1
|
Chen HT, Yuan XY, Wang ZY, Fan D, Luo XM, Yang JH, Ma YX, Liu J, Wang X, Wang ZM. Induction of apoptosis by oridonin in nonfunctioning pituitary adenoma cells. Drug Dev Res 2024; 85:e22251. [PMID: 39188035 DOI: 10.1002/ddr.22251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/01/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
Nonfunctioning pituitary adenoma (NFPA) is one of the major subtypes of pituitary adenomas (PA) and its primary treatment is surgical resection. However, normal surgery fails to remove lesions completely and there remains in lack of frontline treatment, so the development of new drugs for NFPA is no doubt urgent. Oridonin (ORI) has been reported to have antitumor effects on a variety of tumors, but whether it could exhibit the same effect on NFPA requires to be further investigated. The effects of ORI on pituitary-derived folliculostellate cell line (PDFS) cell viability, colony formation, proliferation ability, migration, and invasion were examined by Cell Counting Kit-8, colony formation assay, 5‑Ethynyl‑2'‑deoxyuridine proliferation assay, wound-healing assay, and Transwell assay. The differentially expressed genes in the control and ORI-treated groups were screened by transcriptome sequencing analysis and analyzed by Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment. Cell cycle analysis was performed to detect changes in cell cycle. Annexin V-fluorescein isothiocyanate/propidium iodide staining was performed to detect apoptosis in ORI-treated cells. Western blot assay was performed to detect Bax, Bcl-2, and cleaved Caspase-3 protein expression. ORI inhibited PDFS cell viability and significantly suppressed cell proliferation, migration, and invasion. GO and KEGG results showed that ORI was associated with signaling pathways such as cell cycle and apoptosis in PDFS cells. In addition, ORI blocked cells in G2/M phase and induced apoptosis in PDFS cells. ORI can trigger cell cycle disruption and apoptosis collaboratively in PDFS cells, making it a promising and effective agent for NFPA therapy.
Collapse
Affiliation(s)
- Hui-Tong Chen
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xing-Yi Yuan
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhong-Yu Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dong Fan
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiong-Ming Luo
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of LifeSciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Marine Pharmacy, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jun-Hua Yang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yu-Xin Ma
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jing Liu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xin Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zong-Ming Wang
- Pituitary Tumor Center, Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Zhao Y, Liang Y, Luo G, Li Y, Han X, Wen M. Sequence-Structure Analysis Unlocking the Potential Functional Application of the Local 3D Motifs of Plant-Derived Diterpene Synthases. Biomolecules 2024; 14:120. [PMID: 38254720 PMCID: PMC10813164 DOI: 10.3390/biom14010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/31/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Plant-derived diterpene synthases (PdiTPSs) play a critical role in the formation of structurally and functionally diverse diterpenoids. However, the specificity or functional-related features of PdiTPSs are not well understood. For a more profound insight, we collected, constructed, and curated 199 functionally characterized PdiTPSs and their corresponding 3D structures. The complex correlations among their sequences, domains, structures, and corresponding products were comprehensively analyzed. Ultimately, our focus narrowed to the geometric arrangement of local structures. We found that local structural alignment can rapidly localize product-specific residues that have been validated by mutagenesis experiments. Based on the 3D motifs derived from the residues around the substrate, we successfully searched diterpene synthases (diTPSs) from the predicted terpene synthases and newly characterized PdiTPSs, suggesting that the identified 3D motifs can serve as distinctive signatures in diTPSs (I and II class). Local structural analysis revealed the PdiTPSs with more conserved amino acid residues show features unique to class I and class II, whereas those with fewer conserved amino acid residues typically exhibit product diversity and specificity. These results provide an attractive method for discovering novel or functionally equivalent enzymes and probing the product specificity in cases where enzyme characterization is limited.
Collapse
Affiliation(s)
- Yalan Zhao
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (Y.Z.); (Y.L.); (G.L.); (X.H.)
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yupeng Liang
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (Y.Z.); (Y.L.); (G.L.); (X.H.)
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Gan Luo
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (Y.Z.); (Y.L.); (G.L.); (X.H.)
