1
|
Li D, Li SH, Gao Q, Luo Q, Cheng YX. Ganospirones A-G, seven undescribed spiro-meroterpenoids from Ganoderma lucidum and their biological activities. PHYTOCHEMISTRY 2024; 227:114226. [PMID: 39047853 DOI: 10.1016/j.phytochem.2024.114226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Ganoderma lucidum, a medicinal mushroom with a long history in traditional Chinese medicine, is widely used for chronic diseases. Ganospirones A-G (1-7), seven pairs of undescribed spiro-meroterpenoids, were isolated from the fruiting bodies of G. lucidum. Their structures including absolute configurations were characterized by using NMR spectroscopic data, ECD computational and X-ray diffraction methods. The anti-inflammatory and anti-renal fibrosis activities of the meroterpenoids 1-7 were tested, and the results revealed that (-)-2 and (+)-2 could inhibit iNOS expression in lipopolysaccharide-induced RAW264.7 cells at 20 μM.
Collapse
Affiliation(s)
- Dan Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Sheng-Hong Li
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Marshall Laboratory of Biomedical Engineering, Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Qiang Gao
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Marshall Laboratory of Biomedical Engineering, Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Qi Luo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| | - Yong-Xian Cheng
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Marshall Laboratory of Biomedical Engineering, Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| |
Collapse
|
2
|
Raza SHA, Zhong R, Li X, Pant SD, Shen X, BinMowyna MN, Luo L, Lei H. Ganoderma lucidum triterpenoids investigating their role in medicinal applications and genomic protection. J Pharm Pharmacol 2024:rgae133. [PMID: 39450753 DOI: 10.1093/jpp/rgae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
OBJECTIVES Ganoderma lucidum (GL) is a white rot fungus widely used for its pharmacological properties and health benefits. GL consists of several biological components, including polysaccharides, sterols, and triterpenoids. Triterpenoids are often found in GL in the form of lanostane-type triterpenoids with quadrilateral carbon structures. KEY FINDINGS The study revealed that triterpenoids have diverse biological properties and can be categorized based on their functional groups. Triterpenoids derived from GL have shown potential medicinal applications. They can disrupt the cell cycle by inhibiting β-catenin or protein kinase C activity, leading to anti-cancer, anti-inflammatory, and anti-diabetic effects. They can also reduce the production of inflammatory cytokines, thus mitigating inflammation. Additionally, triterpenoids have been found to enhance the immune system's defenses against various health conditions. They possess antioxidant, antiparasitic, anti-hyperlipidemic, and antimicrobial activities, making them suitable for pharmaceutical applications. Furthermore, triterpenoids are believed to afford radioprotection to DNA, protecting it from radiation damage. SUMMARY This review focuses on the types of triterpenoids isolated from GL, their synthesis pathways, and their chemical structures. Additionally, it highlights the pharmacological characteristics of triterpenoids derived from GL, emphasizing their significant role in various therapeutic applications and health benefits for both humans and animals.
Collapse
Affiliation(s)
- Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Ruimin Zhong
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Sameer D Pant
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Mona N BinMowyna
- College of Education, Shaqra University, Shaqra 11911, Saudi Arabia
| | - Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
3
|
Wang S, Wang L, Shangguan J, Jiang A, Ren A. Research Progress on the Biological Activity of Ganoderic Acids in Ganoderma lucidum over the Last Five Years. Life (Basel) 2024; 14:1339. [PMID: 39459639 PMCID: PMC11509451 DOI: 10.3390/life14101339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
Ganoderma lucidum (G. lucidum) is a traditional edible and medicinal mushroom in China. The main bioactive components in G. lucidum include triterpenoids, polysaccharides, steroids, and sterols. Ganoderic acids (GAs) are one of the most abundant triterpenoids found in G. lucidum, garnering significant attention from researchers in the fields of medicine and health care. We summarize the extensive studies on the physiological function of GAs in anti-cancer, anti-inflammatory, radiation protection, anti-aging, liver protection, anti-microbial, and neuroprotection areas, among others. This review provides a comprehensive overview of the recent advances in the bioactivities and pharmacological mechanisms of GAs, aiming to delineate the current research directions and the state of the art in this field. This analysis helps to rapidly identify new bioactivities of GAs and understand their mechanisms, leading to more effective treatments for various diseases.
