1
|
Rettig ID, Xu J, Knight EA, Truong PT, Bowring MA. Variable Kinetic Isotope Effect Reveals a Multistep Pathway for Protonolysis of a Pt–Me Bond. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Irving D. Rettig
- Department of Chemistry, Reed College, Portland, Oregon97202, United States
| | - Jingtong Xu
- Department of Chemistry, Reed College, Portland, Oregon97202, United States
| | | | - Phan T. Truong
- Department of Chemistry, Reed College, Portland, Oregon97202, United States
| | - Miriam A. Bowring
- Department of Chemistry, Reed College, Portland, Oregon97202, United States
| |
Collapse
|
2
|
Ray S, Dandpat SS, Chatterjee S, Walter NG. Precise tuning of bacterial translation initiation by non-equilibrium 5'-UTR unfolding observed in single mRNAs. Nucleic Acids Res 2022; 50:8818-8833. [PMID: 35892287 PMCID: PMC9410914 DOI: 10.1093/nar/gkac635] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/15/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022] Open
Abstract
Noncoding, structured 5′-untranslated regions (5′-UTRs) of bacterial messenger RNAs (mRNAs) can control translation efficiency by forming structures that either recruit or repel the ribosome. Here we exploit a 5′-UTR embedded preQ1-sensing, pseudoknotted translational riboswitch to probe how binding of a small ligand controls recruitment of the bacterial ribosome to the partially overlapping Shine-Dalgarno (SD) sequence. Combining single-molecule fluorescence microscopy with mutational analyses, we find that the stability of 30S ribosomal subunit binding is inversely correlated with the free energy needed to unfold the 5′-UTR during mRNA accommodation into the mRNA binding cleft. Ligand binding to the riboswitch stabilizes the structure to both antagonize 30S recruitment and accelerate 30S dissociation. Proximity of the 5′-UTR and stability of the SD:anti-SD interaction both play important roles in modulating the initial 30S-mRNA interaction. Finally, depletion of small ribosomal subunit protein S1, known to help resolve structured 5′-UTRs, further increases the energetic penalty for mRNA accommodation. The resulting model of rapid standby site exploration followed by gated non-equilibrium unfolding of the 5′-UTR during accommodation provides a mechanistic understanding of how translation efficiency is governed by riboswitches and other dynamic structure motifs embedded upstream of the translation initiation site of bacterial mRNAs.
Collapse
Affiliation(s)
- Sujay Ray
- Single-Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shiba S Dandpat
- Single-Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Surajit Chatterjee
- Single-Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nils G Walter
- Single-Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Affiliation(s)
- Sungju Yu
- Department of Chemistry University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
- Present address: Department of Energy Systems Research Department of Chemistry Ajou University Suwon 16499 Republic of Korea
| | - Prashant K. Jain
- Department of Chemistry University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
- Materials Research Laboratory University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
- Department of Physics University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
- Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| |
Collapse
|
4
|
Yu S, Jain PK. Isotope Effects in Plasmonic Photosynthesis. Angew Chem Int Ed Engl 2020; 59:22480-22483. [PMID: 32898311 DOI: 10.1002/anie.202011805] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Indexed: 01/09/2023]
Abstract
The photoexcitation of plasmonic nanoparticles has been shown to drive multistep, multicarrier transformations, such as the conversion of CO2 into hydrocarbons. But for such plasmon-driven chemistry to be precisely understood and modeled, the critical photoinitiation step in the reaction cascade must be identified. We meet this goal by measuring H/D and 12 C/13 C kinetic isotope effects (KIEs) in plasmonic photosynthesis. In particular, we found that the substitution of H2 O with D2 O slows hydrocarbon production by a factor of 5-8. This primary H/D KIE leads to the inference that hole-driven scission of the O-H bond in H2 O is a critical, limiting step in plasmonic photosynthesis. This study advances mechanistic understanding of light-driven chemical reactions on plasmonic nanoparticles.