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yi Li
- College of Mathematics and Computer Science, Dali University, Dali 671003, China
| | - Xiulin Han
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (Y.Z.); (Y.L.); (G.L.); (X.H.)
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Mengliang Wen
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (Y.Z.); (Y.L.); (G.L.); (X.H.)
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| |
Collapse
|
3
|
Mu L, Li T, Wu PL, Cai LQ, Li SY, Wang ZY, Liu YY, Wang J, Yan D, Rao ZY, Wang CJ, Zhang J, Cao Y, Pan K, Yin ZQ. 5-epi-ent-Kaurane diterpenoids from the aerial parts of Isodon eriocalyx and their anti-atherosclerotic potential. PHYTOCHEMISTRY 2023; 209:113621. [PMID: 36893826 DOI: 10.1016/j.phytochem.2023.113621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The phytochemical investigation of the EtOAc extract from the aerial parts of Isodon eriocalyx afforded seventeen diterpenoids, including eight undescribed compounds. Eriocalyxins H-L have unique structural characteristics featuring a 5-epi-ent-kaurane diterpenoid scaffold with eriocalyxins H-K also possess an unusual 6,11-epoxyspiro-lactone ring while eriocalyxin L, a 1,7:3,20-diepoxy-ent kaurene, features an 1,7-oxygen linkage. The structures of these compounds were elucidated by spectroscopic data interpretation, and the absolute configurations of eriocalyxins H, I, L, and M were confirmed by single-crystal X-ray diffraction. The isolates were screened for their inhibitory activities against VCAM-1 and ICAM-1 at 5 μM. While eriocalyxin O, coetsoidin A and laxiflorin P were found to significantly inhibit both VCAM-1 and ICAM-1, 8 (17),13-ent-labdadien-15 → 16-lactone-19-oic acid displayed evidently inhibitory effect against ICAM-1.
Collapse
Affiliation(s)
- Long Mu
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Tian Li
- Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, China
| | - Peng-Lin Wu
- China Tobacco Jiangsu Industrial Co., Ltd, Nanjing, 210019, China
| | - Ling-Qiao Cai
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Shu-Ying Li
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Zi-Yuan Wang
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuan-Yuan Liu
- Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, China
| | - Jie Wang
- Instrumental Analysis Center of CPU, China Pharmaceutical University, Nanjing, 210009, China
| | - Dong Yan
- Institute of Drug Discovery, Hongyun Pharmaceutical Co., Ltd, Chengdu, PR China
| | - Zheng-Yun Rao
- Institute of Drug Discovery, Hongyun Pharmaceutical Co., Ltd, Chengdu, PR China
| | - Chao-Jun Wang
- Institute of Drug Discovery, Hongyun Pharmaceutical Co., Ltd, Chengdu, PR China
| | - Jian Zhang
- Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Yi Cao
- China Tobacco Jiangsu Industrial Co., Ltd, Nanjing, 210019, China.
| | - Ke Pan
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Zhi-Qi Yin
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
4
|
Sun Y, Shao J, Liu H, Wang H, Wang G, Li J, Mao Y, Chen Z, Ma K, Xu L, Wang Y. A chromosome-level genome assembly reveals that tandem-duplicated CYP706V oxidase genes control oridonin biosynthesis in the shoot apex of Isodon rubescens. MOLECULAR PLANT 2023; 16:517-532. [PMID: 36518072 DOI: 10.1016/j.molp.2022.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/17/2022] [Accepted: 12/08/2022] [Indexed: 06/09/2023]
Abstract
The ent-kaurenoids (e.g., oridonin and enmein) from the Isodon genus (Lamiaceae) are one class of diterpenoids with rich structural diversity and intriguing pharmaceutical activity. In contrast to the well-established gibberellin pathway, oxidative modifications diversifying the ent-kaurene skeleton in Isodon have remained undetermined for half a century. Here we report a chromosome-level genome assembly of I. rubescens, a well-recognized oridonin producer long favored by Asian people as a traditional herb with antitumor effects. The shoot apex was confirmed to be the actual region actively producing ent-kaurene diterpenoids. Through comparative genomics and phylogenetic analyses, we discovered a cluster of tandem-duplicated CYP706V oxygenase-encoding genes located on an ancient genomic block widely distributed in eudicots, whereas almost exclusively emerged in Isodon plants. In the shoot apex, IrCYP706V2 and IrCYP706V7 oxidized the ent-kaurene core in the initial stage of oridonin biosynthesis. Loss of CYP706Vs in other Lamiaceae plants offered an explanation for the specific kaurenoid production in Isodon plants. Moreover, we found that the Isodon genomes encode multiple diterpenoid synthases that are potentially involved in generating diterpenoid diversity. These findings provided new insights into the evolution of the lineage-specific diterpenoid pathway and laid a foundation for improving production of bioactive ent-kaurene-type diterpenoids by molecular breeding and synthetic biology approaches.
