1
|
Gong L, Xu J, Guo M, Zhao J, Xin X, Zhang C, Ni X, Hu Y, An F. Octahydroindolizine alkaloid Homocrepidine A from Dendrobium crepidatum attenuate P. acnes-induced inflammatory in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118455. [PMID: 38871011 DOI: 10.1016/j.jep.2024.118455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dendrobium crepidatum Lindl. ex Paxton is a perennial epiphyte of Dendrobium genus, distributed in southern China, and utilized as the traditional Chinese medicine "Shihu" in Yunnan Province. Due to its heat-clearing and detoxicating properties, it is formulated as the "XiaoCuoWan" as recorded in the China Pharmacopoeia, and specially used to treat chronic skin inflammatory diseases, such as acne. AIM OF THE STUDY This research aimed to estimate impact of the octahydroindoline alkaloid Homocrepidine A (HCA), isolated from D. crepidatum, on acne inflammation using both human THP-1 cells and mouse models. Furthermore, the potential anti-inflammatory mechanism of HCA has been analyzed through molecular biology methods and computer simulation. MATERIALS AND METHODS THP-1 cells and mouse models induced by live Propionibacterium acnes (P. acnes) were employed to evaluate the anti-inflammatory properties of crude extract of D. crepidatum (DCE) and HCA. ELISA was utilized to detect the release of inflammatory cytokines in both cellular and murine ear tissues. RNAseq was used to screen the pathways associated with HCA-mediated inflammatory inhibition, while Western blot, RT-qPCR, and immunofluorescence were utilized to detect the expression of relevant proteins. Additionally, molecular docking simulations and cellular thermal shift assays were employed to confirm the target of HCA. RESULTS Our research shows that DCE and HCA can effectively alleviate acne inflammation. HCA inhibits TLR2 expression by interacting with amino acid residues in the TIR domain of hTLR2, including Pro-681, Asn-688, Trp-684, and Ile-685. Moreover, HCA disrupts inflammatory signal transduction mediated by MAPK and NF-κB pathways through MyD88-dependent pathway. Additionally, HCA treatment facilitates Nrf2 nuclear translocation and upregulates HO-1 expression, thereby inhibiting NLRP3 inflammasomes activation. In vivo experiments further revealed that HCA markedly attenuated erythema and swelling caused by P. acnes in mice ears, while also decreasing the expression of pro-inflammatory cytokines IL-1β and IL-8. CONCLUSIONS Our research highlights the protective effects of D. crepidatum and its bioactive compound HCA against acne inflammation, marking the first exploration of its potential in this context. The discoveries indicate that HCA treatment may represent a promising functional approach for acne therapy.
Collapse
Affiliation(s)
- Lizhi Gong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jiayao Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Miaomiao Guo
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, No. 11/33, Fucheng Road, Beijing, 100048, China
| | - Jian Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xiujuan Xin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | | | - Xiaoming Ni
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Yang Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Faliang An
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, No.4, Lane 218, Haiji Sixth Road, Shanghai, 201306, China.
| |
Collapse
|
2
|
Wei X, Wang D, Xu Z, Liu J, Zhu Q, Chen Q, Tang H, Xu W. Research progress on the regulatory and pharmacological mechanism of chemical components of Dendrobium. Heliyon 2024; 10:e37541. [PMID: 39328574 PMCID: PMC11425140 DOI: 10.1016/j.heliyon.2024.e37541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Dendrobium is a precious Chinese herbal medicine, which belongs to the genus Orchidaceae. Ancient records and modern pharmacological research show that Dendrobium has pharmacological effects such as anti-tumor, antioxidant regulating immunity and blood glucose, and anti-aging. Dendrobium contains polysaccharides, alkaloids, bibenzyl, sesquiterpenes, phenanthrene, polyphenols and other types of chemicals. Its pharmacological activity is closely related to these chemical components. For example, dendrobium extracts can achieve anti-tumor effects by inhibiting tumor cell proliferation and metastasis, promoting cell apoptosis and ferroptosis, or increasing cell sensitivity to chemotherapy drugs. It enhances immunity by regulating immune cell activity or cytokine release. In addition, it can alleviate neurodegenerative diseases by protecting nerve cells from apoptotic damage. In recent years, research reports on biologically active compounds in Dendrobium have shown a blowout growth, which makes us realize that it is meaningful to continuously update the research progress on the components and pharmacological regulatory mechanism of this traditional Chinese medicine. By classifying the collected chemical components according to different chemical structures and summarizing their pharmacological mechanisms, we investigated the current research progress of Dendrobium and provide a more comprehensive scientific foundation for the further development and clinical transformation of Dendrobium in the future.
