1
|
Wu H, Mo W, Li Y, Zhang L, Cao Y. VfLRR-RLK1 benefiting resistance to Fusarium oxysporum reveals infection and defense mechanisms in tung tree. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1707-1718. [PMID: 39506998 PMCID: PMC11534942 DOI: 10.1007/s12298-024-01512-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 11/08/2024]
Abstract
Fusarium wilt, caused by Fusarium oxysporum f. sp. fordiis in Vernicia fordii, manifests as severe symptoms that significantly reduce global tung oil yield. However, the molecular-mechanisms of the Vernicia-Fusarium interaction are yet to be fully elucidated. Here, we cloned VfLRR-RLK1 from tung tree roots, which contained 1134 bp, encoding 378 AA. To further analyze VfLRR-RLK1 function in resistance to Fusarium wilt, we obtained stable T4-generation transgenic Arabidopsis thaliana and tung tree VfLRR-RLK1 virus-induced gene silencing (VIGS) RNAi plants. A. thaliana plants overexpressing VfLRR-RLK1 exhibited more robust root development and markedly increased Fusarium wilt disease resistance. In response to Fusarium wilt stress, transgenic A. thaliana exhibited increased catalase (CAT) and superoxide dismutase (SOD) enzyme activities, while showing reduced O2 - and hydrogen peroxide (H2O2) accumulation. The findings suggest that VfLRR-RLK1 may diminish plant reactive oxygen species (ROS) levels and foster root development by activating the ROS antioxidant scavenging system during plant Pattern Triggered Immunity responses, enhancing resistance to Fusarium wilt. The study on the function of VfLRR-RLK1 is crucial in breeding programs aimed at developing tung tree resistant to Fusarium wilt, and lays the groundwork for more effective disease management strategies and the cultivation of tung tree varieties with enhanced resistance to this disease. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01512-y.
Collapse
Affiliation(s)
- Haibo Wu
- School of Health and Nursing, Wuchang University of Technology, Wuhan, China
| | - Wanzhen Mo
- College of Forestry, Central South University of Forestry and Technology, Changsha, 410004 Hunan China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Wuhan, 430074 China
| | - Yanli Li
- College of Forestry, Central South University of Forestry and Technology, Changsha, 410004 Hunan China
| | - Lin Zhang
- Hubei Shizhen Laboratory, Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065 China
| | - Yunpeng Cao
- College of Forestry, Central South University of Forestry and Technology, Changsha, 410004 Hunan China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Wuhan, 430074 China
| |
Collapse
|
2
|
Li Y, Xiao L, Cao H, Cao Y, Zhang L. Phylogenomics and functional analysis of Glycerol-3-Phosphate Acyltransferase (GPAT) Genes: A critical role in lipid biosynthesis. PHYSIOLOGIA PLANTARUM 2024; 176:e14509. [PMID: 39210744 DOI: 10.1111/ppl.14509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/16/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
The tung tree (Vernicia fordii Hemsl.), an economically important woody plant, is widely planted for the production of high-quality tung oil. Glycerol-3-phosphate acyltransferases (GPATs), the rate-limiting enzymes in triacylglycerol synthesis, play an important role in seed oil biosynthesis. In this study, we performed a genome-wide analysis of VfGPATs. A total of 9 VfGPATs were identified from the whole tung genome, and phylogenetic analysis divided the VfGPATs into three major clades: clade II (VfGPAT9), clade III (VfATS1) and clade IV (VfGPAT1 ~ 8). Subcellular localization analysis revealed that five VfGPATs (1, 5, 6, 8, and 9) are localized in the endoplasmic reticulum, and four VfGPATs (3-1, 3-2, 3-3, and ATS1) are localized in the chloroplast. Overexpression of VfGPATs in Arabidopsis thaliana revealed that the oil content in VfGPAT8- and VfGPAT9-transgenic plants were significantly increased by 26.60 and 55.94% compared to the wild-type. Transient expression of VfGPAT8 + VfFADX and VfGPAT9 + VfFADX could promote the synthesis of α-eleostearic acid and enhance the accumulation of lipid droplets in tobacco (Nicotiana benthamiana) leaves. We further tested the enzymatic activities of VfGPAT8 and VfGPAT9 with the yeast double mutant strain ZAFU1. The results showed that VfGPAT8 complemented the phosphatidate biosynthetic defect in the double mutant, while VfGPAT9 could not, suggesting that VfGPAT8 has a high acetyltransferase activity. However, altering serine (S) residue at position 113 of VfGPAT9 to threonine (T) could restore its enzymatic activity. This study provided important insights into the evolutionary history of VfGPATs and will promote the genetic improvement of tung trees and related species.