Collapse
Affiliation(s)
| | | | | | - Ailiang Jiang
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (S.W.); (L.W.); (J.S.)
| | - Ang Ren
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (S.W.); (L.W.); (J.S.)
| |
Collapse
|
4
|
Li W, Zou G, Bao D, Wu Y. Current Advances in the Functional Genes of Edible and Medicinal Fungi: Research Techniques, Functional Analysis, and Prospects. J Fungi (Basel) 2024; 10:311. [PMID: 38786666 PMCID: PMC11121823 DOI: 10.3390/jof10050311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Functional genes encode various biological functions required for the life activities of organisms. By analyzing the functional genes of edible and medicinal fungi, varieties of edible and medicinal fungi can be improved to enhance their agronomic traits, growth rates, and ability to withstand adversity, thereby increasing yield and quality and promoting industrial development. With the rapid development of functional gene research technology and the publication of many whole-genome sequences of edible and medicinal fungi, genes related to important biological traits have been mined, located, and functionally analyzed. This paper summarizes the advantages and disadvantages of different functional gene research techniques and application examples for edible and medicinal fungi; systematically reviews the research progress of functional genes of edible and medicinal fungi in biological processes such as mating type, mycelium and fruit growth and development, substrate utilization and nutrient transport, environmental response, and the synthesis and regulation of important active substances; and proposes future research directions for functional gene research for edible and medicinal fungi. The overall aim of this study was to provide a valuable reference for further promoting the molecular breeding of edible and medicinal fungi with high yield and quality and to promote the wide application of edible and medicinal fungi products in food, medicine, and industry.
Collapse
Affiliation(s)
- Wenyun Li
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.L.); (G.Z.)
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Gen Zou
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.L.); (G.Z.)
| | - Dapeng Bao
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.L.); (G.Z.)
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yingying Wu
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.L.); (G.Z.)
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
5
|
Liu YY, Cai D, Tang XP, Cheng YX. Ganoderma lucidum-Derived Meroterpenoids Show Anti-Inflammatory Activity In Vitro. Molecules 2024; 29:1149. [PMID: 38474661 PMCID: PMC10935275 DOI: 10.3390/molecules29051149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Ganoderma lucidum, known as the "herb of spiritual potency", is used for the treatment and prevention of various diseases, but the responsible constituents for its therapeutic effects are largely unknown. For the purpose of obtaining insight into the chemical and biological profiling of meroterpenoids in G. lucidum, various chromatographic approaches were utilized for the title fungus. As a result, six undescribed meroterpenoids, chizhienes A-F (1-6), containing two pairs of enantiomers (4 and 5), were isolated. Their structures were identified using spectroscopic and computational methods. In addition, the anti-inflammatory activities of all the isolates were evaluated by Western blot analysis in LPS-induced macrophage cells (RAW264.7), showing that 1 and 3 could dose dependently inhibit iNOS but not COX-2 expression. Further, 1 and 3 were found to inhibit nitric oxide (NO) production using the Greiss reagent test. The current study will aid in enriching the structural and biological diversity of Ganoderma-derived meroterpenoids.
Collapse
Affiliation(s)
- Yun-Yun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Dan Cai
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Xin-Ping Tang
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Yong-Xian Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
6
|
Zang YD, Zang CX, Tian JY, Xu KL, Li C, Li CJ, Yang Y, Ye F, Zhang D, Zhang DM, Ma J. Chiral separation and bioactivities of six pairs of enantiomeric dilignans from Magnolia officinalis var. biloba. PHYTOCHEMISTRY 2024; 219:113964. [PMID: 38184162 DOI: 10.1016/j.phytochem.2024.113964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
Six pairs of enantiomeric dilignans, (+)/(-)-magdiligols A-F, have been isolated from an ethanolic extract of the barks of Magnolia officinalis var. biloba. Their chemical structures were elucidated by extensive spectroscopic analyses, NMR calculation with DP4+ analysis, and the electronic circular dichroism spectra calculation. (+)/(-)-1-3 possessed a dihydrobenzopyran ring, while a propyl chain of 1 was linked via ether bond. (+)/(-)-Magdiligols D and E ((+)/(-)-4 and 5) were dilignans possessing a furan ring. (+)-Magdiligol B ((+)/(-)-2), (+)/(-)-magdiligol C ((+)/(-)-3), and racemes 2, 3, and 5 showed potential hepatoprotective effects against APAP-induced HepG2 cell damage, increased the cell viability from 65.4% to 72.7, 78.7.76.6, 73.9, 77.9 and 73.2%, via decreasing the level of the live enzymes ALH and LDH consistently. (+)/(-)-Magdiligols B-D ((+)/(-)-2-4) and (+)/(-)-magdiligol F ((+)/(-)-6) exhibited significant antioxidative activity. (+)/(-)-Magdiligols B-C ((+)/(-)-2 and 3), (-)-magdiligol D ((-)-4), and (+)-magdiligol E ((+)-5) displayed significant PTP1B inhibitory activity with IC50 values 1.41-3.42 μM. (+)/(-)-Magdiligol B ((+)/(-)-2), and its raceme (2) demonstrated α-glucosidase inhibitory activity with the IC50 values 1.47, 2.88 and 1.85 μM, respectively.
