LC-MS techniques. The extract was then subjected to solid-phase extraction and separation using Sephadex LH-20 column chromatography, which resulted in several fractions further investigated for their antioxidant properties through lipoxygenase inhibition and metal chelating activity assays. Moreover, following additional purification procedures, structures of some active ingredients were established by NMR spectroscopy. The investigated fractions contained polyphenolic compounds such as chlorogenic acids and apigenin, kaempferol, and quercetin glycosides. Antioxidant assays showed that certain fractions exhibit moderate 15-LOX inhibition (Fr 2, IC50 = 18.98 μg/mL) and metal chelation (e.g., Fr 1-2, EC50 = 0.714-1.037 mg/mL) activities as compared to positive controls (20.25 μg/mL for kaempferol and 0.068 mg/mL for EDTA, respectively). For Fr 2, the 15-LOX inhibition activity seems to be related to the abundance of kaempferol glycosides. The NMR analyses revealed the presence of a kaempferol 3-O-glycoside, and a guanidine alkaloid previously not described in this species.
Collapse
Affiliation(s)
- Ana Flavia Burlec
- Department of Drug Analysis, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Łukasz Pecio
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation-State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Cornelia Mircea
- Department of Pharmaceutical Biochemistry and Clinical Laboratory, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania.
| | - Oana Cioancă
- Department of Pharmacognosy, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Andreia Corciovă
- Department of Drug Analysis, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania.
| | - Alina Nicolescu
- Center of Organic Chemistry "C.D. Nenitescu", Romanian Academy, Spl. Independentei 202B, 060023 Bucharest, Romania
| | - Wiesław Oleszek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation-State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Monica Hăncianu
- Department of Pharmacognosy, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| |
Collapse
|
11
|
Bouchez P, Teixeira Benites V, Baidoo EEK, Mortimer JC, Sullivan ML, Scheller HV, Eudes A. Production of clovamide and its analogues in Saccharomyces cerevisiae and Lactococcus lactis. Lett Appl Microbiol 2019; 69:181-189. [PMID: 31220356 DOI: 10.1111/lam.13190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/03/2019] [Accepted: 06/10/2019] [Indexed: 12/30/2022]
Abstract
Clovamide and its analogues are N-hydroxycinnamoyl-L-amino acids (HAA) that exhibit antioxidant activities. For environmental and economic reasons, biological synthesis of these plant-derived metabolites has garnered interest. In this study, we exploited HDT1, a BAHD acyltransferase recently isolated from red clover, for the production of clovamide and derivatives in S. cerevisiae and L. lactis. HDT1 catalyses the transfer of hydroxycinnamoyl-coenzyme A (CoA) onto aromatic amino acids. Therefore, by heterologously co-expressing HDT1 with 4-coumarate:CoA ligase (4CL), we succeeded in the biological production of clovamide and more than 20 other HAA, including halogenated ones, upon feeding the engineered micro-organisms with various combinations of cinnamates and amino acids. To the best of our knowledge, this is the first report on the biological synthesis of HAA and, more generally, on the synthesis of plant-derived antioxidant phenolic compounds in L. lactis. The production of these health beneficial metabolites in Generally Recognized As Safe (GRAS) micro-organisms such as S. cerevisiae and L. lactis provides new options for their delivery as therapeutics. SIGNIFICANCE AND IMPACT OF THE STUDY: N-hydroxycinnamoyl-L-amino acids such as clovamide are bioactive plant-derived phenolic compounds with health beneficial effects. Relying on chemical synthesis or direct extraction from plant sources for the supply of these valuable molecules poses challenges to environmental sustainability. As an alternative route, this work demonstrates the potential for biological synthesis of N-hydroxycinnamoyl-L-amino acids using engineered microbial hosts such as Saccharomyces cerevisiae and Lactococcus lactis. Besides being more eco-friendly, this approach should also provide more structurally diverse compounds and offer new methods for their delivery to the human body.