Collapse
Affiliation(s)
- Yanli Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Lichuan Xiao
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Heping Cao
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, USA
| | - Yunpeng Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Lin Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, China
| |
Collapse
|
3
|
Cao Y, Mo W, Li Y, Xiong Y, Wang H, Zhang Y, Lin M, Zhang L, Li X. Functional characterization of NBS-LRR genes reveals an NBS-LRR gene that mediates resistance against Fusarium wilt. BMC Biol 2024; 22:45. [PMID: 38408951 PMCID: PMC10898138 DOI: 10.1186/s12915-024-01836-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/25/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Most disease resistance (R) genes in plants encode proteins that contain leucine-rich-repeat (LRR) and nucleotide-binding site (NBS) domains, which belong to the NBS-LRR family. The sequenced genomes of Fusarium wilt-susceptible Vernicia fordii and its resistant counterpart, Vernicia montana, offer significant resources for the functional characterization and discovery of novel NBS-LRR genes in tung tree. RESULTS Here, we identified 239 NBS-LRR genes across two tung tree genomes: 90 in V. fordii and 149 in V. montana. Five VmNBS-LRR paralogous were predicted in V. montana, and 43 orthologous were detected between V. fordii and V. montana. The orthologous gene pair Vf11G0978-Vm019719 exhibited distinct expression patterns in V. fordii and V. montana: Vf11G0978 showed downregulated expression in V. fordii, while its orthologous gene Vm019719 demonstrated upregulated expression in V. montana, indicating that this pair may be responsible for the resistance to Fusarium wilt in V. montana. Vm019719 from V. montana, activated by VmWRKY64, was shown to confer resistance to Fusarium wilt in V. montana by a virus-induced gene silencing (VIGS) experiment. However, in the susceptible V. fordii, its allelic counterpart, Vf11G0978, exhibited an ineffective defense response, attributed to a deletion in the promoter's W-box element. CONCLUSIONS This study provides the first systematic analysis of NBS-LRR genes in the tung tree and identifies a candidate gene that can be utilized for marker-assisted breeding to control Fusarium wilt in V. fordii.
Collapse
Affiliation(s)
- Yunpeng Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- School of Health and Nursing, Wuchang University of Technology, Wuhan, China.
- Forestry College, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Wanzhen Mo
- Forestry College, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yanli Li
- Forestry College, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yao Xiong
- Forestry College, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Han Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yingjie Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Mengfei Lin
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, 330224, China.
| | - Lin Zhang
- School of Health and Nursing, Wuchang University of Technology, Wuhan, China.
- Hubei Shizhen Laboratory, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Xiaoxu Li
- Beijing Life Science Academy, Beijing, 102209, China.
