1
|
Zheng X, Li A, Qiu J, Yan G, Ji Y, Wang G. β-N-methylamino-L-alanine production, photosynthesis and transcriptional expression in a possible mutation strain and a wild strain of Thalassiosira minima. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135301. [PMID: 39053058 DOI: 10.1016/j.jhazmat.2024.135301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/02/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
The neurotoxin β-N-methylamino-L-alanine (BMAA) produced by marine diatoms has been implicated as an important environmental trigger of neurodegenerative diseases in humans. However, the biosynthesis mechanism of BMAA in marine diatoms is still unknown. In the present study, the strain of diatom Thalassiosira minima almost lost the biosynthesis ability for BMAA after a long-term subculture in our laboratory. The production of BMAA-containing proteins in the mutant strain of T. minima reduced to 18.2 % of that in the wild strain, meanwhile the cell size decreased but pigment content increased in the mutant strain. Take consideration of our previous transcriptional data on the mixed diatom and cyanobacterium cultures, the current transcriptome analysis showed four identical and highly correlated KEGG pathways associated with the accumulation of misfolded proteins in diatom, including ribosome, proteasome, SNARE interactions in vesicle transport, and protein processing in the endoplasmic reticulum. Analysis of amino acids and transcriptional information suggested that amino acid synthesis and degradation are associated with the biosynthesis of BMAA-containing proteins. In addition, a reduction in the precision of ubiquitination-mediated protein hydrolysis and vesicular transport by the COPII system will exacerbate the accumulation of BMAA-containing proteins in diatoms.
Collapse
Affiliation(s)
- Xianyao Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Guowang Yan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Ying Ji
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Guixiang Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
2
|
Spencer PS, Valdes Angues R, Palmer VS. Nodding syndrome: A role for environmental biotoxins that dysregulate MECP2 expression? J Neurol Sci 2024; 462:123077. [PMID: 38850769 DOI: 10.1016/j.jns.2024.123077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
Nodding syndrome is an epileptic encephalopathy associated with neuroinflammation and tauopathy. This initially pediatric brain disease, which has some clinical overlap with Methyl-CpG-binding protein 2 (MECP2) Duplication Syndrome, has impacted certain impoverished East African communities coincident with local civil conflict and internal displacement, conditions that forced dependence on contaminated food and water. A potential role in Nodding syndrome for certain biotoxins (freshwater cyanotoxins plus/minus mycotoxins) with neuroinflammatory, excitotoxic, tauopathic, and MECP2-dysregulating properties, is considered here for the first time.
Collapse
Affiliation(s)
- Peter S Spencer
- Department of Neurology, School of Medicine and Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA; Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA; Gulu University School of Medicine, Gulu, Uganda.
| | - Raquel Valdes Angues
- Department of Neurology, School of Medicine and Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Valerie S Palmer
- Department of Neurology, School of Medicine and Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA; Gulu University School of Medicine, Gulu, Uganda
| |
Collapse
|
3
|
Long Q, Zhou W, Zhou H, Tang Y, Chen W, Liu Q, Bian X. Polyamine-containing natural products: structure, bioactivity, and biosynthesis. Nat Prod Rep 2024; 41:525-564. [PMID: 37873660 DOI: 10.1039/d2np00087c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Covering: 2005 to August, 2023Polyamine-containing natural products (NPs) have been isolated from a wide range of terrestrial and marine organisms and most of them exhibit remarkable and diverse activities, including antimicrobial, antiprotozoal, antiangiogenic, antitumor, antiviral, iron-chelating, anti-depressive, anti-inflammatory, insecticidal, antiobesity, and antioxidant properties. Their extraordinary activities and potential applications in human health and agriculture attract increasing numbers of studies on polyamine-containing NPs. In this review, we summarized the source, structure, classification, bioactivities and biosynthesis of polyamine-containing NPs, focusing on the biosynthetic mechanism of polyamine itself and representative polyamine alkaloids, polyamine-containing siderophores with catechol/hydroxamate/hydroxycarboxylate groups, nonribosomal peptide-(polyketide)-polyamine (NRP-(PK)-PA), and NRP-PK-long chain poly-fatty amine (lcPFAN) hybrid molecules.
Collapse
Affiliation(s)
- Qingshan Long
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, 410009, China.
| | - Wen Zhou
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural, Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Haibo Zhou
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Ying Tang
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, 410009, China.
| | - Wu Chen
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China.
| | - Qingshu Liu
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, 410009, China.
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
4
|
Bishop SL, Solonenka JT, Giebelhaus RT, Bakker DTR, Li ITS, Murch SJ. Microbial Diversity Impacts Non-Protein Amino Acid Production in Cyanobacterial Bloom Cultures Collected from Lake Winnipeg. Toxins (Basel) 2024; 16:169. [PMID: 38668594 PMCID: PMC11053616 DOI: 10.3390/toxins16040169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/10/2024] [Accepted: 03/20/2024] [Indexed: 04/29/2024] Open
Abstract
Lake Winnipeg in Manitoba, Canada is heavily impacted by harmful algal blooms that contain non-protein amino acids (NPAAs) produced by cyanobacteria: N-(2-aminoethyl)glycine (AEG), β-aminomethyl-L-alanine (BAMA), β-N-methylamino-L-alanine (BMAA), and 2,4-diaminobutyric acid (DAB). Our objective was to investigate the impact of microbial diversity on NPAA production by cyanobacteria using semi-purified crude cyanobacterial cultures established from field samples collected by the Lake Winnipeg Research Consortium between 2016 and 2021. NPAAs were detected and quantified by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) using validated analytical methods, while Shannon and Simpson alpha diversity scores were determined from 16S rRNA metagenomic sequences. Alpha diversity in isolate cultures was significantly decreased compared to crude cyanobacterial cultures (p < 0.001), indicating successful semi-purification. BMAA and AEG concentrations were higher in crude compared to isolate cultures (p < 0.0001), and AEG concentrations were correlated to the alpha diversity in cultures (r = 0.554; p < 0.0001). BAMA concentrations were increased in isolate cultures (p < 0.05), while DAB concentrations were similar in crude and isolate cultures. These results demonstrate that microbial community complexity impacts NPAA production by cyanobacteria and related organisms.