Collapse
Affiliation(s)
- P Bouchez
- Joint BioEnergy Institute, Emeryville, CA, USA.,École Polytechnique Universitaire de l'Université Clermont-Auvergne, Aubière, France
| | - V Teixeira Benites
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - E E K Baidoo
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - J C Mortimer
- Joint BioEnergy Institute, Emeryville, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - M L Sullivan
- US Department of Agriculture, Agricultural Research Service, US Dairy Forage Research Center, Madison, WI, USA
| | - H V Scheller
- Joint BioEnergy Institute, Emeryville, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - A Eudes
- Joint BioEnergy Institute, Emeryville, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
12
|
Kolodziejczyk-Czepas J, Sieradzka M, Moniuszko-Szajwaj B, Nowak P, Oleszek W, Stochmal A. Phenolic fractions from nine Trifolium species modulate the coagulant properties of blood plasma in vitro without cytotoxicity towards blood cells. ACTA ACUST UNITED AC 2018; 70:413-425. [PMID: 29341135 DOI: 10.1111/jphp.12872] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/25/2017] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The study covers an evaluation of the influence of extracts (1-50 μg/ml), isolated from aerial parts of nine Trifolium L. species (i.e. T. alexandrinum, T. fragiferum, T. hybridum, T. incarnatum, T. pallidum, T. pratense, T. resupinatum var. majus, T. resupinatum var. resupinatum and T. scabrum) on haemostatic properties of blood plasma. METHODS The clot formation and fibrinolysis assay (CFF), blood clotting times, the extrinsic and intrinsic coagulation pathway-dependent polymerization of plasma fibrin were measured. The effects of plant extracts on amidolytic activity of thrombin were also evaluated and compared with argatroban, an antithrombotic drug. Cytotoxicity was assessed in a model of blood platelets and as the viability of peripheral blood mononuclear cells. KEY FINDINGS While no changes in blood clotting times or fibrinolytic properties of blood plasma were found, some fractions impaired the blood plasma coagulation induced by the intrinsic coagulation pathway. Reduction in the maximal velocity of fibrin polymerization was also observed in the clot formation and fibrinolysis assay. No cytotoxicity of Trifolium extracts towards the investigated cells was recorded. CONCLUSIONS The most efficient anticoagulant activity in plasma was found for T. fragiferum and T. incarnatum extracts, while the T. alexandrinum fraction was the most effective inhibitor of thrombin amidolytic activity.
Collapse
Affiliation(s)
- Joanna Kolodziejczyk-Czepas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Malgorzata Sieradzka
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Barbara Moniuszko-Szajwaj
- Department of Biochemistry, Institute of Soil Science and Plant Cultivation, State Research Institute, Pulawy, Poland
| | - Pawel Nowak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Wiesław Oleszek
- Department of Biochemistry, Institute of Soil Science and Plant Cultivation, State Research Institute, Pulawy, Poland
| | - Anna Stochmal
- Department of Biochemistry, Institute of Soil Science and Plant Cultivation, State Research Institute, Pulawy, Poland
| |
Collapse
|
13
|
Wang X, Wang Y, Wu J, Gui L, Zhang X, Zheng M, Wang Y, Zhao S, Li Z, Zhao M, Peng S. Docking based design of diastereoisomeric MTCA as GPIIb/IIIa receptor inhibitor. Bioorg Med Chem Lett 2017; 27:5114-5118. [PMID: 29108753 DOI: 10.1016/j.bmcl.2017.10.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/23/2017] [Accepted: 10/27/2017] [Indexed: 12/17/2022]
Abstract
In GPIIb/IIIa mediated arterial thrombosis platelet activation plays a central role. To discover platelet activation inhibitor the pharmacophores of GPIIb/IIIa receptor inhibitors and anti-thrombotic agents were analyzed. This led to the design of (1R,3S)- and (1S,3S)-1-methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acids as GPIIb/IIIa inhibitors. Comparing to (1S,3S)-isomer (1R,3S)-isomer had lower cdocker interaction energy. AFM image showed that the minimal effective concentration of (1S,3S)-isomer and (1R,3S)-isomer inhibiting platelet activation were 10-5 M and 10-6 M, respectively. In vivo 1 μmol/kg of oral (1S,3S)-isomer effectively inhibited the rats to form arterial thrombus and down regulated GPIIb/IIIa expression, but the activities were significantly lower than those of 1 μmol/kg of oral (1R,3S)-isomer. Both (1S,3S)-isomer and (1R,3S)-isomer can be safely used for structural modifications, but (1R,3S)-isomer should be superior to (1S,3S)-isomer.
Collapse
Affiliation(s)
- Xiaozhen Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Yuji Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Jianhui Wu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Lin Gui
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Xiaoyi Zhang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Meiqing Zheng
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Yaonan Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Shurui Zhao
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Ze Li
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Ming Zhao
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Shiqi Peng
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|