1
|
Tasci I, Baygin M, Barua PD, Hafeez-Baig A, Dogan S, Tuncer T, Tan RS, Acharya UR. Black-white hole pattern: an investigation on the automated chronic neuropathic pain detection using EEG signals. Cogn Neurodyn 2024; 18:2193-2210. [PMID: 39555288 PMCID: PMC11564719 DOI: 10.1007/s11571-024-10078-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/21/2024] [Accepted: 01/28/2024] [Indexed: 11/19/2024] Open
Abstract
Electroencephalography (EEG) signals provide information about the brain activities, this study bridges neuroscience and machine learning by introducing an astronomy-inspired feature extraction model. In this work, we developed a novel feature extraction function, black-white hole pattern (BWHPat) which dynamically selects the most suitable pattern from 14 options. We developed BWHPat in a four-phase feature engineering model, involving multileveled feature extraction, feature selection, classification, and cortex map generation. Textural and statistical features are extracted in the first phase, while tunable q-factor wavelet transform (TQWT) aids in multileveled feature extraction. The second phase employs iterative neighborhood component analysis (INCA) for feature selection, and the k-nearest neighbors (kNN) classifier is applied for classification, yielding channel-specific results. A new cortex map generation model highlights the most active channels using median and intersection functions. Our BWHPat-driven model consistently achieved over 99% classification accuracy across three scenarios using the publicly available EEG pain dataset. Furthermore, a semantic cortex map precisely identifies pain-affected brain regions. This study signifies the contribution to EEG signal classification and neuroscience. The BWHPat pattern establishes a unique link between astronomy and feature extraction, enhancing the understanding of brain activities.
Collapse
Affiliation(s)
- Irem Tasci
- Department of Neurology, School of Medicine, Firat University, 23119 Elazig, Turkey
| | - Mehmet Baygin
- Department of Computer Engineering, Faculty of Engineering and Architecture, Erzurum Technical University, Erzurum, Turkey
| | - Prabal Datta Barua
- School of Business (Information System), University of Southern Queensland, Toowoomba, QLD 4350 Australia
| | - Abdul Hafeez-Baig
- School of Management and Enterprise, University of Southern Queensland, Toowoomba, QLD Australia
| | - Sengul Dogan
- Department of Digital Forensics Engineering, Technology Faculty, Firat University, Elazig, Turkey
| | - Turker Tuncer
- Department of Digital Forensics Engineering, Technology Faculty, Firat University, Elazig, Turkey
| | - Ru-San Tan
- Department of Cardiology, National Heart Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - U. Rajendra Acharya
- School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, Australia
| |
Collapse
|
2
|
Mulvey MR, Paley CA, Schuberth A, King N, Page A, Neoh K. Neuropathic Pain in Cancer: What Are the Current Guidelines? Curr Treat Options Oncol 2024; 25:1193-1202. [PMID: 39102168 PMCID: PMC11416366 DOI: 10.1007/s11864-024-01248-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 08/06/2024]
Abstract
OPINION STATEMENT Neuropathic cancer pain is experienced by 30-40% of patients with cancer. It significantly reduces quality of life and overall wellbeing for patients living with and beyond cancer. The underlying mechanisms of neuropathic pain in patients with cancer are complex and involve direct tumour involvement, nerve compression or infiltration, chemotherapy and/or radiotherapy-induced nerve damage, or post-surgical complications. It is crucial for healthcare professionals to assess and manage neuropathic cancer pain effectively. There is increasing recognition that standardisation of neuropathic pain assessment leads to tailored management and improved patient outcomes. Pain management strategies, including medication, interventional analgesia, physical and complementary therapy, can help alleviate neuropathic pain and improve the patient's comfort and quality of life.
Collapse
Affiliation(s)
- Matthew R Mulvey
- Leeds Institute of Health Sciences, School of Medicine, Faculty of Medicine and Health, University of Leeds Level, 10 Worsley Building, Clarendon Road, Leeds, LS2 9LN, UK.