Collapse
Affiliation(s)
- Stephanie L. Bishop
- Department of Chemistry, University of British Columbia, Syilx Okanagan Nation Territory, Kelowna, BC V1V 1V7, Canada; (J.T.S.); (R.T.G.); (D.T.R.B.); (I.T.S.L.); (S.J.M.)
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Julia T. Solonenka
- Department of Chemistry, University of British Columbia, Syilx Okanagan Nation Territory, Kelowna, BC V1V 1V7, Canada; (J.T.S.); (R.T.G.); (D.T.R.B.); (I.T.S.L.); (S.J.M.)
| | - Ryland T. Giebelhaus
- Department of Chemistry, University of British Columbia, Syilx Okanagan Nation Territory, Kelowna, BC V1V 1V7, Canada; (J.T.S.); (R.T.G.); (D.T.R.B.); (I.T.S.L.); (S.J.M.)
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2N4, Canada
- The Metabolomics Innovation Centre, Edmonton, AB T6G 2N4, Canada
| | - David T. R. Bakker
- Department of Chemistry, University of British Columbia, Syilx Okanagan Nation Territory, Kelowna, BC V1V 1V7, Canada; (J.T.S.); (R.T.G.); (D.T.R.B.); (I.T.S.L.); (S.J.M.)
| | - Isaac T. S. Li
- Department of Chemistry, University of British Columbia, Syilx Okanagan Nation Territory, Kelowna, BC V1V 1V7, Canada; (J.T.S.); (R.T.G.); (D.T.R.B.); (I.T.S.L.); (S.J.M.)
| | - Susan J. Murch
- Department of Chemistry, University of British Columbia, Syilx Okanagan Nation Territory, Kelowna, BC V1V 1V7, Canada; (J.T.S.); (R.T.G.); (D.T.R.B.); (I.T.S.L.); (S.J.M.)
| |
Collapse
|
5
|
Lee A, Henderson R, Aylward J, McCombe P. Gut Symptoms, Gut Dysbiosis and Gut-Derived Toxins in ALS. Int J Mol Sci 2024; 25:1871. [PMID: 38339149 PMCID: PMC10856138 DOI: 10.3390/ijms25031871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Many pathogenetic mechanisms have been proposed for amyotrophic lateral sclerosis (ALS). Recently, there have been emerging suggestions of a possible role for the gut microbiota. Gut microbiota have a range of functions and could influence ALS by several mechanisms. Here, we review the possible role of gut-derived neurotoxins/excitotoxins. We review the evidence of gut symptoms and gut dysbiosis in ALS. We then examine a possible role for gut-derived toxins by reviewing the evidence that these molecules are toxic to the central nervous system, evidence of their association with ALS, the existence of biochemical pathways by which these molecules could be produced by the gut microbiota and existence of mechanisms of transport from the gut to the blood and brain. We then present evidence that there are increased levels of these toxins in the blood of some ALS patients. We review the effects of therapies that attempt to alter the gut microbiota or ameliorate the biochemical effects of gut toxins. It is possible that gut dysbiosis contributes to elevated levels of toxins and that these could potentially contribute to ALS pathogenesis, but more work is required.
Collapse
Affiliation(s)
- Aven Lee
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia; (R.H.); (P.M.)
| | - Robert Henderson
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia; (R.H.); (P.M.)
- Department of Neurology, Royal Brisbane & Women’s Hospital, Brisbane, QLD 4029, Australia
- Wesley Research Institute, The Wesley Hospital, Auchenflower, QLD 4066, Australia;
| | - James Aylward
- Wesley Research Institute, The Wesley Hospital, Auchenflower, QLD 4066, Australia;
| | - Pamela McCombe
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia; (R.H.); (P.M.)
- Department of Neurology, Royal Brisbane & Women’s Hospital, Brisbane, QLD 4029, Australia
- Wesley Research Institute, The Wesley Hospital, Auchenflower, QLD 4066, Australia;
| |
Collapse
|
6
|
Koksharova OA, Safronova NA. Non-Proteinogenic Amino Acid β-N-Methylamino-L-Alanine (BMAA): Bioactivity and Ecological Significance. Toxins (Basel) 2022; 14:539. [PMID: 36006201 PMCID: PMC9414260 DOI: 10.3390/toxins14080539] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 11/21/2022] Open
Abstract
Research interest in a non-protein amino acid β-N-methylamino-L-alanine (BMAA) arose due to the discovery of a connection between exposure to BMAA and the occurrence of neurodegenerative diseases. Previous reviews on this topic either considered BMAA as a risk factor for neurodegenerative diseases or focused on the problems of detecting BMAA in various environmental samples. Our review is devoted to a wide range of fundamental biological problems related to BMAA, including the molecular mechanisms of biological activity of BMAA and the complex relationships between producers of BMAA and the environment in various natural ecosystems. At the beginning, we briefly recall the most important facts about the producers of BMAA (cyanobacteria, microalgae, and bacteria), the pathways of BMAA biosynthesis, and reliable methods of identification of BMAA. The main distinctive feature of our review is a detailed examination of the molecular mechanisms underlying the toxicity of BMAA to living cells. A brand new aspect, not previously discussed in any reviews, is the effect of BMAA on cyanobacterial cells. These recent studies, conducted using transcriptomics and proteomics, revealed potent regulatory effects of BMAA on the basic metabolism and cell development of these ancient photoautotrophic prokaryotes. Exogenous BMAA strongly influences cell differentiation and primary metabolic processes in cyanobacteria, such as nitrogen fixation, photosynthesis, carbon fixation, and various biosynthetic processes involving 2-oxoglutarate and glutamate. Cyanobacteria were found to be more sensitive to exogenous BMAA under nitrogen-limited growth conditions. We suggest a hypothesis that this toxic diaminoacid can be used by phytoplankton organisms as a possible allelopathic tool for controlling the population of cyanobacterial cells during a period of intense competition for nitrogen and other resources in various ecosystems.
