1
|
Kalinski JCJ, Noundou XS, Petras D, Matcher GF, Polyzois A, Aron AT, Gentry EC, Bornman TG, Adams JB, Dorrington RA. Urban and agricultural influences on the coastal dissolved organic matter pool in the Algoa Bay estuaries. CHEMOSPHERE 2024; 355:141782. [PMID: 38548083 DOI: 10.1016/j.chemosphere.2024.141782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/28/2024] [Accepted: 03/22/2024] [Indexed: 04/08/2024]
Abstract
While anthropogenic pollution is a major threat to aquatic ecosystem health, our knowledge of the presence of xenobiotics in coastal Dissolved Organic Matter (DOM) is still relatively poor. This is especially true for water bodies in the Global South with limited information gained mostly from targeted studies that rely on comparison with authentic standards. In recent years, non-targeted tandem mass spectrometry has emerged as a powerful tool to collectively detect and identify pollutants and biogenic DOM components in the environment, but this approach has yet to be widely utilized for monitoring ecologically important aquatic systems. In this study we compared the DOM composition of Algoa Bay, Eastern Cape, South Africa, and its two estuaries. The Swartkops Estuary is highly urbanized and severely impacted by anthropogenic pollution, while the Sundays Estuary is impacted by commercial agriculture in its catchment. We employed solid-phase extraction followed by liquid chromatography tandem mass spectrometry to annotate more than 200 pharmaceuticals, pesticides, urban xenobiotics, and natural products based on spectral matching. The identification with authentic standards confirmed the presence of methamphetamine, carbamazepine, sulfamethoxazole, N-acetylsulfamethoxazole, imazapyr, caffeine and hexa(methoxymethyl)melamine, and allowed semi-quantitative estimations for annotated xenobiotics. The Swartkops Estuary DOM composition was strongly impacted by features annotated as urban pollutants including pharmaceuticals such as melamines and antiretrovirals. By contrast, the Sundays Estuary exhibited significant enrichment of molecules annotated as agrochemicals widely used in the citrus farming industry, with predicted concentrations for some of them exceeding predicted no-effect concentrations. This study provides new insight into anthropogenic impact on the Algoa Bay system and demonstrates the utility of non-targeted tandem mass spectrometry as a sensitive tool for assessing the health of ecologically important coastal ecosystems and will serve as a valuable foundation for strategizing long-term monitoring efforts.
Collapse
Affiliation(s)
| | - Xavier Siwe Noundou
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa; Department of Pharmaceutical Sciences, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Daniel Petras
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, USA; Department of Biochemistry, University of California Riverside, Riverside, USA; CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Medicine, University of Tuebingen, Tuebingen, Germany
| | - Gwynneth F Matcher
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa; South African Institute for Aquatic Biodiversity, 6139, Makhanda, South Africa
| | - Alexandros Polyzois
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa; Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Allegra T Aron
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, USA; Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80210, United States
| | - Emily C Gentry
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, USA; Department of Chemistry, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Thomas G Bornman
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa; South African Environmental Observation Network SAEON, Elwandle Coastal Node, Gqeberha, South Africa; Institute for Coastal and Marine Research, Nelson Mandela University, Gqeberha, South Africa
| | - Janine B Adams
- DSI/NRF Research Chair, Shallow Water Ecosystems, Department of Botany and Institute for Coastal and Marine Research, Nelson Mandela University, Gqeberha, South Africa; Department of Botany, Institute for Coastal and Marine Research CMR, Nelson Mandela University, Gqeberha, South Africa
| | - Rosemary A Dorrington
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa; South African Institute for Aquatic Biodiversity, 6139, Makhanda, South Africa.