Collapse
Affiliation(s)
- Xin Wei
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
| | - Dan Wang
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
| | - Ziming Xu
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Ophthalmology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, PR China
| | - Jiajia Liu
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
| | - Qizhi Zhu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
| | - Qi Chen
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
| | - Heng Tang
- Wanbei Coal Electric Group General Hospital, Anhui Province, Suzhou, 234011, PR China
| | - Weiping Xu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, PR China
| |
Collapse
|
3
|
Hui A, Chen J, Deng S, Chen Y, He X, Yang L, Zhang W, Wu Z. Phytochemical Profile of Alkaloid Extract from Dendrobium huoshanense and Inhibitory Effects against Oxidative Stress in H 2 O 2 -Induced PC12 Cells. Chem Biodivers 2024; 21:e202301332. [PMID: 38052727 DOI: 10.1002/cbdv.202301332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
This study aimed to explore the alkaloid profile of Dendrobium huoshanense and determine the potential protective effect against oxidative damage. The crude D. huoshanense alkaloid extract (DHAE) was obtained by 70 % ethanol extraction and liquid-liquid partition. DHAE contained specific alkaloid components with abundant 6-hydroxynobiline (58.15 %) and trace dendrobine (3.23 %) in the preliminary HPLC fingerprint and GC-MS analysis, which was distinguished from D. officinale or D. nobile. Subsequently, six alkaloids including 6-hydroxynobiline, 2-hydroxy dendrobine, nobilonine, dendrobine, Findlayines D and trans-dendrochrysanine were identified in the purified DHAE (namely DHSAE-3, DHSAE-3') via further solid phase extraction coupled with UPLC-MS/MS analysis. Meanwhile, pretreatment with DHAE or DHSAE (0.5, 5 μg/mL) increased cell viability by 14.0-57.4 % compared to that of H2 O2 -induced PC12 Model cells. Among them, 5 μg/mL DHSAE-3-treated cells displayed a pronounced reversion than the positive vitamin E (p<0.01). Furthermore, a clear cellular morphological restoration and 38.4 % reduction in intracellular reactive oxidative species level were achieved. Our findings suggest that D. huoshanense has a characteristic alkaloid profile represented by abundant 6-hydroxynobiline, and DHAEs exhibit obvious protection against oxidative neuronal damage. Overall, this study indicates that DHAEs might be used to inhibit oxidative stress and provide a source to develop novel neuroprotective drugs.
Collapse
Affiliation(s)
- Ailing Hui
- Engineering Research Center of Bio-Process of Ministry of Education, H, efei University of Technology, Feicui road 420, Hefei, 230601, China
- School of Food and Biological Engineering, Hefei University of Technology, Feicui road 420, Hefei, 230601, China
| | - Jingchao Chen
- Engineering Research Center of Bio-Process of Ministry of Education, H, efei University of Technology, Feicui road 420, Hefei, 230601, China
| | - Shaohuan Deng
- Engineering Research Center of Bio-Process of Ministry of Education, H, efei University of Technology, Feicui road 420, Hefei, 230601, China
| | - Yan Chen
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Jiulong Road 111, Hefei, 230601, China
| | - Xianglin He
- Huoshan County Changchong Medical Materials Development Co., Ltd, Lu'an, 237200, China
| | - Li Yang
- Engineering Research Center of Bio-Process of Ministry of Education, H, efei University of Technology, Feicui road 420, Hefei, 230601, China
| | - Wencheng Zhang
- Engineering Research Center of Bio-Process of Ministry of Education, H, efei University of Technology, Feicui road 420, Hefei, 230601, China
- School of Food and Biological Engineering, Hefei University of Technology, Feicui road 420, Hefei, 230601, China
| | - Zeyu Wu
- Engineering Research Center of Bio-Process of Ministry of Education, H, efei University of Technology, Feicui road 420, Hefei, 230601, China
- School of Food and Biological Engineering, Hefei University of Technology, Feicui road 420, Hefei, 230601, China
| |
Collapse
|
4
|
Abou Baker DH. Can natural products modulate cytokine storm in SARS-CoV2 patients? BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 35:e00749. [PMID: 35702395 PMCID: PMC9181898 DOI: 10.1016/j.btre.2022.e00749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 01/08/2023]
Abstract
Currently, the number of cases and deaths of SARS-CoV2, especially among the chronic disease groups, due to aggressive SARS-CoV2 infection is increasing day by day. Various infections, particularly viral ones, cause a cytokine storm resulting in shortness of breath, bleeding, hypotension, and ultimately multi-organ failure due to over-expression of certain cytokines and necrosis factors. The most prominent clinical feature of SARS-CoV2 is the presence of elevated proinflammatory cytokines in the serum of patients with SARS-CoV2. Severe cases exhibit higher levels of cytokines, leading to a "cytokine storm" that further increases disease severity and causes acute respiratory distress syndrome, multiple organ failure, and death. Therefore, targeted cytokine production could be a potential therapeutic option for patients severely infected with SARS-CoV2. Given the current scenario, great scientific progress has been made in understanding the disease and its forms of treatment. Because of natural ingredients properties, they have the potential to be used as potential agents with the ability to modulate immune responses. Moreover, they can be used safely because they have no toxic effects, are biodegradable and biocompatible. However, these natural substances can continue to be used in the development of new therapies and vaccines. Finally, the aim and approach of this review article is to highlight current research on the possible use of natural products with promising potential as immune response activators. Moreover, consider the expected use of natural products when developing potential therapies and vaccines.