Collapse
Affiliation(s)
- Olga A. Koksharova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Square, 2, 123182 Moscow, Russia
| | - Nina A. Safronova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
7
|
Mantas MJQ, Nunn PB, Codd GA, Barker D. Genomic insights into the biosynthesis and physiology of the cyanobacterial neurotoxin 3-N-methyl-2,3-diaminopropanoic acid (BMAA). PHYTOCHEMISTRY 2022; 200:113198. [PMID: 35447107 DOI: 10.1016/j.phytochem.2022.113198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Cyanobacteria are an ancient clade of photosynthetic prokaryotes, present in many habitats throughout the world, including water resources. They can present health hazards to humans and animals due to the production of a wide range of toxins (cyanotoxins), including the diaminoacid neurotoxin, 3-N-methyl-2,3-diaminopropanoic acid (β-N-methylaminoalanine, BMAA). Knowledge of the biosynthetic pathway for BMAA, and its role in cyanobacteria, is lacking. Present evidence suggests that BMAA is derived by 3-N methylation of 2,3-diaminopropanoic acid (2,3-DAP) and, although the latter has never been reported in cyanobacteria, there are multiple pathways to its biosynthesis known in other bacteria and in plants. Here, we used bioinformatics analyses to investigate hypotheses concerning 2,3-DAP and BMAA biosynthesis in cyanobacteria. We assessed the potential presence or absence of each enzyme in candidate biosynthetic routes known in Albizia julibrissin, Lathyrus sativus seedlings, Streptomyces, Clostridium, Staphylococcus aureus, Pantoea agglomerans, and Paenibacillus larvae, in 130 cyanobacterial genomes using sequence alignment, profile hidden Markov models, substrate specificity/active site identification and the reconstruction of gene phylogenies. Most enzymes involved in pathways leading to 2,3-DAP in other species were not found in the cyanobacteria analysed. Nevertheless, two species appear to have the genes sbnA and sbnB, responsible for forming the 2,3-DAP constituent in staphyloferrin B, a siderophore from Staphylococcus aureus. It is currently undetermined whether these species are also capable of biosynthesising BMAA. It is possible that, in some cyanobacteria, the formation of 2,3-DAP and/or BMAA is associated with environmental iron-scavenging. The pam gene cluster, responsible for the biosynthesis of the BMAA-containing peptide, paenilamicin, so far appears to be restricted to Paenibacillus larvae. It was not detected in any of the cyanobacterial genomes analysed, nor was it found in 93 other Paenibacillus genomes or in the genomes of two BMAA-producing diatom species. We hypothesise that the presence, in some cyanobacterial species, of the enzymes 2,3-diaminopropionate ammonia-lyase (DAPAL) and reactive intermediate deaminase A (RidA) may explain the failure to detect 2,3-DAP in analytical studies. Overall, the taxonomic distribution of 2,3-DAP and BMAA in cyanobacteria is unclear; there may be multiple and additional routes, and roles, for the biosynthesis of 2,3-DAP and BMAA in these organisms.
Collapse
Affiliation(s)
- Maria José Q Mantas
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, The King's Buildings, Edinburgh, EH9 3FL, United Kingdom.
| | - Peter B Nunn
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom.
| | - Geoffrey A Codd
- School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom; School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom.
| | - Daniel Barker
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, The King's Buildings, Edinburgh, EH9 3FL, United Kingdom.
| |
Collapse
|
8
|
Kazemi Shariat Panahi H, Dehhaghi M, Heng B, Lane DJR, Bush AI, Guillemin GJ, Tan VX. Neuropathological Mechanisms of β-N-Methylamino-L-Alanine (BMAA) with a Focus on Iron Overload and Ferroptosis. Neurotox Res 2022; 40:614-635. [PMID: 35023054 DOI: 10.1007/s12640-021-00455-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 02/08/2023]
Abstract
The incidence of neurodegenerative diseases and cyanobacterial blooms is concomitantly increasing worldwide. The cyanotoxin β-N-methylamino-L-alanine (BMAA) is produced by most of the Cyanobacteria spp. This cyanotoxin is described as a potential environmental etiology factor for some sporadic neurodegenerative diseases. Climate change and eutrophication significantly increase the frequency and intensity of cyanobacterial bloom in water bodies. This review evaluates different neuropathological mechanisms of BMAA at molecular and cellular levels and compares the related studies to provide some useful recommendations. Additionally, the structure and properties of BMAA as well as its microbial origin, especially by gut bacteria, are also briefly covered. Unlike previous reviews, we hypothesize the possible neurotoxic mechanism of BMAA through iron overload. We also discuss the involvement of BMAA in excitotoxicity, TAR DNA-binding protein 43 (TDP-43) translocation and accumulation, tauopathy, and other protein misincorporation and misfolding.
Collapse
Affiliation(s)
- Hamed Kazemi Shariat Panahi
- Neuroinflammation Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mona Dehhaghi
- Neuroinflammation Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- PANDIS.Org, Bendigo, Australia
- Department of Microbial Biotechnology, School of Biology and Centre of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Benjamin Heng
- Neuroinflammation Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Gilles J Guillemin
- Neuroinflammation Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
- PANDIS.Org, Bendigo, Australia.
| | - Vanessa X Tan
- Neuroinflammation Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- PANDIS.Org, Bendigo, Australia
| |
Collapse
|
9
|
Mantas MJQ, Nunn PB, Ke Z, Codd GA, Barker D. Genomic insights into the biosynthesis and physiology of the cyanobacterial neurotoxin 2,4-diaminobutanoic acid (2,4-DAB). PHYTOCHEMISTRY 2021; 192:112953. [PMID: 34598041 DOI: 10.1016/j.phytochem.2021.112953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Cyanobacteria are an ancient clade of photosynthetic prokaryotes, whose worldwide occurrence, especially in water, presents health hazards to humans and animals due to the production of a range of toxins (cyanotoxins). These include the sometimes co-occurring, non-encoded diaminoacid neurotoxins 2,4-diaminobutanoic acid (2,4-DAB) and its structural analogue β-N-methylaminoalanine (BMAA). Knowledge of the biosynthetic pathway for 2,4-DAB, and its role in cyanobacteria, is lacking. The aspartate 4-phosphate pathway is a known route of 2,4-DAB biosynthesis in other bacteria and in some plant species. Another pathway to 2,4-DAB has been described in Lathyrus species. Here, we use bioinformatics analyses to investigate hypotheses concerning 2,4-DAB biosynthesis in cyanobacteria. We assessed the presence or absence of each enzyme in candidate biosynthesis routes, the aspartate 4-phosphate pathway and a pathway to 2,4-DAB derived from S-adenosyl-L-methionine (SAM), in 130 cyanobacterial genomes using sequence alignment, profile hidden Markov models, substrate specificity/active site identification and the reconstruction of gene phylogenies. In the aspartate 4-phosphate pathway, for the 18 species encoding diaminobutanoate-2-oxo-glutarate transaminase, the co-localisation of genes encoding the transaminase with the downstream decarboxylase or ectoine synthase - often within hybrid non-ribosomal peptide synthetase (NRPS)-polyketide synthases (PKS) clusters, NRPS-independent siderophore (NIS) clusters and incomplete ectoine clusters - is compatible with the hypothesis that some cyanobacteria use the aspartate 4-phosphate pathway for 2,4-DAB production. Through this route, in cyanobacteria, 2,4-DAB may be functionally associated with environmental iron-scavenging, via the production of siderophores of the schizokinen/synechobactin type and of some polyamines. In the pathway to 2,4-DAB derived from SAM, eight cyanobacterial species encode homologs of SAM-dependent 3-amino-3-carboxypropyl transferases. Other enzymes in this pathway have not yet been purified or sequenced. Ultimately, the biosynthesis of 2,4-DAB appears to be either restricted to some cyanobacterial species, or there may be multiple and additional routes, and roles, for the synthesis of this neurotoxin.