| |
Collapse
|
2
|
Matthews JL, Ueland M, Bartels N, Lawson CA, Lockwood TE, Wu Y, Camp EF. Multi-Chemical Omics Analysis of the Symbiodiniaceae Durusdinium trenchii under Heat Stress. Microorganisms 2024; 12:317. [PMID: 38399721 PMCID: PMC10893086 DOI: 10.3390/microorganisms12020317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The urgency of responding to climate change for corals necessitates the exploration of innovative methods to swiftly enhance our understanding of crucial processes. In this study, we employ an integrated chemical omics approach, combining elementomics, metabolomics, and volatilomics methodologies to unravel the biochemical pathways associated with the thermal response of the coral symbiont, Symbiodiniaceae Durusdinium trenchii. We outline the complimentary sampling approaches and discuss the standardised data corrections used to allow data integration and comparability. Our findings highlight the efficacy of individual methods in discerning differences in the biochemical response of D. trenchii under both control and stress-inducing temperatures. However, a deeper insight emerges when these methods are integrated, offering a more comprehensive understanding, particularly regarding oxidative stress pathways. Employing correlation network analysis enhanced the interpretation of volatile data, shedding light on the potential metabolic origins of volatiles with undescribed functions and presenting promising candidates for further exploration. Elementomics proves to be less straightforward to integrate, likely due to no net change in elements but rather elements being repurposed across compounds. The independent and integrated data from this study informs future omic profiling studies and recommends candidates for targeted research beyond Symbiodiniaceae biology. This study highlights the pivotal role of omic integration in advancing our knowledge, addressing critical gaps, and guiding future research directions in the context of climate change and coral reef preservation.
Collapse
Affiliation(s)
- Jennifer L. Matthews
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Maiken Ueland
- Centre for Forensic Sciences, School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Hyphenated Mass Spectrometry Laboratory, School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Natasha Bartels
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Caitlin A. Lawson
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, NSW 2258, Australia
| | - Thomas E. Lockwood
- Hyphenated Mass Spectrometry Laboratory, School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Yida Wu
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Emma F. Camp
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
3
|
Tong CY, Kee CY, Honda K, Derek CJC. Bio-coatings in permeated cultivation systems: Unprecedented impacts on microalgal monoculture growth and organic matter yield. ENVIRONMENTAL RESEARCH 2023; 239:117403. [PMID: 37848079 DOI: 10.1016/j.envres.2023.117403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023]
Abstract
Bio-coating, a recent and promising approach in attached microalgal cultivation systems, has garnered attention due to its efficiency in enhancing immobilized algal growth, particularly in submerged cultivation systems. However, when the cells are cultured on thin solid microporous substrates that physically separate them from the nutrient medium, it remains unclear whether the applied bio-coatings still have a significant impact on algal growth or the subsequent rates of algal organic matter (AOM) release. Therefore, this current work investigated the role of bio-coatings on the microalgal monoculture growth of one freshwater species, Chlorella vulgaris ESP 31, and one marine species, Cylindrotheca fusiformis on a hydrophilic substrate, polyvinylidene fluoride membrane in a permeated cultivation system. Wide range of bio-coating sources were adapted, with the result demonstrating that bacteria-derived coating promoted algal growth by as high as 140% when compared with the control group for both species. Interestingly, two distinct adaptation mechanisms were observed between the species, with only C. fusiformis demonstrating a positive correlation between cell growth and AOM productivity, particularly in its extracellularly bound fractions. It is worth noting that despite this specific fraction exhibiting the lowest content among all; it displayed significant relevance in terms of AOM productivity. High extracellular protein-to-polysaccharide ratio (>5.7 fold) quantified on bacterial intracellular exudate-coated membranes indirectly revealed an underlying symbiotic microalgal-bacterial interaction. This is the first study showing how bio-coating influenced AOM yield without any physical interaction between microalgae and bacteria. It further confirms the practical benefits of bio-coating in attached cultivation systems.
Collapse
Affiliation(s)
- C Y Tong
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia; International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Chai Ying Kee
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia
| | - Kohsuke Honda
- International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - C J C Derek
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
4
|
Zulfiqar M, Stettin D, Schmidt S, Nikitashina V, Pohnert G, Steinbeck C, Peters K, Sorokina M. Untargeted metabolomics to expand the chemical space of the marine diatom Skeletonema marinoi. Front Microbiol 2023; 14:1295994. [PMID: 38116530 PMCID: PMC10728474 DOI: 10.3389/fmicb.2023.1295994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/31/2023] [Indexed: 12/21/2023] Open
Abstract
Diatoms (Bacillariophyceae) are aquatic photosynthetic microalgae with an ecological role as primary producers in the aquatic food web. They account substantially for global carbon, nitrogen, and silicon cycling. Elucidating the chemical space of diatoms is crucial to understanding their physiology and ecology. To expand the known chemical space of a cosmopolitan marine diatom, Skeletonema marinoi, we performed High-Resolution Liquid Chromatography-Tandem Mass Spectrometry (LC-MS2) for untargeted metabolomics data acquisition. The spectral data from LC-MS2 was used as input for the Metabolome Annotation Workflow (MAW) to obtain putative annotations for all measured features. A suspect list of metabolites previously identified in the Skeletonema spp. was generated to verify the results. These known metabolites were then added to the putative candidate list from LC-MS2 data to represent an expanded catalog of 1970 metabolites estimated to be produced by S. marinoi. The most prevalent chemical superclasses, based on the ChemONT ontology in this expanded dataset, were organic acids and derivatives, organoheterocyclic compounds, lipids and lipid-like molecules, and organic oxygen compounds. The metabolic profile from this study can aid the bioprospecting of marine microalgae for medicine, biofuel production, agriculture, and environmental conservation. The proposed analysis can be applicable for assessing the chemical space of other microalgae, which can also provide molecular insights into the interaction between marine organisms and their role in the functioning of ecosystems.