| |
Collapse
|
4
|
Cao Y, Li X, Song H, Abdullah M, Manzoor MA. Editorial: Multi-omics and computational biology in horticultural plants: from genotype to phenotype, volume II. FRONTIERS IN PLANT SCIENCE 2024; 15:1368909. [PMID: 38371409 PMCID: PMC10869615 DOI: 10.3389/fpls.2024.1368909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/24/2024] [Indexed: 02/20/2024]
Affiliation(s)
- Yunpeng Cao
- School of Health and Nursing, Wuchang University of Technology, Wuhan, China
| | - Xiaoxu Li
- Beijing Life Science Academy, Beijing, China
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Hui Song
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Muhammad Abdullah
- Queensland Alliance of Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Cao Y, Fan T, Wang L, Zhang L, Li Y. Large-scale analysis of putative Euphorbiaceae R2R3-MYB transcription factors identifies a MYB involved in seed oil biosynthesis. BMC PLANT BIOLOGY 2023; 23:145. [PMID: 36927311 PMCID: PMC10022305 DOI: 10.1186/s12870-023-04163-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND MYB transcription factors are widely distributed in the plant kingdom and play key roles in regulatory networks governing plant metabolism and biochemical and physiological processes. RESULTS Here, we first determined the R2R3-MYB genes in five Euphorbiaceae genomes. The three Trp (W) residues from the first MYB domain (R2) were absolutely conserved, whereas the first W residue from the second MYB domain (R3) was preferentially mutated. The R2R3-MYBs were clustered into 48 functional subfamilies, of which 34 had both R2R3-MYBs of Euphorbiaceae species and AtMYBs, and four contained only Euphorbiaceae R2R3-MYBs. The whole-genome duplication (WGD) and/or segmental duplication (SD) played key roles in the expansion of the R2R3-MYB family. Unlike paralogous R2R3-MYB family members, orthologous R2R3-MYB members contained a higher selective pressure and were subject to a constrained evolutionary rate. VfMYB36 was specifically expressed in fruit, and its trend was consistent with the change in oil content, indicating that it might be involved in oil biosynthesis. Overexpression experiments showed that VfMYB36 could significantly provide linolenic acid (C18:3) content, which eventually led to a significant increase in oil content. CONCLUSION Our study first provides insight into understanding the evolution and expression of R2R3-MYBs in Euphorbiaceae species, and also provides a target for the production of biomass diesel and a convenient way for breeding germplasm resources with high linolenic acid content in the future.
Collapse
Affiliation(s)
- Yunpeng Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, 430074 Wuhan, China
- School of Health and Nursing, Wuchang University of Technology, Wuhan, China
- Forestry College, Central South University of Forestry and Technology, 410004 Changsha, Hunan China
| | - Tingting Fan
- Forestry College, Central South University of Forestry and Technology, 410004 Changsha, Hunan China
| | - Lihu Wang
- College of Landscape and Ecological Engineering, Hebei University of Engineering, 056009 Handan, China
| | - Lin Zhang
- School of Health and Nursing, Wuchang University of Technology, Wuhan, China
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, 430065 Wuhan, China
| | - Yanli Li
- Forestry College, Central South University of Forestry and Technology, 410004 Changsha, Hunan China
| |
Collapse
|
6
|
Cao Y, Li Q, Zhang L. The core triacylglycerol toolbox in woody oil plants reveals targets for oil production bioengineering. FRONTIERS IN PLANT SCIENCE 2023; 14:1170723. [PMID: 37077641 PMCID: PMC10106636 DOI: 10.3389/fpls.2023.1170723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Woody oil plants are the most productive oil-bearing species that produce seeds with high levels of valuable triacylglycerols (TAGs). TAGs and their derivatives are the raw materials for many macromolecular bio-based products, such as nylon precursors, and biomass-based diesel. Here, we identified 280 genes encoding seven distinct classes of enzymes (i.e., G3PAT, LPAAT, PAP, DGAT, PDCT, PDAT, and CPT) involved in TAGs-biosynthesis. Several multigene families are expanded by large-scale duplication events, such as G3PATs, and PAPs. RNA-seq was used to survey the expression profiles of these TAG pathway-related genes in different tissues or development, indicating functional redundancy for some duplicated genes originated from the large-scale duplication events, and neo-functionalization or sub-functionalization for some of them. Sixty-two genes showed strong, preferential expression during the period of rapid seed lipid synthesis, suggesting that their might represented the core TAG-toolbox. We also revealed for the first time that there is no PDCT pathway in Vernicia fordii and Xanthoceras sorbifolium. The identification of key genes involved in lipid biosynthesis will be the foundation to plan strategies to develop woody oil plant varieties with enhanced processing properties and high oil content.
