1
|
Fan H, Huang G, Guo Q, Ma J, Huang Y, Huang S, Wei M, Xie C, Yan B, Zhao S, Chen G, Zheng J, Zhou Z, Gao H. Bioactive Phenylpropanoid Glycosides, Dimers, and Heterodimers from the Bark of Cinnamomum cassia (L.) J.Presl. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16263-16275. [PMID: 38953591 DOI: 10.1021/acs.jafc.4c02129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Six new phenylpropanoid glycosides (1-6), two new phenylethanol glycosides (7 and 8), one new phenylmethanol glycoside (9), three new phenylpropanoid dimers (10-12), two new phenylpropanoid-flavan-3-ol heterodimers (13 and 14), and six known relevant compounds (15-20) were isolated and identified from the well-liked edible and medicinal substance (the bark of Cinnamomum cassia (L.) J.Presl). The structures of these isolates were determined by using spectroscopic analyses, chemical methods, and quantum chemical calculations. Notably, compounds 4-9 were rare apiuronyl-containing glycosides, and compounds 13 and 14 were heterodimers of phenylpropanoids and flavan-3-ols linked through C-9″-C-8 bonds. The antioxidant and α-glucosidase inhibitory activities of all isolates were evaluated. Compounds 10 and 12 exhibited DPPH radical scavenging capacities with IC50 values of 20.1 and 13.0 μM, respectively (vitamin C IC50 value of 14.3 μM). In the ORAC experiment, all these compounds exhibited different levels of capacity for scavenging free radicals, and compound 10 displayed extraordinary free radical scavenging capacity with the ORAC value of 6.42 ± 0.01 μM TE/μM (EGCG ORAC value of 1.54 ± 0.02 μM TE/μM). Compound 12 also showed significant α-glucosidase inhibitory activity with an IC50 of 56.3 μM (acarbose IC50 of 519.4 μM).
Collapse
Affiliation(s)
- Hongxia Fan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Gengfeng Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Qi Guo
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, People's Republic of China
| | - Jiahui Ma
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Yujing Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Shangxiong Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Meiwen Wei
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, People's Republic of China
| | - Caihong Xie
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Bingbing Yan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Suqing Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Guodong Chen
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, People's Republic of China
| | - Junxia Zheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Zhengqun Zhou
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, People's Republic of China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, People's Republic of China
| |
Collapse
|
2
|
Fukuyama Y, Kubo M, Harada K. Neurotrophic Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 123:1-473. [PMID: 38340248 DOI: 10.1007/978-3-031-42422-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Neurotrophins (NGF, BDNF, NT3, NT4) can decrease cell death, induce differentiation, as well as sustain the structure and function of neurons, which make them promising therapeutic agents for the treatment of neurodegenerative disorders. However, neurotrophins have not been very effective in clinical trials mostly because they cannot pass through the blood-brain barrier owing to being high-molecular-weight proteins. Thus, neurotrophin-mimic small molecules, which stimulate the synthesis of endogenous neurotrophins or enhance neurotrophic actions, may serve as promising alternatives to neurotrophins. Small-molecular-weight natural products, which have been used in dietary functional foods or in traditional medicines over the course of human history, have a great potential for the development of new therapeutic agents against neurodegenerative diseases such as Alzheimer's disease. In this contribution, a variety of natural products possessing neurotrophic properties such as neurogenesis, neurite outgrowth promotion (neuritogenesis), and neuroprotection are described, and a focus is made on the chemistry and biology of several neurotrophic natural products.
Collapse
Affiliation(s)
- Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| |
Collapse
|
3
|
Lee TH, Yoon DH, Park KJ, Hong SM, Kim M, Kim SY, Kim CS, Lee KR. Neurotrophic phenolic glycosides from the roots of Armoracia rusticana. PHYTOCHEMISTRY 2023; 216:113886. [PMID: 37806466 DOI: 10.1016/j.phytochem.2023.113886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Armoracia rusticana P. G. Gaertner. belongs to the Brassicaceae family and has aroused scientific interest for its anti-inflammatory and anticancer activities. In a continuing investigation to discover bioactive constituents from A. rusticana, we isolated 19 phenolic glycosides including three undescribed flavonol glycosides and one undescribed neolignan glycoside from MeOH extract of this plant. Their structures were elucidated based on NMR spectroscopic analysis (1H, 13C, 1H-1H COSY, HSQC, and HMBC), HRESIMS, and chemical methods. The determination of their absolute configuration was accomplished by ECD and LC-MS analysis. All the compounds were assessed for their potential neurotrophic activity through induction of nerve growth factor in C6 glioma cell lines and for their anti-neuroinflammatory activity based on the measurement of inhibition levels of nitric oxide production and pro-inflammatory cytokines (i.e., IL-1β, IL-6, and TNF-α) in lipopolysaccharide-activated microglia BV-2 cells.
Collapse
Affiliation(s)
- Tae Hyun Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Da Hye Yoon
- Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, 21936, Republic of Korea; College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea
| | - Kyoung Jin Park
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seong-Min Hong
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea
| | - Minji Kim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sun Yeou Kim
- Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, 21936, Republic of Korea; College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea
| | - Chung Sub Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Kang Ro Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
4
|
Chung JY, Park N, Kim MH, Yang WM. Abies holophylla Leaf Essential Oil Alleviates Allergic Rhinitis Based on Network Pharmacology. Pharmaceutics 2023; 15:pharmaceutics15041195. [PMID: 37111680 PMCID: PMC10146622 DOI: 10.3390/pharmaceutics15041195] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Abies holophylla is an evergreen coniferous species that has been widely used for treating pulmonary diseases and colds. Previous research has demonstrated the anti-inflammatory effect of Abies species and the anti-asthmatic activities of Abies holophylla leaf essential oil (AEO). As asthma and allergic rhinitis (AR) share pathophysiology and pharmacotherapeutic interventions, AEO inhalation can also ameliorate upper respiratory allergic diseases. This study explored the protective effects of AEO on AR with network pharmacological pathway prediction. The potential target pathways of AEO were analyzed by a network pharmacological approach. The BALB/c mice were sensitized by ovalbumin (OVA) and 10 μm particular matter (PM10) to induce allergic rhinitis. Aerosolized AEO 0.0003% and 0.03% were delivered by nebulizer for 5 min a day, 3 times a week for 7 weeks. Nasal symptoms (sneezing and rubbing), histopathological changes in nasal tissues, serum IgE, and zonula occludens-1 (ZO-1) expressions on nasal tissues were analyzed. After AR induction with OVA+PM10 and inhalation of AEO 0.0003% and 0.03% treatment, AEO significantly decreased allergic symptoms (sneezing and rubbing), hyperplasia of nasal epithelial thickness, goblet cell counts, and serum IgE level. The network analysis demonstrated that the possible molecular mechanism of AEO is highly associated with the IL-17 signaling pathway and tight junction. The target pathway of AEO was investigated in RPMI 2650 nasal epithelial cells. Treatment of AEO on PM10-treated nasal epithelial cells significantly reduced the production of inflammatory mediators related to the IL-17 signaling pathway, NF-κB, and the MAPK signaling pathway and prevented the reduction in TJ-related factors. When taken together, AEO inhalation may be considered as a potential treatment for AR by alleviating nasal inflammation and recovering the tight junction.
Collapse
Affiliation(s)
- Jae Yoon Chung
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Nayoung Park
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Mi Hye Kim
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Woong Mo Yang
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|