Collapse
Affiliation(s)
- Ying-Da Zang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Cai-Xia Zang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Jin-Ying Tian
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Kai-Ling Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Chuan Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Chuang-Jun Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Yang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Fei Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Dan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Dong-Ming Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.
| | - Jie Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.
| |
Collapse
|
7
|
Choi JH, Kim S. Biochemical Properties and Antithrombotic Effect of a Serine Protease Isolated from the Medicinal Mushroom Pycnoporus coccineus (Agaricomycetes). Int J Med Mushrooms 2024; 26:53-68. [PMID: 38801087 DOI: 10.1615/intjmedmushrooms.2024053631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The purification of a fibrinolytic enzyme from the fruiting bodies of wild-growing medicinal mushroom, Pycnoporus coccineus was achieved through a two-step procedure, resulting in its homogeneity. This purification process yielded a significant 4.13-fold increase in specific activity and an 8.0% recovery rate. The molecular weight of P. coccineus fibrinolytic enzyme (PCFE) was estimated to be 23 kDa using sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. PCFE demonstrated its optimal activity at a temperature of 40 °C and pH 8. Notably, the enzymatic activity was inhibited by the presence of zinc or copper metal ions, as well as serine protease inhibitors, such as phenylmethylsulfonyl fluoride and 4-amidinophenylmethanesulfonyl fluoride. PCFE exhibited remarkable specificity towards a synthetic chromogenic substrate for thrombin. The enzyme demonstrated the Michaelis-Menten constant (Km), maximal velocity (V ), and catalytic rate constant (Kcat) values of 3.01 mM, 0.33 mM min-1 μg-1, and 764.1 s-1, respectively. In vitro assays showed PCFE's ability to effectively degrade fibrin and blood clots. The enzyme induced alterations in the density and structural characteristics of fibrin clots. PCFE exhibited significant effects on various clotting parameters, including recalcification time, activated partial thromboplastin time, prothrombin time, serotonin secretion from thrombin-activated platelets, and thrombin-induced acute thromboembolism. These findings suggest that P. coccineus holds potential as an antithrombotic biomaterials and resources for cardiovascular research.
Collapse
Affiliation(s)
- Jun-Hui Choi
- Department of Food Science and Biotechnology, Gwangju University, Gwangju 61743, Republic of Korea
| | | |
Collapse
|
8
|
Huang XR, Cai F, Chen J, Wu CH, Li Y, Xu JH, Li P. Cytotoxic lanostane-type triterpenes from the fruiting bodies of Ganoderma lucidum. Nat Prod Res 2023; 37:3042-3047. [PMID: 36382774 DOI: 10.1080/14786419.2022.2146107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022]
Abstract
A new lanostane-type triterpene, namely 3-oxo-5α-lanosta-7,9(11)-dien-24-oic acid methyl ester (2), and three known compounds including ganoderal A (1), ganoderiol B (3) and ganodermenonol (4) were isolated from the fruiting bodies of Ganoderma lucidum by silica gel column chromatography and Sephadex LH-20 column chromatography. Their structures were determined by extensive NMR data and mass spectral analysis. The in vitro cytotoxic activity of the isolated compounds against SK-Hep-1, HepG2, Hela and Hela/VCR cancer cell lines was assessed by using MTT assay. The IC50 values of compound 1 were 43.09 ± 2.86, 42.31 ± 1.78 and 46.51 ± 1.95 μM in SK-Hep-1, HepG2 and Hela cells, respectively, after 48 h. The IC50 values of compound 4 were 44.70 ± 2.32 and 41.33 ± 2.15 μM in Hela and Hela/VCR cells, respectively, after 48 h.