Collapse
Affiliation(s)
- Doha H. Abou Baker
- Medicinal and Aromatic Plants Department, National Research Centre, Pharmaceutical and Drug Industries Institute, Dokki, Giza, PO 12622, Egypt
| |
Collapse
|
5
|
Duan H, Er-Bu A, Dongzhi Z, Xie H, Ye B, He J. Alkaloids from Dendrobium and their biosynthetic pathway, biological activity and total synthesis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154132. [PMID: 35576743 DOI: 10.1016/j.phymed.2022.154132] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/26/2022] [Accepted: 04/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Dendrobium Sw. has been used for thousands of years in China as a precious traditional Chinese medicine. It is derived from stems of various Dendrobium plants and has the functions of nourishing Yin and clearing heat, activating water and nourishing the stomach, moistening the lung and relieving cough. Modern phytochemical studies show that the main components of Dendrobium include alkaloids, polysaccharides, terpenoids, diphenylbenzene, and phenanthrene. Alkaloids are natural products with obvious biological activity and are important effective components of the medicinal activity or toxicity of plants. At present, dozens of alkaloids with various structures have been isolated from Dendrobium plants, and the alkaloid contents in Dendrobium plants of different species are quite different. From the perspective of food safety, the type, molecular structure, content and potential physiological activity or toxicity of alkaloids are important bases for evaluating the safety of edible plants. Studies have shown that the alkaloids isolated from Dendrobium have neuroprotective, anti-inflammatory and antitumor activities, showing that these alkaloids with potential medicinal activity are important sources of lead compounds in innovative drug development. PURPOSE To summarize the research progress on alkaloids in Dendrobium and provide a reference for research on the food safety and medicinal development of Dendrobium. METHOD Information about alkaloids from Dendrobium was collected from the scientific databases Web of Science, PubChem and PubMed. We discuss the biosynthetic pathway, biological activities and total synthesis of alkaloids from Dendrobium from 1964 to 2020 and summarize the knowledge of alkaloids from Dendrobium, the biosynthetic pathway, biological activities and total synthesis. We chose publications on their chemistry, drug effects, pharmacology, metabolism and biosynthesis, physiology and toxicity. Alkaloids, Dendrobium, biosynthetic pathway and biological activities were used as keywords to extract the relevant literature. CONCLUSION In this paper, the structural classification, biological activity, target and toxicology and synthesis of the alkaloids in Dendrobium were systematically reviewed, which will provide a reference for the safety, development and application of Dendrobium.
Collapse
Affiliation(s)
- Hongtao Duan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu, 610041, China; College of Chemistry, Sichuan University, Sichuan 610041, China
| | - Aga Er-Bu
- Medical College of Tibet University, Lasa 850002, China
| | | | - Hongjun Xie
- Medical College of Tibet University, Lasa 850002, China
| | - Bengui Ye
- Medical College of Tibet University, Lasa 850002, China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu, 610041, China.
| | - Jun He
- Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, China.
| |
Collapse
|
6
|
PTX3 Protects Intestinal Mucosal Barrier Damage in Sepsis Through Toll-Like Receptor Signaling Pathway. Inflammation 2022; 45:2339-2351. [PMID: 35687213 DOI: 10.1007/s10753-022-01696-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/18/2022] [Accepted: 05/31/2022] [Indexed: 01/16/2023]
Abstract
This study aims to confirm the protective effect of Pentraxin 3 (PTX3) on intestinal mucosal barrier damage in sepsis in animal and cell models and explore its mechanism. Analysis of the GSE147775 gene set revealed that the level of PTX3 was upregulated in the lipopolysaccharide (LPS)-induced rat sepsis model. The mice sepsis model was established by cecal ligation perforation (CLP), and the cell inflammation model was induced by LPS. Cell apoptosis and the expression of apoptosis-related protein were detected by flow cytometry and Western blotting. The PTX3 level was significantly upregulated in the mice sepsis model. Intestinal mucosal barrier damage was aggravated and inflammatory factor expression was upregulated after PTX3 downregulation in sepsis mice. After upregulation of PTX3, intestinal mucosal barrier damage was alleviated and inflammatory factor expression was decreased in sepsis mice. Further data mining suggested that the anti-inflammatory effect of PTX3 might be realized through inhibition of the toll-like receptor (TLR) signaling pathway. Moreover, compared with the LPS group, downregulation of PTX3 increased cell apoptosis and the levels of BCL2-associated X (Bax), myeloperoxidase (MPO), tumor necrosis factor-alfa (TNF-α), interleukin 1 beta (IL-1β), and interferon-gamma (IFN-γ), and decreased the levels of B-cell lymphoma-2 (Bcl-2), zona occludens (ZO)-1, and occludin. On the contrary, overexpression of PTX3 reduced cell apoptosis and the levels of Bax, MPO, TNF-α, IL-1β, and IFN-γ. Moreover, downregulation of PTX3 reversed the inhibitive effects on cell apoptosis and inflammation and promotive effects on the levels of Zo-1 and occludin induced by CLI-095 (a TLR signaling pathway inhibitor). In the CLP-induced mice sepsis model and LPS-induced cell inflammation model, PTX3 inhibits inflammatory response and reduces intestinal mucosal barrier damage through the TLR signaling pathway.
Collapse
|
7
|
Song C, Ma J, Li G, Pan H, Zhu Y, Jin Q, Cai Y, Han B. Natural Composition and Biosynthetic Pathways of Alkaloids in Medicinal Dendrobium Species. FRONTIERS IN PLANT SCIENCE 2022; 13:850949. [PMID: 35599884 PMCID: PMC9121007 DOI: 10.3389/fpls.2022.850949] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/30/2022] [Indexed: 05/12/2023]
Abstract
Dendrobium is the second biggest genus in the Orchidaceae family, some of which have both ornamental and therapeutic values. Alkaloids are a group of active chemicals found in Dendrobium plants. Dendrobine has emerged specific pharmacological and therapeutic properties. Although Dendrobium alkaloids have been isolated and identified since the 1930s, the composition of alkaloids and their biosynthesis pathways, including metabolic intermediates, alkaloid transporters, concrete genes involved in downstream pathways, and associated gene clusters, have remained unresolved scientific issues. This paper comprehensively reviews currently identified and tentative alkaloids from the aspect of biogenic pathways or metabolic genes uncovered based on the genome annotations. The biosynthesis pathways of each class of alkaloids are highlighted. Moreover, advances of the high-throughput sequencing technologies in the discovery of Dendrobium alkaloid pathways have been addressed. Applications of synthetic biology in large-scale production of alkaloids are also described. This would serve as the basis for further investigation into Dendrobium alkaloids.