Collapse
Affiliation(s)
- Maria José Q Mantas
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, The King's Buildings, Edinburgh, EH9 3FL, United Kingdom.
| | - Peter B Nunn
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom.
| | - Ziying Ke
- School of Biological Sciences, Roger Land Building, The King's Buildings, Alexander Crum Brown Road, Edinburgh, EH9 3FF, United Kingdom; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom.
| | - Geoffrey A Codd
- School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom; School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom.
| | - Daniel Barker
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, The King's Buildings, Edinburgh, EH9 3FL, United Kingdom.
| |
Collapse
|
10
|
Koksharova OA, Butenko IO, Pobeguts OV, Safronova NA, Govorun VM. β-N-Methylamino-L-Alanine (BMAA) Causes Severe Stress in Nostoc sp. PCC 7120 Cells under Diazotrophic Conditions: A Proteomic Study. Toxins (Basel) 2021; 13:325. [PMID: 33946501 PMCID: PMC8147232 DOI: 10.3390/toxins13050325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/07/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022] Open
Abstract
Non-proteinogenic neurotoxic amino acid β-N-methylamino-L-alanine (BMAA) is synthesized by cyanobacteria, diatoms, and dinoflagellates, and is known to be a causative agent of human neurodegenerative diseases. Different phytoplankton organisms' ability to synthesize BMAA could indicate the importance of this molecule in the interactions between microalgae in nature. We were interested in the following: what kinds of mechanisms underline BMAA's action on cyanobacterial cells in different nitrogen supply conditions. Herein, we present a proteomic analysis of filamentous cyanobacteria Nostoc sp. PCC 7120 cells that underwent BMAA treatment in diazotrophic conditions. In diazotrophic growth conditions, to survive, cyanobacteria can use only biological nitrogen fixation to obtain nitrogen for life. Note that nitrogen fixation is an energy-consuming process. In total, 1567 different proteins of Nostoc sp. PCC 7120 were identified by using LC-MS/MS spectrometry. Among them, 123 proteins belonging to different functional categories were selected-due to their notable expression differences-for further functional analysis and discussion. The presented proteomic data evidences that BMAA treatment leads to very strong (up to 80%) downregulation of α (NifD) and β (NifK) subunits of molybdenum-iron protein, which is known to be a part of nitrogenase. This enzyme is responsible for catalyzing nitrogen fixation. The genes nifD and nifK are under transcriptional control of a global nitrogen regulator NtcA. In this study, we have found that BMAA impacts in a total of 22 proteins that are under the control of NtcA. Moreover, BMAA downregulates 18 proteins that belong to photosystems I or II and light-harvesting complexes; BMAA treatment under diazotrophic conditions also downregulates five subunits of ATP synthase and enzyme NAD(P)H-quinone oxidoreductase. Therefore, we can conclude that the disbalance in energy and metabolite amounts leads to severe intracellular stress that induces the upregulation of stress-activated proteins, such as starvation-inducible DNA-binding protein, four SOS-response enzymes, and DNA repair enzymes, nine stress-response enzymes, and four proteases. The presented data provide new leads into the ecological impact of BMAA on microalgal communities that can be used in future investigations.
Collapse
Affiliation(s)
- Olga A. Koksharova
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory, 1-40, 119991 Moscow, Russia;
- Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Square, 2, 123182 Moscow, Russia
| | - Ivan O. Butenko
- Scientific-Research Institute of Physical-Chemical Medicine, 119435 Moscow, Russia; (I.O.B.); (O.V.P.); (V.M.G.)
| | - Olga V. Pobeguts
- Scientific-Research Institute of Physical-Chemical Medicine, 119435 Moscow, Russia; (I.O.B.); (O.V.P.); (V.M.G.)
| | - Nina A. Safronova
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory, 1-40, 119991 Moscow, Russia;
| | - Vadim M. Govorun
- Scientific-Research Institute of Physical-Chemical Medicine, 119435 Moscow, Russia; (I.O.B.); (O.V.P.); (V.M.G.)
| |
Collapse
|
11
|
Metcalf JS, Codd GA. Co-Occurrence of Cyanobacteria and Cyanotoxins with Other Environmental Health Hazards: Impacts and Implications. Toxins (Basel) 2020; 12:E629. [PMID: 33019550 PMCID: PMC7601082 DOI: 10.3390/toxins12100629] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Toxin-producing cyanobacteria in aquatic, terrestrial, and aerial environments can occur alongside a wide range of additional health hazards including biological agents and synthetic materials. Cases of intoxications involving cyanobacteria and cyanotoxins, with exposure to additional hazards, are discussed. Examples of the co-occurrence of cyanobacteria in such combinations are reviewed, including cyanobacteria and cyanotoxins plus algal toxins, microbial pathogens and fecal indicator bacteria, metals, pesticides, and microplastics. Toxicity assessments of cyanobacteria, cyanotoxins, and these additional agents, where investigated in bioassays and in defined combinations, are discussed and further research needs are identified.