Collapse
Affiliation(s)
- Xiu-Run Huang
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, P. R. China
| | - Fang Cai
- Department of Pharmacy, Fuzhou Second Hospital, Fuzhou, P. R. China
| | - Jing Chen
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, P. R. China
| | - Chang-Hui Wu
- Fujian Xianzhilou Biological Science and Technology Co. Ltd, Fuzhou, P. R. China
| | - Ye Li
- Fujian Xianzhilou Biological Science and Technology Co. Ltd, Fuzhou, P. R. China
| | - Jian-Hua Xu
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, P. R. China
| | - Peng Li
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, P. R. China
| |
Collapse
|
9
|
Wang X, Wu H, Wong KH, Wang Y, Chen B, Feng K. Biotransformation of triterpenoid ganoderic acids from exogenous diterpene dihydrotanshinone I in the cultures of Ganoderma sessile. Microb Cell Fact 2023; 22:139. [PMID: 37507727 PMCID: PMC10375632 DOI: 10.1186/s12934-023-02156-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Triterpenoids have shown a wide range of biological activities including antitumor and antiviral effects. Typically, triterpenes are synthesized through the mevalonate pathway and are extracted from natural plants and fungi. In this work, triterpenoids, ganoderic acids (GAs) were discovered to be produced via biotransformation of a diterpene, 15,16-dihydrotanshinone I (DHT) in the liquid cultured Ganoderma sessile mycelium. RESULTS Firstly, the biotransformation products, two rare GAs were isolated and purified by column chromatography, and characterized using HR-ESI-MS spectrometry and NMR spectrometry. The two compounds were Lanosta-7,9(11),24-trien-15α,22,β-diacetoxy-3β-hydroxy-26-oic acid (LTHA) and Lanosta-7,9(11),24-trien-15α,22,β-diacetoxy-3β-carbonyl-26-oic acid (LTCA). Then, transcriptome and proteome technologies were employed to measure the expression of mRNA and protein, which further confirmed that triterpenoid GAs could be transformed from exogenous diterpenoid DHT. At the molecular level, we proposed a hypothesis of the mechanism by which DHT converted to GAs in G. sessile mycelium, and the possible genes involved in biotransformation were verified by RT-qPCR. CONCLUSIONS Two rare GAs were obtained and characterized. A biosynthetic pathway of GAs from DHT was proposed. Although the synthetic route was not confirmed, this study provided important insights into omics resources and candidate genes for studying the biotransformation of diterpenes into triterpenes.
Collapse
Affiliation(s)
- Xinwei Wang
- School of Bioengineering, Zunyi Medical University, Jinwan Road No. 368, Zhuhai, 519090, Guangdong, China
| | - Haibo Wu
- School of Bioengineering, Zunyi Medical University, Jinwan Road No. 368, Zhuhai, 519090, Guangdong, China
| | - Ka Hong Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Yixuan Wang
- School of Bioengineering, Zunyi Medical University, Jinwan Road No. 368, Zhuhai, 519090, Guangdong, China
| | - Baixiong Chen
- School of Bioengineering, Zunyi Medical University, Jinwan Road No. 368, Zhuhai, 519090, Guangdong, China
| | - Kun Feng
- School of Bioengineering, Zunyi Medical University, Jinwan Road No. 368, Zhuhai, 519090, Guangdong, China.
| |
Collapse
|
10
|
Galappaththi MCA, Patabendige NM, Premarathne BM, Hapuarachchi KK, Tibpromma S, Dai DQ, Suwannarach N, Rapior S, Karunarathna SC. A Review of Ganoderma Triterpenoids and Their Bioactivities. Biomolecules 2022; 13:24. [PMID: 36671409 PMCID: PMC9856212 DOI: 10.3390/biom13010024] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
For centuries, Ganoderma has been used as a traditional medicine in Asian countries to prevent and treat various diseases. Numerous publications are stating that Ganoderma species have a variety of beneficial medicinal properties, and investigations on different metabolic regulations of Ganoderma species, extracts or isolated compounds have been performed both in vitro and in vivo. However, it has frequently been questioned whether Ganoderma is simply a dietary supplement for health or just a useful "medication" for restorative purposes. More than 600 chemical compounds including alkaloids, meroterpenoids, nucleobases, nucleosides, polysaccharides, proteins, steroids and triterpenes were extracted and identified from Ganoderma, with triterpenes serving as the primary components. In recent years, Ganoderma triterpenes and other small molecular constituents have aroused the interest of chemists and pharmacologists. Meanwhile, considering the significance of the triterpene constituents in the development of new drugs, this review describes 495 compounds from 25 Ganoderma species published between 1984 and 2022, commenting on their source, biosynthetic pathway, identification, biological activities and biosynthesis, together with applications of advanced analytical techniques to the characterization of Ganoderma triterpenoids.