Collapse
Affiliation(s)
- Cheng Song
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu’an, China
| | - Jingbo Ma
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Guohui Li
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Haoyu Pan
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Yanfang Zhu
- College of Life Science, Huaibei Normal University, Huaibei, China
| | - Qing Jin
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yongping Cai
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Bangxing Han
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu’an, China
| |
Collapse
|
8
|
Novitskiy IM, Kutateladze AG. DU8ML: Machine Learning-Augmented Density Functional Theory Nuclear Magnetic Resonance Computations for High-Throughput In Silico Solution Structure Validation and Revision of Complex Alkaloids. J Org Chem 2022; 87:4818-4828. [PMID: 35302771 DOI: 10.1021/acs.joc.2c00169] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Machine learning (ML) profoundly improves the accuracy of the fast DU8+ hybrid density functional theory/parametric computations of nuclear magnetic resonance spectra, allowing for high throughput in silico validation and revision of complex alkaloids and other natural products. Of nearly 170 alkaloids surveyed, 35 structures are revised with the next-generation ML-augmented DU8 method, termed DU8ML.
Collapse
Affiliation(s)
- Ivan M Novitskiy
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Andrei G Kutateladze
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| |
Collapse
|
9
|
Ding XQ, Zou YQ, Liu J, Wang XC, Hu Y, Liu X, Zhang CF. Dendrocrepidamine, a novel octahydroindolizine alkaloid from the roots of Dendrobium crepidatum. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:1085-1092. [PMID: 34128433 DOI: 10.1080/10286020.2021.1935891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
A novel octahydroindolizine alkaloid, named dendrocrepidamine (1) with an unusual 18,19,19'-cyclopropanone-dendrocrepine skeleton, was isolated from the ethanol extract of the roots of Dendrobium crepidatum, along with six known compounds (2-7). The structure of 1 was elucidated through HR-ESIMS, NMR spectroscopic data and computational calculations. All compounds were examined for their inhibitory effects on nitric oxide (NO) production induced by lipopolysaccharide (LPS) in RAW264.7 cells with IC50 values in the range of 3.04-54.89 µM. In vivo, crepidatin (6) (80, 40 and 10 mg/kg) showed a significant protective effect against LPS-induced acute lung injury (ALI) in mice.
Collapse
Affiliation(s)
- Xiao-Qian Ding
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu-Qing Zou
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jian Liu
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xia-Chang Wang
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Hu
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiao Liu
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chao-Feng Zhang
- School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
10
|
Wang YH. Traditional Uses and Pharmacologically Active Constituents of Dendrobium Plants for Dermatological Disorders: A Review. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:465-487. [PMID: 33880726 PMCID: PMC8390561 DOI: 10.1007/s13659-021-00305-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/08/2021] [Indexed: 05/04/2023]
Abstract
Dendrobium Sw. is one of the largest genera in the orchidaceous family and includes 900-2000 species. Among them, more than 80 Dendrobium species have been reported in China. However, there are only six Dendrobium species, namely, D. bigibbum var. superbum (syn. D. phalaenopsis), D. chrysanthum, D. fimbriatum, D. loddigesii, D. nobile, and D. officinale (syn. D. candidum), listed in the New Inventory of Existing Cosmetic Ingredients in China Launched. Artificial planting of Dendrobium species has been a great success in China. To better utilize Dendrobium resources for medicinal and cosmetic purposes, we summarize their traditional uses and pharmacologically active compounds for treating dermatological disorders in this review. "Orchidaceae", "Dendrobium", "traditional use", "ethnobotany", "dermatological disorder", and "skin disease" were used as search terms to screen the literature. Cited references were collected between 1970 and 2020 from the Web of Science, China National Knowledge Internet (CNKI), SciFinder, Google Scholar, and Chinese books. From the search, it was found that there are 22 Dendrobium species with traditional uses in dermatological disorders, and 131 compounds from Dendrobium plants have been reported to possess anti-inflammatory, antimicrobial, antioxidant, antiaging, anti-psoriasis, and tyrosinase-inhibitory activities, implying that Dendrobium plants are important resources for the discovery of active compounds and the development of new drugs and cosmetics. D. crepidatum, D. denneanum, D. loddigesii, D. nobile, and D. officinale have been extensively studied. More research on other Dendrobium species is needed. The major active compounds found in Dendrobium species are phenanthrenes, alkaloids, flavonoids, phenylpropanoids, and lignans. Several compounds, such as loddigesiinol A, (S)-5-methoxy-2,4,7,9-tetrahydroxy-9,10-dihydrophenanthrene, (S)-4-methoxy-2,5,7,9-tetrahydroxy-9,10-dihydrophenanthrene, 2,5-dihydroxy-4-methoxy-phenanthrene 2-O-β-D-glucopyranoside, (9R)-1,2,5,9-tetrahydroxy-9,10-dihydrophenanthrene 5-O-β-D-glucopyranoside, (+)-homocrepidine A, and vicenin 2, have significant anti-inflammatory activities and inhibit nitric oxide (NO) production with IC50 values less than 5 μM, and these compounds are worthy of further study.