Collapse
Affiliation(s)
- Yunpeng Cao
- School of Health and Nursing, Wuchang University of Technology, Wuhan, China
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China
- *Correspondence: Yunpeng Cao, ; Lin Zhang,
| | - Qiang Li
- School of Health and Nursing, Wuchang University of Technology, Wuhan, China
| | - Lin Zhang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
- *Correspondence: Yunpeng Cao, ; Lin Zhang,
| |
Collapse
|
7
|
Cao Y, Fan T, Zhang B, Li Y. Dissection of leucine-rich repeat receptor-like protein kinases: insight into resistance to Fusarium wilt in tung tree. PeerJ 2022; 10:e14416. [PMID: 36590451 PMCID: PMC9798904 DOI: 10.7717/peerj.14416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/28/2022] [Indexed: 11/21/2022] Open
Abstract
The tung tree is a woody oil plant native to China and widely distributed in the subtropics. The three main species commonly known as Vernicia are V. fordii, V. montana, and V. cordata. The growth and development of V. fordii are affected by a large number of plant pathogens, such as Fusarium wilt caused by Fusarium sp. In contrast, V. montana shows significant resistance to Fusarium wilt. The leucine-rich repeat receptor-like protein kinase (LRR-RLK) is the largest class of receptor-like kinases associated with plant resistance to Fusarium wilt. Here, we identified 239 VmLRR-RLKs in V. montana, and found that there were characteristic domains of resistance to Fusarium wilt in them. Phylogenetic analysis suggested that the VmLRR-RLKs are divided into 14 subfamilies, indicating that homologous genes in the same group may have similar functions. Chromosomal localization analysis showed that VmLRR-RLKs were unevenly distributed on chromosomes, and segment duplications were the main reason for the expansion of VmLRR-RLK family members. The transcriptome data showed that six orthologous pairs were up-regulated in V. montana in response to Fusarium wilt, while the corresponding orthologous genes showed low or no expression in V. fordii in resistance Fusarium wilt, further indicating the important role of LRR-RLKs in V. montana's resistance to infection by Fusarium spp. Our study provides important reference genes for the future use of molecular breeding to improve oil yield and control of Fusarium wilt in tung tree.
Collapse
Affiliation(s)
- Yunpeng Cao
- School of Health and Nursing, Wuchang University of Technology, Wuhan, China,School of Forestry, Central South University of Forestry and Technology, Changsha, China,Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Tingting Fan
- School of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Bo Zhang
- School of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Yanli Li
- School of Forestry, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
8
|
Soltabayeva A, Dauletova N, Serik S, Sandybek M, Omondi JO, Kurmanbayeva A, Srivastava S. Receptor-like Kinases (LRR-RLKs) in Response of Plants to Biotic and Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192660. [PMID: 36235526 PMCID: PMC9572924 DOI: 10.3390/plants11192660] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 05/14/2023]
Abstract
Plants live under different biotic and abiotic stress conditions, and, to cope with the adversity and severity, plants have well-developed resistance mechanisms. The mechanism starts with perception of the stimuli followed by molecular, biochemical, and physiological adaptive measures. The family of LRR-RLKs (leucine-rich repeat receptor-like kinases) is one such group that perceives biotic and abiotic stimuli and also plays important roles in different biological processes of development. This has been mostly studied in the model plant, Arabidopsis thaliana, and to some extent in other plants, such as Solanum lycopersicum, Nicotiana benthamiana, Brassica napus, Oryza sativa, Triticum aestivum, Hordeum vulgare, Brachypodium distachyon, Medicago truncatula, Gossypium barbadense, Phaseolus vulgaris, Solanum tuberosum, and Malus robusta. Most LRR-RLKs tend to form different combinations of LRR-RLKs-complexes (dimer, trimer, and tetramers), and some of them were observed as important receptors in immune responses, cell death, and plant development processes. However, less is known about the function(s) of LRR-RLKs in response to abiotic and biotic stresses. Here, we give recent updates about LRR-RLK receptors, specifically focusing on their involvement in biotic and abiotic stresses in the model plant, A. thaliana. Furthermore, the recent studies on LRR-RLKs that are homologous in other plants is also reviewed in relation to their role in triggering stress response processes against biotic and abiotic stimuli and/or in exploring their additional function(s). Furthermore, we present the interactions and combinations among LRR-RLK receptors that have been confirmed through experiments. Moreover, based on GENEINVESTIGATOR microarray database analysis, we predict some potential LRR-RLK genes involved in certain biotic and abiotic stresses whose function and mechanism may be explored.