Collapse
Affiliation(s)
- Mahesh C. A. Galappaththi
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
- Postgraduate Institute of Science (PGIS), University of Peradeniya, Peradeniya 20400, Sri Lanka
| | | | | | - Kalani K. Hapuarachchi
- The Engineering Research Center of Southwest Bio-Pharmaceutical Resource Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Saowaluck Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Dong-Qin Dai
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sylvie Rapior
- Laboratory of Botany, Phytochemistry and Mycology, Faculty of Pharmacy, Univ Montpellier, 15 Avenue Charles Flahault, CS 14491, CEDEX 5, 34093 Montpellier, France
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Natural Substances and Chemical Mediation Team, 15 Avenue Charles Flahault, CS 14491, CEDEX 5, 34093 Montpellier, France
| | - Samantha C. Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| |
Collapse
|
11
|
Lanostane Triterpenoids and Ergostane Steroids from Ganoderma luteomarginatum and Their Cytotoxicity. Molecules 2022; 27:molecules27206989. [PMID: 36296582 PMCID: PMC9611895 DOI: 10.3390/molecules27206989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/09/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022] Open
Abstract
Macrofungus Ganoderma luteomarginatum is one of the main species of Ganoderma fungi distributed in Hainan province of China, the fruiting bodies of which have been widely used in folk as a healthy food to prevent tumors. To explore the potential cytotoxic constituents from G. luteomarginatum, the phytochemical investigation on the ethyl acetate soluble fraction of 95% ethanolic extract from the fruiting bodies of this fungus led to the isolation of twenty-six lanostane triterpenoids (1–26), including three undescribed ones (1–3), together with eight ergostane steroids (27–34). The structures of three new lanostane triterpenoids were elucidated as lanosta-7,9(11)-dien-3β-acetyloxy-24,25-diol (1), lanosta-7,9(11)-dien-3-oxo-24,26-diol-25-methoxy (2), and lanosta-8,20(22)-dien-3,11,23-trioxo-7β,15β-diol-26-oic acid methyl ester (3) by the analysis of 1D, 2D NMR, and HRESIMS spectroscopic data. All isolates were assayed for their cytotoxic activities using three human cancer cell lines (K562, BEL-7402, and SGC-7901) and seven lanostane triterpenoids (1, 2, 7, 13, 18, 22, and 24), and one ergostane steroid (34) showed definite cytotoxicity with IC50 values that ranged from 6.64 to 47.63 μg/mL. Among these cytotoxic lanostane triterpenoids, compounds 2 and 13 showed general cytotoxicity against three human cancer cell lines, while compounds 1 and 18 exhibited significant selective cytotoxicity against K562 cells with IC50 values of 8.59 and 8.82 μg/mL, respectively. Furthermore, the preliminary structure–cytotoxicity relationships was proposed.
Collapse
|
12
|
Su H, Liang H, Hu G, Zhou L, Peng X, Bi H, Qiu M. Applanoids A−E as the first examples of C‐15/C‐20 Michael adducts in
Ganoderma
triterpenoids and their
PXR
agonistic activity. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hai‐Guo Su
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences, Sun Yat‐sen University Guangzhou 510006 China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany Chinese Academy of Science Kunming 650201 China
| | - Hang‐Fei Liang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences, Sun Yat‐sen University Guangzhou 510006 China
| | - Gui‐Lin Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany Chinese Academy of Science Kunming 650201 China
| | - Lin Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany Chinese Academy of Science Kunming 650201 China
| | - Xing‐Rong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany Chinese Academy of Science Kunming 650201 China
| | - Hui‐Chang Bi
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation School of Pharmaceutical Sciences, Sun Yat‐sen University Guangzhou 510006 China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 China
| | - Ming‐Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany Chinese Academy of Science Kunming 650201 China
| |
Collapse
|