Collapse
Affiliation(s)
- Yue-Hu Wang
- Key Laboratory of Economic Plants and Biotechnology, The Yunnan Key Laboratory for Wild Plant Resources, and Bio-Innovation Center of DR PLANT, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, People's Republic of China.
| |
Collapse
|
11
|
Xue Z, Wang Y, Yu W, Zhang Z, Kou X. Research Advancement of Natural Active Components in Alleviating Lung Damage Induced by PM2.5. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1938602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Zhaohui Xue
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yumeng Wang
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Wancong Yu
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Zhijun Zhang
- National Engineering Technology Research Center for Preservation of Agricultural Products; Key Laboratory of Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Tianjin, China
| | - Xiaohong Kou
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
12
|
Mou Z, Zhao Y, Ye F, Shi Y, Kennelly EJ, Chen S, Zhao D. Identification, Biological Activities and Biosynthetic Pathway of Dendrobium Alkaloids. Front Pharmacol 2021; 12:605994. [PMID: 33959002 PMCID: PMC8096351 DOI: 10.3389/fphar.2021.605994] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
Dendrobium is a genus of flowering plants belonging to the Orchidaceae family with more than 1,400 species. Many Dendrobium species have been used as medicinal plants in several Asian countries for thousands of years. Alkaloids were reported as the major biological markers due to their complex chemical compositions and various types. In this review, we summarized the structural types of alkaloids, their pharmacological activities, as well as the mechanisms of biological activities. More than sixty alkaloids were isolated and identified from the Dendrobium genus. Moreover, the pharmacological effects of Dendrobium alkaloids as hepatic lipid and gluconeogenesis regulation, as neuroprotection, and as anti-tumor, anti-inflammatory, anti-diabetes, and anti-virus factors were described. Besides, the total chemical synthesis of dendrobine is provided, while the biosynthetic pathway of dendrobine has been proposed based on the functions of associated genes. For applications of these invaluable herbs, more researches on the extraction of biological markers from compounds are needed. Further confirmation of the proposed biosynthetic pathways is anticipated as well.
Collapse
Affiliation(s)
- Zongmin Mou
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Yi Zhao
- Department of Biological Sciences, Lehman College and The Graduate Center, City University of New York, Bronx, NY, United States.,Ph.D. Programs in Biochemistry, Biology, and Chemistry, The Graduate Center, City University of New York, New York, NY, United States
| | - Fei Ye
- Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, China
| | - Yana Shi
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, China.,Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Edward J Kennelly
- Department of Biological Sciences, Lehman College and The Graduate Center, City University of New York, Bronx, NY, United States.,Ph.D. Programs in Biochemistry, Biology, and Chemistry, The Graduate Center, City University of New York, New York, NY, United States
| | - Suiyun Chen
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Dake Zhao
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| |
Collapse
|
13
|
Amaral-Machado L, Oliveira WN, Rodrigues VM, Albuquerque NA, Alencar ÉN, Egito EST. Could natural products modulate early inflammatory responses, preventing acute respiratory distress syndrome in COVID-19-confirmed patients? Biomed Pharmacother 2021; 134:111143. [PMID: 33360048 PMCID: PMC7832252 DOI: 10.1016/j.biopha.2020.111143] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The ARDS (Acute Respiratory Distress Syndrome) is a severe respiratory syndrome that was recently associated as the main death cause in the COVID-19 pandemic outbreak. Hence, in order to prevent ARDS, the pulmonary function maintenance has been the target of several pharmacological approaches. However, there is a lack of reports regarding the use of effective pharmaceutical active natural products (PANPs) for early treatment and prevention of COVID-19-related ARDS. Therefore, the aim of this work was to conduct a systematic review regarding the PANPs that could be further studied as alternatives to prevent ARDS. Consequently, this work can pave the way to spread the use of PANPs on the prevention of ARDS in COVID-19-confirmed or -suspected patients. METHODS The search strategy included scientific studies published in English from 2015 to 2020 that promoted the elucidation of anti-inflammatory pathways targeting ARDS by in vitro and/or in vivo experiments using PANPs. Then, 74 studies regarding PANPs, able to maintain or improve the pulmonary function, were reported. CONCLUSIONS The PANPs may present different pulmonary anti-inflammatory pathways, wherein (i) reduction/attenuation of pro-inflammatory cytokines, (ii) increase of the anti-inflammatory mediators' levels, (iii) pulmonary edema inhibition and (iv) attenuation of lung injury were the most observed biological effects of such products in in vitro experiments or in clinical studies. Finally, this work highlighted the PANPs with promising potential to be used on respiratory syndromes, allowing their possible use as alternative treatment at the prevention of ARDS in COVID-19-infected or -suspected patients.