Collapse
Affiliation(s)
- Mahnoor Zulfiqar
- Faculty of Chemistry and Earth Sciences, Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Daniel Stettin
- Faculty of Chemistry and Earth Sciences, Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Saskia Schmidt
- Faculty of Chemistry and Earth Sciences, Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Vera Nikitashina
- Faculty of Chemistry and Earth Sciences, Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Georg Pohnert
- Faculty of Chemistry and Earth Sciences, Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Christoph Steinbeck
- Faculty of Chemistry and Earth Sciences, Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Kristian Peters
- iDiv - German Centre for Integrative Biodiversity Research, Halle-Jena-Leipzig, Leipzig, Germany
- Geobotany and Botanical Gardens, Martin-Luther University of Halle-Wittenberg, Halle, Germany
- Institute of Plant Biochemistry, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Maria Sorokina
- Faculty of Chemistry and Earth Sciences, Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
- Pharmaceuticals Division, Research & Development, Data Science and Artificial Intelligence, AG Bayer, Berlin, Germany
| |
Collapse
|
5
|
Dawson HM, Connors E, Erazo NG, Sacks JS, Mierzejewski V, Rundell SM, Carlson LT, Deming JW, Ingalls AE, Bowman JS, Young JN. Microbial metabolomic responses to changes in temperature and salinity along the western Antarctic Peninsula. THE ISME JOURNAL 2023; 17:2035-2046. [PMID: 37709939 PMCID: PMC10579395 DOI: 10.1038/s41396-023-01475-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 09/16/2023]
Abstract
Seasonal cycles within the marginal ice zones in polar regions include large shifts in temperature and salinity that strongly influence microbial abundance and physiology. However, the combined effects of concurrent temperature and salinity change on microbial community structure and biochemical composition during transitions between seawater and sea ice are not well understood. Coastal marine communities along the western Antarctic Peninsula were sampled and surface seawater was incubated at combinations of temperature and salinity mimicking the formation (cold, salty) and melting (warm, fresh) of sea ice to evaluate how these factors may shape community composition and particulate metabolite pools during seasonal transitions. Bacterial and algal community structures were tightly coupled to each other and distinct across sea-ice, seawater, and sea-ice-meltwater field samples, with unique metabolite profiles in each habitat. During short-term (approximately 10-day) incubations of seawater microbial communities under different temperature and salinity conditions, community compositions changed minimally while metabolite pools shifted greatly, strongly accumulating compatible solutes like proline and glycine betaine under cold and salty conditions. Lower salinities reduced total metabolite concentrations in particulate matter, which may indicate a release of metabolites into the labile dissolved organic matter pool. Low salinity also increased acylcarnitine concentrations in particulate matter, suggesting a potential for fatty acid degradation and reduced nutritional value at the base of the food web during freshening. Our findings have consequences for food web dynamics, microbial interactions, and carbon cycling as polar regions undergo rapid climate change.