Collapse
Affiliation(s)
| | - Geoffrey A. Codd
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK;
- Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, UK
| |
Collapse
|
12
|
The Proposed Neurotoxin β- N-Methylamino-l-Alanine (BMAA) Is Taken up through Amino-Acid Transport Systems in the Cyanobacterium Anabaena PCC 7120. Toxins (Basel) 2020; 12:toxins12080518. [PMID: 32823543 PMCID: PMC7472364 DOI: 10.3390/toxins12080518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 01/20/2023] Open
Abstract
Produced by cyanobacteria and some plants, BMAA is considered as an important environmental factor in the occurrence of some neurodegenerative diseases. Neither the underlying mechanism of its toxicity, nor its biosynthetic or metabolic pathway in cyanobacteria is understood. Interestingly, BMAA is found to be toxic to some cyanobacteria, making it possible to dissect the mechanism of BMAA metabolism by genetic approaches using these organisms. In this study, we used the cyanobacterium Anabaena PCC 7120 to isolate BMAA-resistant mutants. Following genomic sequencing, several mutations were mapped to two genes involved in amino acids transport, suggesting that BMAA was taken up through amino acid transporters. This conclusion was supported by the protective effect of several amino acids against BMAA toxicity. Furthermore, targeted inactivation of genes encoding different amino acid transport pathways conferred various levels of resistance to BMAA. One mutant inactivating all three major amino acid transport systems could no longer take up BMAA and gained full resistance to BMAA toxicity. Therefore, BMAA is a substrate of amino acid transporters, and cyanobacteria are interesting models for genetic analysis of BMAA transport and metabolism.
Collapse
|
13
|
Chatziefthimiou AD, Banack SA, Cox PA. Biocrust-Produced Cyanotoxins Are Found Vertically in the Desert Soil Profile. Neurotox Res 2020; 39:42-48. [PMID: 32557323 DOI: 10.1007/s12640-020-00224-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 11/24/2022]
Abstract
The fate and persistence of the neurotoxin β-N-methylamino-L-alanine (BMAA) and its isomers N-(2aminoethyl)glycine (AEG) and 2,4-diaminobuytric acid (DAB) in soil profiles is poorly understood. In desert environments, these cyanotoxins are commonly found in both terrestrial and adjacent marine ecosystems; they accumulate in biocrusts and groundwater catchments, and have been previously shown to persist in soil as deep as 25 cm. To determine the depth that BMAA and its isomers can be found, samples were incrementally collected every 5 cm from bedrock to surface in triplicate soil cores in a biocrust field in the terrestrial desert of Qatar. Biocrust surface samples were also collected from each core priorly. Toxins were extracted from soil sub-samples, derivatized, and analyzed with UPLC-MS/MS. All toxins were detected in all soil cores at all depths. AEG and DAB were within a quantifiable concentration threshold; however, the low concentration of BMAA was considered below the threshold for quantification. This may have environmental health implications if these toxins are able to infiltrate and contaminate the bedrock aquifer, as well as the sand and gravel aquifers. Human and animal health may also be impacted through exposure to contaminated groundwater wells or through inhalation of aerosolized particles of soil, resuspended during construction or recreational activities.
Collapse
Affiliation(s)
| | - Sandra Anne Banack
- Brain Chemistry Labs, Institute for Ethnomedicine, Box 3464, Jackson, WY, 83001, USA.
| | - Paul Alan Cox
- Brain Chemistry Labs, Institute for Ethnomedicine, Box 3464, Jackson, WY, 83001, USA
| |
Collapse
|
14
|
Koksharova OA, Butenko IO, Pobeguts OV, Safronova NA, Govorun VM. Proteomic Insights into Starvation of Nitrogen-Replete Cells of Nostoc sp. PCC 7120 under β-N-Methylamino-L-Alanine (BMAA) Treatment. Toxins (Basel) 2020; 12:toxins12060372. [PMID: 32512731 PMCID: PMC7354497 DOI: 10.3390/toxins12060372] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/16/2020] [Accepted: 06/01/2020] [Indexed: 01/05/2023] Open
Abstract
All cyanobacteria produce a neurotoxic non-protein amino acid β-N-methylamino-L-alanine (BMAA). However, the biological function of BMAA in the regulation of cyanobacteria metabolism still remains undetermined. It is known that BMAA suppresses the formation of heterocysts in diazotrophic cyanobacteria under nitrogen starvation conditions, and BMAA induces the formation of heterocyst-like cells under nitrogen excess conditions, by causing the expression of heterocyst-specific genes that are usually “silent” under nitrogen-replete conditions, as if these bacteria receive a nitrogen deficiency intracellular molecular signal. In order to find out the molecular mechanisms underlying this unexpected BMAA effect, we studied the proteome of cyanobacterium Nostoc sp. PCC 7120 grown under BMAA treatment in nitrogen-replete medium. Experiments were performed in two experimental settings: (1) in control samples consisted of cells grown without the BMAA treatment and (2) the treated samples consisted of cells grown with addition of an aqueous solution of BMAA (20 µM). In total, 1567 different proteins of Nostoc sp. PCC 7120 were identified by LC-MS/MS spectrometry. Among them, 80 proteins belonging to different functional categories were chosen for further functional analysis and interpretation of obtained proteomic data. Here, we provide the evidence that a pleiotropic regulatory effect of BMAA on the proteome of cyanobacterium was largely different under conditions of nitrogen-excess compared to its effect under nitrogen starvation conditions (that was studied in our previous work). The most significant difference in proteome expression between the BMAA-treated and untreated samples under different growth conditions was detected in key regulatory protein PII (GlnB). BMAA downregulates protein PII in nitrogen-starved cells and upregulates this protein in nitrogen-replete conditions. PII protein is a key signal transduction protein and the change in its regulation leads to the change of many other regulatory proteins, including different transcriptional factors, enzymes and transporters. Complex changes in key metabolic and regulatory proteins (RbcL, RbcS, Rca, CmpA, GltS, NodM, thioredoxin 1, RpbD, ClpP, MinD, RecA, etc.), detected in this experimental study, could be a reason for the appearance of the “starvation” state in nitrogen-replete conditions in the presence of BMAA. In addition, 15 proteins identified in this study are encoded by genes, which are under the control of NtcA—a global transcriptional regulator—one of the main protein partners and transcriptional regulators of PII protein. Thereby, this proteomic study gives a possible explanation of cyanobacterium starvation under nitrogen-replete conditions and BMAA treatment. It allows to take a closer look at the regulation of cyanobacteria metabolism affected by this cyanotoxin.