Collapse
Affiliation(s)
- Lucas Amaral-Machado
- Department of Pharmacy, Dispersed Systems Laboratory (LaSiD), Federal University of Rio Grande Do Norte (UFRN), 59012-570, Natal, RN, Brazil
| | | | | | | | - Éverton N Alencar
- Department of Pharmacy, Dispersed Systems Laboratory (LaSiD), Federal University of Rio Grande Do Norte (UFRN), 59012-570, Natal, RN, Brazil
| | - Eryvaldo S T Egito
- Department of Pharmacy, Dispersed Systems Laboratory (LaSiD), Federal University of Rio Grande Do Norte (UFRN), 59012-570, Natal, RN, Brazil; Graduate Program in Health Sciences, UFRN, 59012-570, Natal, RN, Brazil.
| |
Collapse
|
14
|
Ethnopharmacological Potential of Aspilia africana for the Treatment of Inflammatory Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8091047. [PMID: 32733588 PMCID: PMC7321516 DOI: 10.1155/2020/8091047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/23/2020] [Indexed: 02/07/2023]
Abstract
Inflammatory diseases are major health concerns affecting millions of people worldwide. Aspilia africana has been used for centuries by many African communities in the treatment of a wide range of health conditions, including inflammatory diseases, osteoporosis, rheumatic pains, and wounds. Analysis of the phytochemical composition of A. africana indicated that the plant is rich in a broad range of secondary metabolites, including flavonoids, alkaloids, tannins, saponins, terpenoids, sterols, phenolic compounds, and glycosides. This explains the efficacy of the plant in treating inflammation-related diseases, as well as several other health conditions affecting different African communities. The mechanisms of action of the anti-inflammatory phytochemical compounds in A. africana include inhibition of a number of physiological processes involved in the inflammatory process and synthesis or action of proinflammatory enzymes. The phytochemicals enhance anti-inflammatory biological responses such as inhibition of a number of chemical mediators including histamine, prostanoids and kinins, 5-lipoxygenase. and cyclooxygenase and activation of phosphodiesterase and transcriptase. Currently used anti-inflammatory medications are associated with several disadvantages such as drug toxicity and iatrogenic reactions, thereby complicating the treatment process. The adverse effects related to the use of these conventional synthetic drugs have been the driving force behind consideration of natural remedies, and efforts are being made toward the development of anti-inflammatory agents based on natural extracts. A. africana is rich in secondary metabolites, and its use as a traditional medicine for treating inflammatory diseases has been validated through in vitro and in vivo studies. Therefore, the plant could be further explored for potential development of novel anti-inflammatory therapeutics.
Collapse
|
15
|
Crepidtumines A and B, Two Novel Indolizidine Alkaloids from Dendrobium crepidatum. Sci Rep 2020; 10:9564. [PMID: 32533030 PMCID: PMC7293321 DOI: 10.1038/s41598-020-66552-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/24/2020] [Indexed: 11/25/2022] Open
Abstract
Two new indolizidine alkaloids crepidatumines A (1) and B (2) together with the stereoisomer of dendrocrepidine B (3) and known analog dendrocrepine (4) were isolated from D. crepidatum. Their structures were determined by HR-ESI-MS, NMR, and Electronic Circular Dichroism (ECD) experiments together with comparison of analogues. Compound (1) possess a (5/6/6/5) tetra-hetero-cyclic ring, whereas compound (2) contains a tricyclic system with an unusual bridged ring, which are the first report in Nature. The biological evaluation revealed that dendrocrepine (4) displayed a potent hypoglycemic effect in vitro.
Collapse
|
16
|
Hu Y, Yang H, Ding X, Liu J, Wang X, Hu L, Liu M, Zhang C. Anti-inflammatory octahydroindolizine alkaloid enantiomers from Dendrobium crepidatum. Bioorg Chem 2020; 100:103809. [PMID: 32361293 DOI: 10.1016/j.bioorg.2020.103809] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/25/2020] [Accepted: 03/29/2020] [Indexed: 11/30/2022]
Abstract
Six pairs of octahydroindolizine-type alkaloid enantiomers (1-6) including three new compounds [(-)-1/(+)-1, 2] were isolated from the stems of Dendrobium crepidatum. Their structures including the absolute configurations were elucidated by extensive spectroscopic analyses and comparison between the experimental and calculated electronic circular dichroism (ECD). All compounds were examined for their inhibitory effects on nitric oxide (NO) production induced by lipopolysaccharide (LPS) in RAW264.7 cells. It was found that compounds (+)-1, 2 and (+)-6 exhibited pronounced inhibition on NO production with IC50 values in the range of 3.62-16.11 µM, being more active than the positive control, dexamethasone (IC50 = 47.04 µM). In vivo, compound 6 (100, 50 and 10 mg/kg) showed protective effects against LPS-induced acute lung injury (ALI) in mice.
Collapse
Affiliation(s)
- Yang Hu
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China; Research Department of Pharmacognosy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Hua Yang
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Xiaoqian Ding
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Jian Liu
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Xiachang Wang
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Lihong Hu
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China.
| | - Minyan Liu
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China; Hebei Yiling Academy of Medical Limited Company, Shijiazhuang 050035, People's Republic of China.
| | - Chaofeng Zhang
- Research Department of Pharmacognosy, China Pharmaceutical University, Nanjing 211198, People's Republic of China.