Collapse
Affiliation(s)
- Aigerim Soltabayeva
- Biology Department, School of Science and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
- Correspondence:
| | - Nurbanu Dauletova
- Biology Department, School of Science and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Symbat Serik
- Biology Department, School of Science and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Margulan Sandybek
- Biology Department, School of Science and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - John Okoth Omondi
- International Institute of Tropical Agriculture, Lilongwe P.O. Box 30258, Malawi
| | - Assylay Kurmanbayeva
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan
| | - Sudhakar Srivastava
- NCS-TCP, National Institute of Plant Genome Research, New Delhi 110067, India
| |
Collapse
|
9
|
Jiang L, Lin M, Wang H, Song H, Zhang L, Huang Q, Chen R, Song C, Li G, Cao Y. Haplotype-resolved genome assembly of Bletilla striata (Thunb.) Reichb.f. to elucidate medicinal value. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1340-1353. [PMID: 35785503 DOI: 10.1111/tpj.15892] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Bletilla striata, commonly known as baiji, is a species used in traditional Chinese medicine; it is highly regarded for its medicinal applications and therefore has high economic value. Here, we report a high-quality haplotype-resolved genome of B. striata, haplotype A (2.37 Gb, with a scaffold N50 of 146.39 Mb and a contig N50 of 1.65 Mb) and haplotype B (2.43 Gb, with a scaffold N50 of 150.22 Mb and a contig N50 of 1.66 Mb), assembled from high-fidelity (HiFi) reads and chromosome conformation capture (Hi-C) reads. We find evidence that B. striata has undergone two whole-genome duplication (WGD) events: an ancient WGD event shared by most monocots and a recent WGD event unique to all orchids. We also reconstructed the ancestral orchid karyotype (AOK) of 18 ancient chromosomes and the evolutionary trajectories of 16 modern B. striata chromosomes. Comparative genomic analysis suggests that the expanded gene families of B. striata might play important roles in secondary metabolite biosynthesis and environmental adaptation. By combining genomic and transcriptomic data, we identified the 10 core members from nine gene families that were probably involved in B. striata polysaccharide (BSP) biosynthesis. Based on virus-induced gene silencing (VIGS) and yeast two-hybrid experiments, we present an MYB transcription factor (TF), BsMYB2, that can regulate BSP biosynthesis by directly interacting with eight key BSP-related genes: sacA1, HK1, scrK1, scrK2, GPI1, manA1, GMPP1 and UGP2_1. Our study will enhance the understanding of orchid evolution and accelerate the molecular-assisted breeding of B. striata for improving traits of medicinal value.
Collapse
Affiliation(s)
- Lan Jiang
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Yijishan Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Mengfei Lin
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, 330224, Jiangxi, China
| | - Han Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Hui Song
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lin Zhang
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Qingyu Huang
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Renrui Chen
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Cheng Song
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Guohui Li
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Yunpeng Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
10
|
Cao Y, Li Y, Wang L, Zhang L, Jiang L. Evolution and function of ubiquitin-specific proteases (UBPs): Insight into seed development roles in tung tree (Vernicia fordii). Int J Biol Macromol 2022; 221:796-805. [PMID: 36037910 DOI: 10.1016/j.ijbiomac.2022.08.163] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/19/2022]
Abstract
The tung oil produced by the tung tree (Vernicia fordii) provides resources for the manufacture of biodiesel. Ubiquitin-specific proteases (UBPs) are the largest group of deubiquitinases and play key roles in regulating development and stress responses. Here, 21 UBPs were identified in V. fordii, roughly one-half the number found in Manihot esculenta and Hevea brasiliensis. Most UBP duplications are produced from whole-genome duplication (WGD), and significant differences in gene retention existed among Euphorbiaceae. The great majority of UBP-containing blocks in V. fordii, V. montana, Ricinus communis, and Jatropha curcas exhibited extensive conservation with the duplicated regions of M. esculenta and H. brasiliensis. These blocks formed 14 orthologous groups, indicating they shared WGD with UBPs in M. esculenta and H. brasiliensis, but most of these UBPs copies were lost. The UBP orthologs contained significant functional divergence which explained the susceptibility of V. fordii to Fusarium wilt and the resistance of V. montana to Fusarium wilt. The expression patterns and experiments suggested that Vf03G1417 could affect the seed-related traits and positively regulate the seed oil accumulation. This study provided important insights into the evolution of UBPs in Euphorbiaceae and identified important candidate VfUBPs for marker-assisted breeding in V. fordii.