Collapse
Affiliation(s)
- Olga A. Koksharova
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1-40, 119992 Moscow, Russia;
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Square, 2, 123182 Moscow, Russia
- Correspondence: ; Tel.: +7-917-534-7543
| | - Ivan O. Butenko
- Federal Research and Clinical Centre of Physical-Chemical Medicine, 119435 Moscow, Russia; (I.O.B.); (O.V.P.); (V.M.G.)
| | - Olga V. Pobeguts
- Federal Research and Clinical Centre of Physical-Chemical Medicine, 119435 Moscow, Russia; (I.O.B.); (O.V.P.); (V.M.G.)
| | - Nina A. Safronova
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1-40, 119992 Moscow, Russia;
| | - Vadim M. Govorun
- Federal Research and Clinical Centre of Physical-Chemical Medicine, 119435 Moscow, Russia; (I.O.B.); (O.V.P.); (V.M.G.)
| |
Collapse
|
15
|
Koksharova OA, Butenko IO, Pobeguts OV, Safronova NA, Govorun VM. The First Proteomics Study of Nostoc sp. PCC 7120 Exposed to Cyanotoxin BMAA under Nitrogen Starvation. Toxins (Basel) 2020; 12:E310. [PMID: 32397431 PMCID: PMC7290344 DOI: 10.3390/toxins12050310] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 01/10/2023] Open
Abstract
The oldest prokaryotic photoautotrophic organisms, cyanobacteria, produce many different metabolites. Among them is the water-soluble neurotoxic non-protein amino acid beta-N-methylamino-L-alanine (BMAA), whose biological functions in cyanobacterial metabolism are of fundamental scientific and practical interest. An early BMAA inhibitory effect on nitrogen fixation and heterocyst differentiation was shown in strains of diazotrophic cyanobacteria Nostoc sp. PCC 7120, Nostocpunctiforme PCC 73102 (ATCC 29133), and Nostoc sp. strain 8963 under conditions of nitrogen starvation. Herein, we present a comprehensive proteomic study of Nostoc (also called Anabaena) sp. PCC 7120 in the heterocyst formation stage affecting by BMAA treatment under nitrogen starvation conditions. BMAA disturbs proteins involved in nitrogen and carbon metabolic pathways, which are tightly co-regulated in cyanobacteria cells. The presented evidence shows that exogenous BMAA affects a key nitrogen regulatory protein, PII (GlnB), and some of its protein partners, as well as glutamyl-tRNA synthetase gltX and other proteins that are involved in protein synthesis, heterocyst differentiation, and nitrogen metabolism. By taking into account the important regulatory role of PII, it becomes clear that BMAA has a severe negative impact on the carbon and nitrogen metabolism of starving Nostoc sp. PCC 7120 cells. BMAA disturbs carbon fixation and the carbon dioxide concentrating mechanism, photosynthesis, and amino acid metabolism. Stress response proteins and DNA repair enzymes are upregulated in the presence of BMAA, clearly indicating severe intracellular stress. This is the first proteomic study of the effects of BMAA on diazotrophic starving cyanobacteria cells, allowing a deeper insight into the regulation of the intracellular metabolism of cyanobacteria by this non-protein amino acid.
Collapse
Affiliation(s)
- Olga A. Koksharova
- Lomonosov Moscow State University, Belozersky Institute of Physical-Chemical Biology, Leninskie Gory, 1-40, 119992 Moscow, Russia;
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Square, 2, 123182 Moscow, Russia
| | - Ivan O. Butenko
- Federal Research and Clinical Centre of Physical-Chemical Medicine, 119435 Moscow, Russia; (I.O.B.); (O.V.P.); (V.M.G.)
| | - Olga V. Pobeguts
- Federal Research and Clinical Centre of Physical-Chemical Medicine, 119435 Moscow, Russia; (I.O.B.); (O.V.P.); (V.M.G.)
| | - Nina A. Safronova
- Lomonosov Moscow State University, Belozersky Institute of Physical-Chemical Biology, Leninskie Gory, 1-40, 119992 Moscow, Russia;
| | - Vadim M. Govorun
- Federal Research and Clinical Centre of Physical-Chemical Medicine, 119435 Moscow, Russia; (I.O.B.); (O.V.P.); (V.M.G.)
| |
Collapse
|
16
|
Nunes-Costa D, Magalhães JD, G-Fernandes M, Cardoso SM, Empadinhas N. Microbial BMAA and the Pathway for Parkinson's Disease Neurodegeneration. Front Aging Neurosci 2020; 12:26. [PMID: 32317956 PMCID: PMC7019015 DOI: 10.3389/fnagi.2020.00026] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/23/2020] [Indexed: 12/12/2022] Open
Abstract
The neurotoxin β-N-methylamino-L-alanine (BMAA) is a natural non-proteinogenic diamino acid produced by several species of both prokaryotic (cyanobacteria) and eukaryotic (diatoms and dinoflagellates) microorganisms. BMAA has been shown to biomagnify through the food chain in some ecosystems, accumulating for example in seafood such as shellfish and fish, common dietary sources of BMAA whose ingestion may have possible neuronal consequences. In addition to its excitotoxic potential, BMAA has been implicated in protein misfolding and aggregation, inhibition of specific enzymes and neuroinflammation, all hallmark features of neurodegenerative diseases. However, the exact molecular mechanisms of neurotoxicity remain to be elucidated in detail. Although BMAA is commonly detected in its free form, complex BMAA-containing molecules have also been identified such as the paenilamicins, produced by an insect gut bacterial pathogen. On the other hand, production of BMAA or BMAA-containing molecules by members of the human gut microbiota, for example by non-photosynthetic cyanobacteria, the Melainabacteria, remains only hypothetical. In any case, should BMAA reach the gut it may interact with cells of the mucosal immune system and neurons of the enteric nervous system (ENS) and possibly target the mitochondria. Here, we review the available evidence and hint on possible mechanisms by which chronic exposure to dietary sources of this microbial neurotoxin may drive protein misfolding and mitochondrial dysfunction with concomitant activation of innate immune responses, chronic low-grade gut inflammation, and ultimately the neurodegenerative features observed across the gut-brain axis in Parkinson's disease (PD).