| |
Collapse
|
17
|
Ding Z, Zhong R, Xia T, Yang Y, Xing N, Wang W, Wang Y, Yang B, Sun X, Shu Z. Advances in research into the mechanisms of Chinese Materia Medica against acute lung injury. Biomed Pharmacother 2019; 122:109706. [PMID: 31918277 DOI: 10.1016/j.biopha.2019.109706] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/30/2019] [Accepted: 11/24/2019] [Indexed: 12/13/2022] Open
Abstract
Acute lung injury (ALI) is a common and serious disease. Numerous treatment options are available but they do not improve quality of life or reduce mortality for ALI patients. Here, we review the treatments for ALI to provide basic data for ALI drug therapy research and development. Chinese Materia Medica (CMM) has long been the traditional clinical approach in China for the treatment of ALI and it has proven efficacy. The continued study of CMM has disclosed new potential therapeutic ingredients for ALI. However, few reviews summarize the currently available CMM-based anti-ALI drugs. Therefore, the systematic analysis of research progress in anti-ALI CMM is of great academic and clinical value. The aim of the present review is to describe CMM-based research progress in ALI treatment. Data were compiled by electronic retrieval (CNKI, SciFinder, PubMeds, Google Scholar, Web of Science) and from articles, patents and ethnopharmacological literature in university libraries were systematically studied. This review introduces progress in research on the etiology and mechanisms of ALI, the anti-ALI theory and modes of action in traditional Chinese medicine (TCM), anti-ALI active constituents of CMM, research progress in experimental methods of CMM anti-ALI, the anti-ALI molecular mechanisms of CMM, the anti-ALI efficacy of CMM formulae, and the potential toxicity of CMM and the antidotes for it. Scholars have investigated the anti-ALI molecular mechanism of CMM from various direction and have made substantial progress. This research explored the above aspects, enriched the anti-ALI theory of CMM and established the clinical significance and developmental prospects of ALI treatment by CMM. Because of the high frequency of drugs such as glucocorticoids or antibiotics, Western medicine lacks the advantages of CMM in terms of overall anti-ALI efficacy. In the future, the development of CMM-based anti-ALI therapies will become a major trend in the field of ALI drug development. Successful clinical safety and efficacy validations will promote and encourage the use of CMM. It provides fundamental theoretical support for the discovery and use of CMM resources through the comprehensive analysis of various anti-ALI CMM report databases.
Collapse
Affiliation(s)
- Zihe Ding
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Renxing Zhong
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Tianyi Xia
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanni Yang
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Na Xing
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wujing Wang
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yi Wang
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Bingyou Yang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zunpeng Shu
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| |
Collapse
|
18
|
Du HL, Zhai AD, Yu H. Synergistic effect of halofuginone and dexamethasone on LPS‑induced acute lung injury in type II alveolar epithelial cells and a rat model. Mol Med Rep 2019; 21:927-935. [PMID: 31974595 DOI: 10.3892/mmr.2019.10865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 11/09/2018] [Indexed: 11/09/2022] Open
Abstract
Acute lung injury (ALI) is characterized by neutrophilic infiltration, uncontrolled oxidative stress and inflammatory processes. Despite various therapeutic regimes having been performed, there remains no effective pharmacotherapy available to treat ALI. Halofuginone (HF), a ketone isolated from Dichroa febrifuga, exhibits significant anti‑inflammatory and antifibrotic effects. Dexamethasone (DEX), a synthetic glucocorticoid, has been routinely used as an adjuvant therapy in treating inflammatory diseases, including ALI. The present study aimed to investigate the effects of the combination of HF and DEX in the treatment of ALI. The present results suggested that the simultaneous administration of HF and DEX markedly decreased the level of pro‑inflammatory cytokines and increased the level of anti‑inflammatory cytokines, as assessed by western blot analysis. In addition, HF and DEX effectively decreased nuclear factor‑κB activity via suppressing the phosphorylation of P65 in lipopolysaccharide (LPS)‑induced human pulmonary alveolar epithelial cells (HPAEpiC) and lung tissues extracted from ALI rats, as determined by immunofluorescence. Furthermore, in vivo experiments demonstrated that the combination of HF and DEX in LPS‑induced ALI rats defended against lung fibrosis, perivascular inflammation, congestion and edema of pulmonary alveoli, as assessed by histopathological analysis, TUNEL staining and immunohistochemistry assay. Taken together, the present study indicated the synergistic effect of HF and DEX on LPS‑induced ALI in HPAEpiC cells and a rat model. These results offer a novel therapeutic approach for the treatment of ALI.