Collapse
Affiliation(s)
- Yunpeng Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China; College of Forestry, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Yanli Li
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Lihu Wang
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Lin Zhang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, 430000 Wuhan, China.
| | - Lan Jiang
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Yijishan Hospital of Wannan Medical College, Wuhu 241000, China.
| |
Collapse
|
11
|
Jia H, Chen J, Zhang L, Zhang L. The First Report on Transgenic Hairy Root Induction from the Stem of Tung Tree (Vernicia fordii). PLANTS 2022; 11:plants11101315. [PMID: 35631740 PMCID: PMC9148109 DOI: 10.3390/plants11101315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/10/2022] [Accepted: 05/14/2022] [Indexed: 11/17/2022]
Abstract
Tung tree (Vernicia fordii) is an industrially important oil-bearing woody plant of the Euphorbiaceae family. Functional studies of tung tree at the molecular level are limited by the lack of an efficient transgenic system. The Agrobacterium rhizogenes-mediated hairy root generation system is an alternative to typical plant transformation systems. However, its application in many plants has been blocked due to the inability of existing methods to induce hairy roots. Thus, it is critical to build a method suitable for the hairy induction of the specific plant of interest. In this study, a modified method for tung tree was developed, and it is the first report that hairy roots could be effectively induced in the stem of tung tree. With the method, an average of 10.7 hairy roots per seedling were generated in tung tree, approximately 67% of seedlings produced transgenic hairy roots and approximately 13.96% of the hairy roots of these seedlings were transgenic. This modified method is also suitable for the hairy root induction of two other oil-bearing plants of the Euphorbiaceae family, Ricinus communis and Vernicia montana. This modified method will accelerate functional studies of tung tree at the molecular level and also shed light on plants lacking a transgenic system.
Collapse
Affiliation(s)
- Hongyu Jia
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, College of Forestry, Central South University of Forestry and Technology, Changsha 410000, China; (H.J.); (J.C.)
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Junjie Chen
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, College of Forestry, Central South University of Forestry and Technology, Changsha 410000, China; (H.J.); (J.C.)
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Lin Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, College of Forestry, Central South University of Forestry and Technology, Changsha 410000, China; (H.J.); (J.C.)
- Correspondence: (L.Z.); (L.Z.); Tel.: +86-139-0846-8074 (L.Z.); +86-151-7242-2085 (L.Z.)
| | - Lingling Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
- Correspondence: (L.Z.); (L.Z.); Tel.: +86-139-0846-8074 (L.Z.); +86-151-7242-2085 (L.Z.)
| |
Collapse
|
12
|
Li Y, Jiang L, Mo W, Wang L, Zhang L, Cao Y. AHLs' life in plants: Especially their potential roles in responding to Fusarium wilt and repressing the seed oil accumulation. Int J Biol Macromol 2022; 208:509-519. [PMID: 35341887 DOI: 10.1016/j.ijbiomac.2022.03.130] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/27/2021] [Accepted: 03/20/2022] [Indexed: 01/04/2023]
Abstract
Members of the AT-hook motif nuclear localized (AHL) family contain diverse but poorly understood biological functions. We identified 371 AHLs in 20 land plants, varying from the early diverging lycophyte Selagineila moellendorfi to a variety of higher plants. The AHLs were divided into two clades (Clade-A and Clade-B) with three different types (Type-I, Type-II, and Type-III AHLs). The divergence between Clade-A and Clade-B likely occurred before the separation of S. moellendorfi from the vascular plant lineages. Members of the AHLs family expanded with the specific whole-genome duplication (WGD)/segmental duplication in some genomes, such as Hevea brasiliensis. The ortholog (Vf00G1914/Amo018442) exhibited opposite expression patterns between two Vernicia species (V. fordii and V. montana), indicating that it was implicated in resistance to Fusarium wilt disease. The expression of Vf09G2138 exhibited a negative correlation with lipid biosynthesis in V. fordii seeds during different stages of development, suggesting that this gene might repress the seed oil accumulation. The core AT-hook motif and PPC domain were responsible for guiding the localization of AHL in the nucleus. This study helps us to understand the evolution of AHLs in multiple plants, further highlight their functions during V. fordii seed development and response to Fusarium wilt disease.
Collapse
Affiliation(s)
- Yanli Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Lan Jiang
- Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| | - Wanzhen Mo
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Lihu Wang
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Lin Zhang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, 430000 Wuhan, China
| | - Yunpeng Cao
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| |
Collapse
|