Collapse
Affiliation(s)
- Yuwei Sun
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jie Shao
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Haili Liu
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hua Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Guangyi Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jianhua Li
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yaping Mao
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhuo Chen
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Ke Ma
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yong Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
5
|
Yu Y, Shi S. Development and Perspective of Rhodotorula toruloides as an Efficient Cell Factory. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1802-1819. [PMID: 36688927 DOI: 10.1021/acs.jafc.2c07361] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Rhodotorula toruloides is receiving significant attention as a novel cell factory because of its high production of lipids and carotenoids, fast growth and high cell density, as well as the ability to utilize a wide variety of substrates. These attractive traits of R. toruloides make it possible to become a low-cost producer that can be engineered for the production of various fuels and chemicals. However, the lack of understanding and genetic engineering tools impedes its metabolic engineering applications. A number of research efforts have been devoted to filling these gaps. This review focuses on recent developments in genetic engineering tools, advances in systems biology for improved understandings, and emerging engineered strains for metabolic engineering applications. Finally, future trends and barriers in developing R. toruloides as a cell factory are also discussed.
Collapse
Affiliation(s)
- Yi Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
6
|
Synthesis, biological evaluation and cellular localization study of fluorescent derivatives of Jiyuan Oridonin A. Eur J Med Chem 2021; 229:114048. [PMID: 34954589 DOI: 10.1016/j.ejmech.2021.114048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 11/20/2022]
Abstract
Jiyuan Oridonin A (JOA) is a naturally occurring ent-kaurane diterpenoid that exhibits significant potential in the field of anti-tumor drug development. However, its detailed anti-cancer mechanism of action has not been fully understood. In order to investigate its anticancer mode of action, two series of novel fluorescent derivatives of JOA conjugated with naphthalimide dyes were synthesized, and their antitumor activity against five selected cancer cell lines (MGC-803, SW1990, PC-3, TE-1 and HGC-27) was evaluated. Compared with JOA, the anti-tumor activity of the vast majority of compounds were improved. Among them, B12 exhibited promising anti-proliferative activity against HGC-27 cells with IC50 value of 0.39 ± 0.09 μM. Fluorescence imaging studies demonstrated that probe B12 could enter HGC-27 cells in a dose-dependent and time-dependent manner and was mainly accumulated in mitochondria. Preliminary biological mechanism studies indicated that B12 was able to inhibit cell cloning and migration. Further studies suggested that B12-induced apoptosis was related to the mitochondrial pathway. Overall, our results provide new approaches to explore the molecular mechanism of the natural product JOA, which would contribute to its further development as an antitumor agent.