Collapse
Affiliation(s)
- Hai-Lian Du
- Department of Respiratory Medicine, Yidu Central Hospital Affiliated to Weifang Medical College, Qingzhou, Shandong 262500, P.R. China
| | - Ai-Dong Zhai
- Department of Internal Medicine, Maternal and Child Health Hospital of Zibo, Zibo, Shandong 255029, P.R. China
| | - Hong Yu
- Intensive Care Unit, Second Hospital of Harbin City, Harbin, Heilongjiang 150036, P.R. China
| |
Collapse
|
19
|
Wang Q, Liang J, Brennan C, Ma L, Li Y, Lin X, Liu H, Wu J. Anti‐inflammatory effect of alkaloids extracted from
Dendrobium aphyllum
on macrophage RAW 264.7 cells through NO production and reduced IL‐1, IL‐6, TNF‐α and PGE2 expression. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Qin Wang
- College of Light Industry and Food Zhongkai University of Agriculture and Engineering Guangzhou 510000 China
| | - Jiaxi Liang
- College of Light Industry and Food Zhongkai University of Agriculture and Engineering Guangzhou 510000 China
| | - Charles Brennan
- Beijing Key Laboratory of Flavor Chemistry Beijing Technology and Business University Beijing Beijing
| | - Lukai Ma
- College of Light Industry and Food Zhongkai University of Agriculture and Engineering Guangzhou 510000 China
| | - Yanfu Li
- College of Light Industry and Food Zhongkai University of Agriculture and Engineering Guangzhou 510000 China
| | - Xiaohui Lin
- College of Light Industry and Food Zhongkai University of Agriculture and Engineering Guangzhou 510000 China
| | - Huifan Liu
- College of Light Industry and Food Zhongkai University of Agriculture and Engineering Guangzhou 510000 China
| | - Jihong Wu
- Department of Wine, Food and Molecular biosciences University of Lincoln University of Lincoln New Zealand
| |
Collapse
|
20
|
Crepidatumines C and D, Two New Indolizidine Alkaloids from Dendrobium crepidatum Lindl. ex Paxt. Molecules 2019; 24:molecules24173071. [PMID: 31450800 PMCID: PMC6749285 DOI: 10.3390/molecules24173071] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/12/2019] [Accepted: 08/20/2019] [Indexed: 12/22/2022] Open
Abstract
Two new indolizidine alkaloids, crepidatumines C (1) and D (2), together with crepidine (3), isocrepidamine (4), and crepidamine (5) were isolated from the Dendrobium crepidatum Lindl. ex Paxt. X-ray diffraction experiments established the absolute configurations of known compounds 3 and 4. The planar structures and relative configurations of new compounds 1 and 2 were elucidated by extensive spectra analysis including HR-ESI-MS, NMR (1H, 13C, 1H-1H COSY, HSQC, HMBC, and NOESY spectra), and the absolute configurations of 1 and 2 were suggested on the basis of possible biosynthetic pathways. The biological results confirmed that isocrepidamine (4) displayed a potent hypoglycemic effect in vitro without cytotoxicity.
Collapse
|
21
|
Anti-bacterial activity of baicalin against APEC through inhibition of quorum sensing and inflammatory responses. Sci Rep 2019; 9:4063. [PMID: 30858423 PMCID: PMC6411720 DOI: 10.1038/s41598-019-40684-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/15/2019] [Indexed: 01/30/2023] Open
Abstract
Avian pathogenic Escherichia coli (APEC), collectively known as causative agent of extraintestinal infections, is an important cause of morbidity and mortality in poultry. Currently, quorum sensing (QS), biofilm formation and virulence factors are considered as novel prospective targets for antimicrobial therapy to control APEC invasion. In addition, inflammatory responses are also served as the major pathological features of APEC invasion. This study was aimed to explore the effect of baicalin on APEC and APEC-induced inflammatory responses. After treatment with baicalin, we mainly examined the AI-2 secretion, biofilm formation, expression of virulence genes of APEC, and the levels of inflammatory cytokines, as well as the expression of NF-κB pathway. Our results showed that baicalin significantly inhibited the QS via decreasing the AI-2 secretion, biofilm formation, and the expression of virulence genes of APEC such as LsrB, LsrK, LuxS, pfs, H-NS, fimA, fimB, fyuA, csgA, csgB, and rpoS. Moreover, baicalin significantly attenuated the release of lactate dehydrogenase (LDH), and the adhesion of APEC to chicken type II pneumocytes to reduce cell damage. Furthermore, baicalin also inhibited the expression of pro-inflammatory cytokines and NF-κB activation. Thus, our data revealed that baicalin could interfere with the quorum sensing, biofilm formation and virulence genes expression to relieve the APEC pathogenicity. Additionally, baicalin decreased the inflammatory responses of chicken type II pneumocytes induced by APEC. Taken together, these data provide a novel potential pharmaco-therapeutic approach to chicken colibacillosis.
Collapse
|
22
|
Hu X, Li H, Fu L, Liu F, Wang H, Li M, Jiang C, Yin B. The protective effect of hyperin on LPS-induced acute lung injury in mice. Microb Pathog 2018; 127:116-120. [PMID: 30502516 DOI: 10.1016/j.micpath.2018.11.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 01/09/2023]
Abstract
Hyperin, a flavonoid compound found in natural plants, has been reported that it have anti-inflammatory properties. However, the protective effects and mechanisms of hyperin on acute lung injury have not been reported so far. This research was designed to investigate the protective effects of hyperin on lipopolysaccharide-induced acute lung injury (ALI) in mice. The mice were stimulated with LPS in the presence or absence of hyperin and the MPO activity, lung wet/dry ratio, inflammatory cells in BALF, and cytokines, as well as NF-κB expression were assessed in lung tissue. Results showed that hyperin significantly inhibited LPS-induced histological changes, inflammatory cell infiltration, MPO activity and lung wet/dry ratio. Additionally, hyperin distinctly reduced the production of TNF-α, IL-1β and IL-6 and the activation of NF-κB signaling pathways in LPS-induced ALI in mice. In conclusion, hyperin is an effective suppressor of inflammation and may be a promising potential therapeutic reagent for ALI treatment.
Collapse
Affiliation(s)
- Xiansheng Hu
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, 132101, China; Key Lab of Preventive Veterinary Medicine in Jilin Province, Jilin, 132101, China.
| | - Hongjin Li
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, 132101, China
| | - Lianjun Fu
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, 132101, China
| | - Fang Liu
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, 132101, China
| | - Haiyang Wang
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, 132101, China
| | - Mushen Li
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, 132101, China
| | - Cheng Jiang
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, 132101, China
| | - Baishuang Yin
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, 132101, China.
| |
Collapse
|