Collapse
Affiliation(s)
- Daniela Nunes-Costa
- CNC–Center for Neuroscience and Cell
Biology, University of Coimbra, Coimbra,
Portugal
- Ph.D. Programme in Biomedicine and Experimental
Biology (PDBEB), Institute for Interdisciplinary Research, University of
Coimbra, Coimbra,
Portugal
| | - João Duarte Magalhães
- CNC–Center for Neuroscience and Cell
Biology, University of Coimbra, Coimbra,
Portugal
- Ph.D. Programme in Biomedicine and Experimental
Biology (PDBEB), Institute for Interdisciplinary Research, University of
Coimbra, Coimbra,
Portugal
| | - Maria G-Fernandes
- CNC–Center for Neuroscience and Cell
Biology, University of Coimbra, Coimbra,
Portugal
| | - Sandra Morais Cardoso
- CNC–Center for Neuroscience and Cell
Biology, University of Coimbra, Coimbra,
Portugal
- Institute of Cellular and Molecular Biology,
Faculty of Medicine, University of Coimbra,
Coimbra, Portugal
| | - Nuno Empadinhas
- CNC–Center for Neuroscience and Cell
Biology, University of Coimbra, Coimbra,
Portugal
- Institute for Interdisciplinary Research
(IIIUC), University of Coimbra, Coimbra,
Portugal
| |
Collapse
|
17
|
Synthesis of Enantiomerically Pure N-Boc-Protected 1,2,3-Triaminopropylphosphonates and 1,2-Diamino-3-Hydroxypropylphosphonates. Molecules 2019; 24:molecules24213857. [PMID: 31731561 PMCID: PMC6864986 DOI: 10.3390/molecules24213857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/16/2019] [Accepted: 10/22/2019] [Indexed: 11/21/2022] Open
Abstract
All possible isomers of 1,2,3-tri(N-tert-butoxycarbonylamino)propylphosphonate 6 were synthesized from the respective diethyl [N-(1-phenylethyl)]-1-benzylamino-2,3-epiiminopropylphosphonates 5 via opening the aziridine ring with trimethylsilyl azide (TMSN3) followed by hydrogenolysis in the presence of di-tert-butyl dicarbonate (Boc2O). [N-(1-phenylethyl)]-1-benzylamino-2,3-epiiminopropylphosphonates (1R,2R,1′S)-5a and (1S,2S,1′R)-5c were smoothly transformed into diethyl 3-acetoxy-1-benzylamino-2-[N-(1-phenylethyl)amino]propylphosphonates (1R,2R,1′S)-9a and (1S,2S,1′R)-9c, respectively by the opening of the aziridine ring with acetic acid. Transformations of [N-(1-phenylethyl)]-1-benzylamino-2,3-epiiminopropylphosphonates (1S,2R,1′S)-5b and (1R,2S,1′R)-5d into diethyl 3-acetoxy-1-benzylamino-2-[(1-phenylethyl)amino]propylphosphonates (1S,2R,1′S)-9b and (1R,2S,1′R)-9d were accompanied by the formation of ethyl {1-(N-benzylacetamido)-3-hydroxy-2-[(1-phenylethyl)amino]propyl}phosphonate (1S,2R,1′S)-10b and (1R,2S,1′R)-10d and 3-(N-benzylacetamido)-4-[N-(1-phenylethyl)]amino-1,2-oxaphospholane (3S,4R,1′S)-11b and (3R,4S,1′R)-11d as side products. Diethyl (1R,2R)-, (1S,2S)-, (1S,2R)- and (1R,2S)-3-acetoxy-1,2-di(N-tert-butoxycarbonylamino)propylphosphonates 7a–7d were obtained from the respective 3-acetoxy-1-benzylamino-2-[N-(1-phenylethyl)amino]propylphosphonates 9a–9d by hydrogenolysis in the presence of Boc2O.
Collapse
|
18
|
Nunn PB, Codd GA. Environmental distribution of the neurotoxin l-BMAA in Paenibacillus species. Toxicol Res (Camb) 2019; 8:781-783. [PMID: 32922737 DOI: 10.1039/c9tx00203k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/23/2019] [Indexed: 11/21/2022] Open
Abstract
The environmental distribution of the neurotoxic amino acid, 3-N-methyl-2,3-diaminopropanoic acid (BMAA), first isolated in 1967, was initially believed to be limited to tropical and subtropical plants of the genus Cycas. The seeds of one such species, which had been used historically on the Pacific island of Guam as a foodstuff, had a reputation for neurotoxicity. Some 40 years later the amino acid was detected in terrestrial and aquatic cyanobacteria and in other aquatic organisms. Overlooked was the discovery of BMAA in peptides of bizarre structure that had been isolated in 1975 from Paenibacillus pulvifaciens during a search for antibiotics. More recently (2014), peptides of similar structure were isolated from Paenibacillus larvae; this organism is causative of American Foulbrood, a lethal disease of honeybee colonies. These are interesting chemical and environmental observations, but knowledge of the bacterial distribution of BMAA is limited to just these two species of Paenibacillus, while more than 200 Paenibacillus spp. are known. Paenibacillus spp. are ever present naturally in the environment and are used agriculturally; recent research reports that some species infect human foods - including cow's milk - and have been isolated from human body fluids. We wish to stimulate interest in the environmental distribution of the neurotoxic BMAA in Paenibacillus spp. by drawing together previously isolated streams of research and by proposing experimental approaches by which this matter might be resolved.