Collapse
Affiliation(s)
- H M Dawson
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA.
| | - E Connors
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, 92037, USA
| | - N G Erazo
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, 92037, USA
- Center for Marine Biodiversity and Conservation, UC San Diego, La Jolla, CA, 92037, USA
| | - J S Sacks
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - V Mierzejewski
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, 85287, USA
| | - S M Rundell
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - L T Carlson
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - J W Deming
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - A E Ingalls
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - J S Bowman
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, 92037, USA
- Center for Marine Biodiversity and Conservation, UC San Diego, La Jolla, CA, 92037, USA
- Center for Microbiome Innovation, UC San Diego, La Jolla, CA, 92037, USA
| | - J N Young
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
6
|
Ingrisano R, Tosato E, Trost P, Gurrieri L, Sparla F. Proline, Cysteine and Branched-Chain Amino Acids in Abiotic Stress Response of Land Plants and Microalgae. PLANTS (BASEL, SWITZERLAND) 2023; 12:3410. [PMID: 37836150 PMCID: PMC10574504 DOI: 10.3390/plants12193410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Proteinogenic amino acids are the building blocks of protein, and plants synthesize all of them. In addition to their importance in plant growth and development, growing evidence underlines the central role played by amino acids and their derivatives in regulating several pathways involved in biotic and abiotic stress responses. In the present review, we illustrate (i) the role of amino acids as an energy source capable of replacing sugars as electron donors to the mitochondrial electron transport chain and (ii) the role of amino acids as precursors of osmolytes as well as (iii) precursors of secondary metabolites. Among the amino acids involved in drought stress response, proline and cysteine play a special role. Besides the large proline accumulation occurring in response to drought stress, proline can export reducing equivalents to sink tissues and organs, and the production of H2S deriving from the metabolism of cysteine can mediate post-translational modifications that target protein cysteines themselves. Although our general understanding of microalgae stress physiology is still fragmentary, a general overview of how unicellular photosynthetic organisms deal with salt stress is also provided because of the growing interest in microalgae in applied sciences.
Collapse
Affiliation(s)
| | | | | | - Libero Gurrieri
- Department of Pharmacy and Biotechnology FaBiT, University of Bologna, 40126 Bologna, Italy; (R.I.); (E.T.); (P.T.); (F.S.)
| | | |
Collapse
|
7
|
Imbert-Auvray N, Fichet D, Bodet PE, Ory P, Sabot R, Refait P, Graber M. Metabolomics-Based Investigation on the Metabolic Changes in Crassostrea gigas Experimentally Exposed to Galvanic Anodes. Metabolites 2023; 13:869. [PMID: 37512576 PMCID: PMC10384061 DOI: 10.3390/metabo13070869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/04/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Cathodic protection is widely used to protect metal structures from corrosion in marine environments using sacrificial galvanic anodes. These anodes, either in Zinc, or preferentially nowadays in Al-Zn-In alloys, are expected to corrode instead of the metal structures. This leads to the release of dissolved species, Zn2+, Al3+, and In3+, and solid phases such as Al(OH)3. Few studies have been conducted on their effects on marine organisms, and they concluded that further investigations are needed. We therefore evaluated the effects of Zn and Al-Zn-In anodes on oysters stabulated in tanks, under controlled conditions defined through a comparison with those prevailing in a given commercial seaport used as reference. We analyzed the entire metabolome of gills with a non-targeted metabolomic approach HRMS. A modelling study of the chemical species, corresponding to the degradation products of the anodes, likely to be present near the exposed oysters, was also included. We identified 16 and two metabolites modulated by Zn- and Al-Zn-In-anodes, respectively, that were involved in energy metabolism, osmoregulation, oxidative stress, lipid, nucleotide nucleoside and amino acid metabolisms, defense and signaling pathways. The combination of chemical modelling and metabolomic approach, used here for the first time, enlightened the influence of Zn present in the Al-Zn-In anodes.