Collapse
|
7
|
Yang R, Du Z, Qiu T, Sun J, Shen Y, Huang L. Discovery and Functional Characterization of a Diverse Diterpene Synthase Family in the Medicinal Herb Isodon lophanthoides Var. gerardiana. PLANT & CELL PHYSIOLOGY 2021; 62:1423-1435. [PMID: 34133748 DOI: 10.1093/pcp/pcab089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 06/12/2023]
Abstract
Isodon lophanthoides var. gerardiana (Lamiaceae), also named xihuangcao, is a traditional Chinese medicinal herb that exhibits a broad range of pharmacological activities. Abietane-type diterpenoids are the characteristic constituents of I. lophanthoides, yet their biosynthesis has not been elucidated. Although the aerial parts are the most commonly used organs of I. lophanthoides, metabolite profiling by gas chromatography-mass spectrometry showed the underground parts also contain large amounts of labdane diterpenoids including abietatriene, miltiradiene and ferruginol, which are distinct from the 13-hydroxy-8(14)-abietene detected in the aerial parts. Comparative transcriptome analysis of root and leaf samples identified a diverse diterpene synthase family including 6 copalyl diphosphate synthase (IlCPS1-6) and 5 kaurene synthase-like (IlKSL1-5). Here we report the functional characterization of six of these enzymes using yeast heterologous expression system. Both IlCPS1 and IlCPS3 synthesized (+)-copalyl diphosphate (CPP), in combination with IlKSL1 resulted in miltiradiene, precursor of abietane-type diterpenoids, while coupling with IlKSL5 led to the formation of hydroxylated diterpene scaffold nezukol. Expression profiling and phylogenetic analysis further support the distinct evolutionary relationship and spatial distribution of IlCPS1 and IlCPS3. IlCPS2 converted GGPP into labda-7,13E-dien-15-ol diphosphate. IlCPS6 was identified as ent-CPS, indicating a role in gibberellin metabolism. We further identified a single residue that determined the water addition of nezukol synthase IlKSL5. Substitution of alanine 513 with isoleucine completely altered the product outcome from hydroxylated nezukol to isopimara-7,15-diene. Together, these findings elucidated the early steps of bioactive abietane-type diterpenoid biosynthesis in I. lophanthoides and the catalytic mechanism of nezukol synthase.
Collapse
Affiliation(s)
- Ruikang Yang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 12 Jichang Rd, Guangzhou 510405, China
| | - Zuying Du
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 12 Jichang Rd, Guangzhou 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Ting Qiu
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 12 Jichang Rd, Guangzhou 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jie Sun
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of biotechnology and bioengineering, Zhejiang University of Technology, 18 Chaowang Rd Hangzhou 310014, Zhejiang, China
| | - Yanting Shen
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, 232 Waihuan Rd, Guangzhou 510006, China
| | - Lili Huang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 12 Jichang Rd, Guangzhou 510405, China
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, 232 Waihuan Rd, Guangzhou 510006, China
| |
Collapse
|
8
|
Hu Z, Liu X, Tian M, Ma Y, Jin B, Gao W, Cui G, Guo J, Huang L. Recent progress and new perspectives for diterpenoid biosynthesis in medicinal plants. Med Res Rev 2021; 41:2971-2997. [PMID: 33938025 DOI: 10.1002/med.21816] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 12/25/2022]
Abstract
Diterpenoids, including more than 18,000 compounds, represent an important class of metabolites that encompass both phytohormones and some industrially relevant compounds. These molecules with complex, diverse structures and physiological activities, have high value in the pharmaceutical industry. Most medicinal diterpenoids are extracted from plants. Major advances in understanding the biosynthetic pathways of these active compounds are providing unprecedented opportunities for the industrial production of diterpenoids by metabolic engineering and synthetic biology. Here, we summarize recent developments in the field of diterpenoid biosynthesis from medicinal herbs. An overview of the pathways and known biosynthetic enzymes is presented. In particular, we look at the main findings from the past decade and review recent progress in the biosynthesis of different groups of ringed compounds. We also discuss diterpenoid production using synthetic biology and metabolic engineering strategies, and draw on new technologies and discoveries to bring together many components into a useful framework for diterpenoid production.
Collapse
Affiliation(s)
- Zhimin Hu
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiuyu Liu
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,School of Pharmaceutical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Mei Tian
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Ma
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baolong Jin
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Gao
- School of Pharmaceutical, Sciences, Capital Medical University, Beijing, China
| | - Guanghong Cui
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Juan Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
9
|
|
10
|
Li SY, Zhu LH, Rao ZY, Wang CJ, Jiang M, Zhang J, Yin ZQ. Two new 7, 20-epoxy- ent-kauranes from the aerial parts of Isodon eriocalyx. Nat Prod Res 2020; 35:3859-3864. [PMID: 32208769 DOI: 10.1080/14786419.2020.1744141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Two previously undescribed 7, 20-epoxy-ent-kauranes along with six known ent-kauranoids, were isolated from the aerial parts of Isodon eriocalyx. The structures of new compounds were established on the basis of extensive spectroscopic analyses. Compound 2 could inhibit the production of interleukin - 1β (IL - 1β) in monosodium urate (MSU) and lipopolysaccharide (LPS) induced macrophages.