Collapse
Affiliation(s)
- Peter B Nunn
- School of Biological and Chemical Sciences , Queen Mary University of London , Mile End Road , London E1 4NS , UK . ; ; Tel: +44(0)1483-812098
| | - Geoffrey A Codd
- School of Life Sciences , University of Dundee , DD1 5EH , UK.,School of Natural Sciences , University of Stirling , FK9 4LA , UK . ,uk
| |
Collapse
|
19
|
Vo Duy S, Munoz G, Dinh QT, Tien Do D, Simon DF, Sauvé S. Analysis of the neurotoxin β-N-methylamino-L-alanine (BMAA) and isomers in surface water by FMOC derivatization liquid chromatography high resolution mass spectrometry. PLoS One 2019; 14:e0220698. [PMID: 31386693 PMCID: PMC6684067 DOI: 10.1371/journal.pone.0220698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/22/2019] [Indexed: 11/18/2022] Open
Abstract
The neurotoxin β-N-methylamino-L-alanine (BMAA), suspected to trigger neurodegenerative diseases, can be produced during cyanobacterial bloom events and subsequently affect ecosystems and water sources. Some of its isomers including β-amino-N-methylalanine (BAMA), N-(2-aminoethyl) glycine (AEG), and 2,4-diaminobutyric acid (DAB) may show different toxicities than BMAA. Here, we set out to provide a fast and sensitive method for the monitoring of AEG, BAMA, DAB and BMAA in surface waters. A procedure based on aqueous derivatization with 9-fluorenylmethyl chloroformate (FMOC-Cl) was investigated for this purpose. Under optimized conditions, a small aqueous sample aliquot (5 mL) was spiked with BMAA-d3 internal standard, subjected to FMOC-Cl derivatization, centrifuged, and analyzed. The high-throughput instrumental method (10 min per sample) involved on-line pre-concentration and desalting coupled to ultra-high-performance liquid chromatography high-resolution mass spectrometry (UHPLC-HRMS). Chromatographic gradient and mobile phases were adjusted to obtain suitable separation of the 4 isomers. The method limits of detection were in the range of 2-5 ng L-1. In-matrix validation parameters including linearity range, accuracy, precision, and matrix effects were assessed. The method was applied to surface water samples (n = 82) collected at a large spatial scale in lakes and rivers in Canada. DAB was found in >70% of samples at variable concentrations (<3-1,900 ng L-1), the highest concentrations corresponding to lake samples in cyanobacterial bloom periods. BMAA was only reported (110 ng L-1) at one HAB-impacted location. This is one of the first studies to report on the profiles of AEG, BAMA, DAB, and BMAA in background and impacted surface waters.
Collapse
Affiliation(s)
- Sung Vo Duy
- Department of Chemistry, Université de Montréal, Montréal, Quebec, Canada
| | - Gabriel Munoz
- Department of Chemistry, Université de Montréal, Montréal, Quebec, Canada
| | - Quoc Tuc Dinh
- Department of Chemistry, Université de Montréal, Montréal, Quebec, Canada
| | - Dat Tien Do
- Department of Chemistry, Université de Montréal, Montréal, Quebec, Canada
| | - Dana F. Simon
- Department of Chemistry, Université de Montréal, Montréal, Quebec, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
20
|
The Cyanotoxin and Non-protein Amino Acid β-Methylamino-L-Alanine (L-BMAA) in the Food Chain: Incorporation into Proteins and Its Impact on Human Health. Neurotox Res 2019; 36:602-611. [DOI: 10.1007/s12640-019-00089-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/21/2019] [Accepted: 07/12/2019] [Indexed: 12/31/2022]
|
21
|
Codd GA, Nunn PB. Cyanotoxin production beyond the cyanobacteria. Toxicon 2019; 168:93-94. [PMID: 31265845 DOI: 10.1016/j.toxicon.2019.06.226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Geoffrey A Codd
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK; School of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK.
| | - Peter B Nunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 1DT, UK
| |
Collapse
|
22
|
Popova AA, Semashko TA, Kostina NV, Rasmussen U, Govorun VM, Koksharova OA. The Cyanotoxin BMAA Induces Heterocyst Specific Gene Expression in Anabaena sp. PCC 7120 under Repressive Conditions. Toxins (Basel) 2018; 10:toxins10110478. [PMID: 30453523 PMCID: PMC6266585 DOI: 10.3390/toxins10110478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/10/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022] Open
Abstract
Cyanobacteria synthesize neurotoxic β-N-methylamino-l-alanine (BMAA). The roles of this non-protein amino acid in cyanobacterial cells are insufficiently studied. During diazotrophic growth, filamentous cyanobacteria form single differentiated cells, called heterocysts, which are separated by approximately 12–15 vegetative cells. When combined nitrogen is available, heterocyst formation is blocked and cyanobacterial filaments contain only vegetative cells. In the present study, we discovered that exogenous BMAA induces the process of heterocyst formation in filamentous cyanobacteria under nitrogen-replete conditions that normally repress cell differentiation. BMAA treated cyanobacteria form heterocyst-like dark non-fluorescent non-functional cells. It was found that glutamate eliminates the BMAA mediated derepression. Quantitative polymerase chain reaction (qPCR) permitted to detect the BMAA impact on the transcriptional activity of several genes that are implicated in nitrogen assimilation and heterocyst formation in Anabaena sp. PCC 7120. We demonstrated that the expression of several essential genes increases in the BMAA presence under repressive conditions.
Collapse
Affiliation(s)
- Alexandra A Popova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Square, 2, 123182 Moscow, Russia.
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Prospekt 60 let Oktyabrya, 7/2, 117312 Moscow, Russia.
| | - Tatiana A Semashko
- Scientific-Research Institute of Physical-Chemical Medicine, 119435 Moscow, Russia.
| | - Natalia V Kostina
- Soil Science Faculty, Lomonosov Moscow State University, Leninskie Gory, 1-12, 119991 Moscow, Russia.
| | - Ulla Rasmussen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden.
| | - Vadim M Govorun
- Scientific-Research Institute of Physical-Chemical Medicine, 119435 Moscow, Russia.
| | - Olga A Koksharova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Square, 2, 123182 Moscow, Russia.
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1, 40, 119992 Moscow, Russia.
| |
Collapse
|
23
|
Nunn PB. 50 years of research on α-amino-β-methylaminopropionic acid (β-methylaminoalanine). PHYTOCHEMISTRY 2017; 144:271-281. [PMID: 29102875 DOI: 10.1016/j.phytochem.2017.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/10/2017] [Accepted: 10/13/2017] [Indexed: 06/07/2023]
Abstract
The isolation of α-amino-β-methylaminopropionic acid from seeds of Cycas circinalis (now C. micronesica Hill) resulted from a purposeful attempt to establish the cause of the profound neurological disease, amyotrophic lateral sclerosis/parkinsonism/dementia, that existed in high frequency amongst the inhabitants of the western Pacific island of Guam (Guam ALS/PD). In the 50 years since its discovery the amino acid has been a stimulus, and sometimes a subject of mockery, for generations of scientists in a remarkably diverse range of subject areas. The number of citations of the original paper has risen in the five decades from a few to 120 within the decade 2007-2016 and continues at a high rate into the next decade. The reasons for this remarkable outcome are discussed and examples from the literature are used to illustrate the wide range of scientific interest that the original paper generated.
Collapse
Affiliation(s)
- Peter B Nunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, Hampshire PO1 2DT, UK.
| |
Collapse
|