Collapse
Affiliation(s)
- Sungju Yu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA.,Present address: Department of Energy Systems Research, Department of Chemistry, Ajou University, Suwon, 16499, Republic of Korea
| | - Prashant K Jain
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA.,Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| |
Collapse
|
5
|
On the use of noncompetitive kinetic isotope effects to investigate flavoenzyme mechanism. Methods Enzymol 2019; 620:115-143. [PMID: 31072484 DOI: 10.1016/bs.mie.2019.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This account describes the application of kinetic isotope effects (KIEs) to investigate the mechanistic properties of flavin dependent enzymes. Assays can be conducted during steady-state catalytic turnover of the flavoenzyme with its substrate or by using rapid-kinetic techniques to measure either the reductive or oxidative half-reactions of the enzyme. Great care should be taken to ensure that the observed effects are due to isotopic substitution and not other factors such as pH effects or changes in the solvent viscosity of the reaction mixture. Different types of KIEs are described along with a physical description of their origins and the unique information each can provide about the mechanism of an enzyme. Detailed experimental techniques are outlined with special emphasis on the proper controls and data analysis that must be carried out to avoid erroneous conclusions. Examples are provided for each type of KIE measurement from references in the literature. It is our hope that this article will clarify any confusion concerning the utility of KIEs in the study of flavoprotein mechanism and encourage their use by the community.
Collapse
|
6
|
Atzrodt J, Derdau V, Kerr WJ, Reid M. Deuterium- und tritiummarkierte Verbindungen: Anwendungen in den modernen Biowissenschaften. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201704146] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jens Atzrodt
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry; Industriepark Höchst, G876 65926 Frankfurt Deutschland
| | - Volker Derdau
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry; Industriepark Höchst, G876 65926 Frankfurt Deutschland
| | - William J. Kerr
- Department of Pure and Applied Chemistry, WestCHEM; University of Strathclyde; 295 Cathedral Street Glasgow Scotland G1 1XL Großbritannien
| | - Marc Reid
- Department of Pure and Applied Chemistry, WestCHEM; University of Strathclyde; 295 Cathedral Street Glasgow Scotland G1 1XL Großbritannien
| |
Collapse
|
7
|
Atzrodt J, Derdau V, Kerr WJ, Reid M. Deuterium- and Tritium-Labelled Compounds: Applications in the Life Sciences. Angew Chem Int Ed Engl 2018; 57:1758-1784. [PMID: 28815899 DOI: 10.1002/anie.201704146] [Citation(s) in RCA: 430] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/27/2017] [Indexed: 12/19/2022]
Abstract
Hydrogen isotopes are unique tools for identifying and understanding biological and chemical processes. Hydrogen isotope labelling allows for the traceless and direct incorporation of an additional mass or radioactive tag into an organic molecule with almost no changes in its chemical structure, physical properties, or biological activity. Using deuterium-labelled isotopologues to study the unique mass-spectrometric patterns generated from mixtures of biologically relevant molecules drastically simplifies analysis. Such methods are now providing unprecedented levels of insight in a wide and continuously growing range of applications in the life sciences and beyond. Tritium (3 H), in particular, has seen an increase in utilization, especially in pharmaceutical drug discovery. The efforts and costs associated with the synthesis of labelled compounds are more than compensated for by the enhanced molecular sensitivity during analysis and the high reliability of the data obtained. In this Review, advances in the application of hydrogen isotopes in the life sciences are described.
Collapse
Affiliation(s)
- Jens Atzrodt
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry, Industriepark Höchst, G876, 65926, Frankfurt, Germany
| | - Volker Derdau
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry, Industriepark Höchst, G876, 65926, Frankfurt, Germany
| | - William J Kerr
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow, Scotland, G1 1XL, UK
| | - Marc Reid
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow, Scotland, G1 1XL, UK
| |
Collapse
|