Collapse
Affiliation(s)
- Shu-Ying Li
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, PR China
| | - Li-Hua Zhu
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, PR China.,Laboratory of Translational Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Zheng-Yun Rao
- Institute of Drug Discovery, Hongyun Pharmaceutical Co., Ltd, Chengdu, PR China
| | - Chao-Jun Wang
- Institute of Drug Discovery, Hongyun Pharmaceutical Co., Ltd, Chengdu, PR China
| | - Min Jiang
- Institute of Drug Discovery, Hongyun Pharmaceutical Co., Ltd, Chengdu, PR China
| | - Jian Zhang
- Laboratory of Translational Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Zhi-Qi Yin
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, PR China
| |
Collapse
|
11
|
Geiselman GM, Zhuang X, Kirby J, Tran-Gyamfi MB, Prahl JP, Sundstrom ER, Gao Y, Munoz Munoz N, Nicora CD, Clay DM, Papa G, Burnum-Johnson KE, Magnuson JK, Tanjore D, Skerker JM, Gladden JM. Production of ent-kaurene from lignocellulosic hydrolysate in Rhodosporidium toruloides. Microb Cell Fact 2020; 19:24. [PMID: 32024522 PMCID: PMC7003354 DOI: 10.1186/s12934-020-1293-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/23/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Rhodosporidium toruloides has emerged as a promising host for the production of bioproducts from lignocellulose, in part due to its ability to grow on lignocellulosic feedstocks, tolerate growth inhibitors, and co-utilize sugars and lignin-derived monomers. Ent-kaurene derivatives have a diverse range of potential applications from therapeutics to novel resin-based materials. RESULTS The Design, Build, Test, and Learn (DBTL) approach was employed to engineer production of the non-native diterpene ent-kaurene in R. toruloides. Following expression of kaurene synthase (KS) in R. toruloides in the first DBTL cycle, a key limitation appeared to be the availability of the diterpene precursor, geranylgeranyl diphosphate (GGPP). Further DBTL cycles were carried out to select an optimal GGPP synthase and to balance its expression with KS, requiring two of the strongest promoters in R. toruloides, ANT (adenine nucleotide translocase) and TEF1 (translational elongation factor 1) to drive expression of the KS from Gibberella fujikuroi and a mutant version of an FPP synthase from Gallus gallus that produces GGPP. Scale-up of cultivation in a 2 L bioreactor using a corn stover hydrolysate resulted in an ent-kaurene titer of 1.4 g/L. CONCLUSION This study builds upon previous work demonstrating the potential of R. toruloides as a robust and versatile host for the production of both mono- and sesquiterpenes, and is the first demonstration of the production of a non-native diterpene in this organism.
Collapse
Affiliation(s)
- Gina M Geiselman
- Department of Energy, Agile BioFoundry, Emeryville, CA, 94608, USA.,Department of Biomass Science and Conversion Technology, Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94550, USA
| | - Xun Zhuang
- Department of Energy, Agile BioFoundry, Emeryville, CA, 94608, USA.,Department of Biomass Science and Conversion Technology, Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94550, USA
| | - James Kirby
- Department of Energy, Agile BioFoundry, Emeryville, CA, 94608, USA.,Department of Biomass Science and Conversion Technology, Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94550, USA
| | - Mary B Tran-Gyamfi
- Department of Energy, Agile BioFoundry, Emeryville, CA, 94608, USA.,Department of Biomass Science and Conversion Technology, Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94550, USA
| | - Jan-Philip Prahl
- Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Eric R Sundstrom
- Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yuqian Gao
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Nathalie Munoz Munoz
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Carrie D Nicora
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Derek M Clay
- Department of Energy, Agile BioFoundry, Emeryville, CA, 94608, USA.,Department of Biomass Science and Conversion Technology, Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94550, USA
| | - Gabriella Papa
- Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kristin E Burnum-Johnson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Jon K Magnuson
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Deepti Tanjore
- Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | | | - John M Gladden
- Department of Energy, Agile BioFoundry, Emeryville, CA, 94608, USA. .,Department of Biomass Science and Conversion Technology, Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94550, USA.
| |
Collapse
|