Collapse
Affiliation(s)
- Nathalie Imbert-Auvray
- UMR 7266 LIENSs, CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
| | - Denis Fichet
- UMR 7266 LIENSs, CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
| | - Pierre-Edouard Bodet
- UMR 7266 LIENSs, CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
| | - Pascaline Ory
- UMR 7266 LIENSs, CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
| | - René Sabot
- UMR 7356 LaSIE, CNRS-La Rochelle Université, Avenue Michel Crépeau, 17042 La Rochelle, France
| | - Philippe Refait
- UMR 7356 LaSIE, CNRS-La Rochelle Université, Avenue Michel Crépeau, 17042 La Rochelle, France
| | - Marianne Graber
- UMR 7266 LIENSs, CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
| |
Collapse
|
8
|
Zulfiqar M, Gadelha L, Steinbeck C, Sorokina M, Peters K. MAW: the reproducible Metabolome Annotation Workflow for untargeted tandem mass spectrometry. J Cheminform 2023; 15:32. [PMID: 36871033 PMCID: PMC9985203 DOI: 10.1186/s13321-023-00695-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Mapping the chemical space of compounds to chemical structures remains a challenge in metabolomics. Despite the advancements in untargeted liquid chromatography-mass spectrometry (LC-MS) to achieve a high-throughput profile of metabolites from complex biological resources, only a small fraction of these metabolites can be annotated with confidence. Many novel computational methods and tools have been developed to enable chemical structure annotation to known and unknown compounds such as in silico generated spectra and molecular networking. Here, we present an automated and reproducible Metabolome Annotation Workflow (MAW) for untargeted metabolomics data to further facilitate and automate the complex annotation by combining tandem mass spectrometry (MS2) input data pre-processing, spectral and compound database matching with computational classification, and in silico annotation. MAW takes the LC-MS2 spectra as input and generates a list of putative candidates from spectral and compound databases. The databases are integrated via the R package Spectra and the metabolite annotation tool SIRIUS as part of the R segment of the workflow (MAW-R). The final candidate selection is performed using the cheminformatics tool RDKit in the Python segment (MAW-Py). Furthermore, each feature is assigned a chemical structure and can be imported to a chemical structure similarity network. MAW is following the FAIR (Findable, Accessible, Interoperable, Reusable) principles and has been made available as the docker images, maw-r and maw-py. The source code and documentation are available on GitHub ( https://github.com/zmahnoor14/MAW ). The performance of MAW is evaluated on two case studies. MAW can improve candidate ranking by integrating spectral databases with annotation tools like SIRIUS which contributes to an efficient candidate selection procedure. The results from MAW are also reproducible and traceable, compliant with the FAIR guidelines. Taken together, MAW could greatly facilitate automated metabolite characterization in diverse fields such as clinical metabolomics and natural product discovery.
Collapse
Affiliation(s)
- Mahnoor Zulfiqar
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, 07743, Jena, Germany.
| | - Luiz Gadelha
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, 07743, Jena, Germany
| | - Christoph Steinbeck
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, 07743, Jena, Germany.
| | - Maria Sorokina
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, 07743, Jena, Germany.,Data Science and Artificial Intelligence, Research and Development, Bayer Pharmaceuticals, 13353, Berlin, Germany
| | - Kristian Peters
- iDiv - German Centre for Integrative Biodiversity Research, Halle-Jena-Leipzig, Leipzig, 04103, Germany. .,Geobotany and Botanical Gardens, Martin-Luther University of Halle-Wittenberg, 06108, Halle, Germany. .,Leibniz Institute of Plant Biochemistry, 06120, Halle, Germany.
| |
Collapse
|
9
|
Nutritional Composition and Untargeted Metabolomics Reveal the Potential of Tetradesmus obliquus, Chlorella vulgaris and Nannochloropsis oceanica as Valuable Nutrient Sources for Dogs. Animals (Basel) 2022; 12:ani12192643. [PMID: 36230383 PMCID: PMC9558554 DOI: 10.3390/ani12192643] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
The growing pet population is questioning the sustainability of the pet food system. Although microalgae may constitute a more sustainable food resource, the assessment of their potential for canine diets is almost non-existent. The present study aimed to evaluate the potential of three microalgae species (Tetradesmus obliquus, Chlorella vulgaris and Nannochloropsis oceanica) grown locally in industrial photobioreactors as alternative food resources for dogs. A detailed characterization of their nutritional composition and metabolomic profile was carried out and related to the nutritional requirements of dogs. Overall, the essential amino acid content exceeded the amounts required for dogs at all life stages, except methionine and cysteine. The three microalgae were deficient in linoleic acid, N. oceanica presented a linolenic acid content below requirements and T. obliquus and C. vulgaris were deficient in arachidonic and eicosapentaenoic acids. The fiber was mainly composed of insoluble dietary fiber. The mineral profile varied greatly with the microalgae species, demonstrating their different potential for dog feeding. Untargeted metabolomics highlighted glycolipids, glycerolipids and phospholipids as the most discriminating compounds between microalgae species. Overall, the results support the potential of T. obliquus, C. vulgaris and N. oceanica as valuable macro- and micro-nutrients sources for dog feeding.
Collapse
|