| | - Carole A Paley
- Leeds Institute of Health Sciences, School of Medicine, Faculty of Medicine and Health, University of Leeds Level, 10 Worsley Building, Clarendon Road, Leeds, LS2 9LN, UK
| | - Anna Schuberth
- Leeds Institute of Health Sciences, School of Medicine, Faculty of Medicine and Health, University of Leeds Level, 10 Worsley Building, Clarendon Road, Leeds, LS2 9LN, UK
| | - Natalie King
- Leeds Institute of Health Sciences, School of Medicine, Faculty of Medicine and Health, University of Leeds Level, 10 Worsley Building, Clarendon Road, Leeds, LS2 9LN, UK
| | - Andy Page
- Academic Unit of Palliative Care, St Gemma's Hospice, Leeds, UK
| | - Karen Neoh
- Academic Unit of Palliative Care, St Gemma's Hospice, Leeds, UK
| |
Collapse
|
3
|
Karavis MY, Siafaka I, Vadalouca A, Georgoudis G. Role of Microglia in Neuropathic Pain. Cureus 2023; 15:e43555. [PMID: 37719474 PMCID: PMC10503876 DOI: 10.7759/cureus.43555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Microglial cells are specialized macrophage cells of the central nervous system responsible for the innate immunity of the spinal cord and the brain. They protect the brain and spinal cord from invaders, microbes, demyelination, trauma and remove defective cells and neurons. For immune protection, microglial cells possess a significant number of receptors and chemical mediators that allow them to communicate rapidly and specifically with all cells of the nervous tissue. The contribution of microglia in neuropathic pain challenges conventional concepts toward neurons being the only structure responsible for the pathophysiological changes that drive neuropathic pain. The present study is a narrative review focusing on the literature concerning the complex interaction between neurons and microglia in the development of neuropathic pain. Injury in the peripheral or central nervous system may result in maladaptive changes in neurons and microglial cells. In neuropathic pain, microglial cells have an important role in initiating and maintenance of pain and inflammation. The interaction between neural and microglial cells has been proven extremely crucial for chronic pain. The study of individual mechanisms at the level of the spinal cord and the brain is an interesting and groundbreaking research challenge. Elucidation of the mechanisms by which neurons and immune cells interact, could constitute microglial cells a new therapeutic target for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Miltiades Y Karavis
- Musculoskeletal Physiotherapy Research Laboratory, Department of Physiotherapy, University of West Attica, Athens, GRC
| | - Ioanna Siafaka
- 1st Department of Anesthesiology, National and Kapodistrian University of Athens School of Medicine, Athens, GRC
| | - Athina Vadalouca
- 1st Department of Anesthesiology, National and Kapodistrian University of Athens School of Medicine, Athens, GRC
| | - George Georgoudis
- Musculoskeletal Physiotherapy Research Laboratory, Department of Physiotherapy, University of West Attica, Athens, GRC
| |
Collapse
|
4
|
Development of Dibenzothiazepine Derivatives as Multifunctional Compounds for Neuropathic Pain. Pharmaceuticals (Basel) 2022; 15:ph15040407. [PMID: 35455404 PMCID: PMC9030932 DOI: 10.3390/ph15040407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022] Open
Abstract
Neuropathic pain is a chronic and sometimes intractable condition caused by lesions or diseases of the somatosensory nervous system. Many drugs are available but unfortunately do not provide satisfactory effects in patients, producing limited analgesia and undesirable side effects. Thus, there is an urgent need to develop new pharmaceutical agents to treat neuropathic pain. To date, highly specific agents that modulate a single target, such as receptors or ion channels, never progress to the clinic, which may reflect the diverse etiologies of neuropathic pain seen in the human patient population. Therefore, the development of multifunctional compounds exhibiting two or more pharmacological activities is an attractive strategy for addressing unmet medical needs for the treatment of neuropathic pain. To develop novel multifunctional compounds, key pharmacophores of currently used clinical pain drugs, including pregabalin, fluoxetine and serotonin analogs, were hybridized to the side chain of tianeptine, which has been used as an antidepressant. The biological activities of the hybrid analogs were evaluated at the human transporters of neurotransmitters, including serotonin (hSERT), norepinephrine (hNET) and dopamine (hDAT), as well as mu (μ) and kappa (κ) opioid receptors. The most advanced hybrid of these multifunctional compounds, 17, exhibited multiple transporter inhibitory activities for the uptake of neurotransmitters with IC50 values of 70 nM, 154 nM and 2.01 μM at hSERT, hNET and hDAT, respectively. Additionally, compound 17 showed partial agonism (EC50 = 384 nM) at the μ-opioid receptor with no influence at the κ-opioid receptor. In in vivo pain animal experiments, the multifunctional compound 17 showed significantly reduced allodynia in a spinal nerve ligation (SNL) model by intrathecal administration, indicating that multitargeted strategies in single therapy could considerably benefit patients with multifactorial diseases, such as pain.
Collapse
|
5
|
Naguib IA, Ali NA, Elroby FA, Elghobashy MR. Green HPLC-DAD and HPTLC Methods for Quantitative Determination of Binary Mixture of Pregabalin and Amitriptyline Used for Neuropathic Pain Management. J Chromatogr Sci 2021; 59:536-547. [PMID: 33778855 DOI: 10.1093/chromsci/bmab031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Indexed: 11/13/2022]
Abstract
First analytical methods were herein developed for determination of pregabalin (PGB) and amitriptyline (AMT) as an active binary mixture used for management of neuropathic pain whether in pure forms or in human biological fluids (plasma/urine). First method is green high-performance liquid chromatography-diode array detector (HPLC-DAD) after derivatization of PGB with ninhydrin (NIN) on a reversed-phase C18 column using a mobile phase consisting of ethanol:water (97:3%, v/v) pumped isocratically at 0.8 mL/min; AMT were scanned at 215 nm, whereas PGB-NIN was scanned at 580 nm. Second method is High-performance thin-layer chromatography (HPTLC), where PGB and AMT were separated on silica gel HPTLC F254 plates, using ethanol:ethyl acetate:acetone:ammonia solution (8:2:1:0.05, by volume) as a developing system. AMT peaks were scanned at 220 nm, whereas PGB peaks were visualized by spraying 3% (w/v) ethanolic NIN solution and scanning at 550 nm. Linear calibration curves were obtained for human plasma and urine spiked with PGB and AMT over the ranges of 5-100 μg/mL and 0.2-2.5 μg/band for PGB, and 1-100 μg/mL and 0.1-2.0 μg/band for AMT for HPLC-DAD and HPTLC methods, respectively. The suggested methods were validated according to Food and Drug Administration guidelines for bioanalytical methods validation and they can be applied for routine therapeutic drug monitoring for the concerned drugs.
Collapse
Affiliation(s)
- Ibrahim A Naguib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, PO Box 11099, Taif 21944, Saudi Arabia
| | - Nesma A Ali
- Analytical Toxicology Laboratory, Forensic Medicine Authority, Ministry of Justice, Cairo 11647, Egypt
| | - Fadwa A Elroby
- Faculty of Medicine, Forensic Medicine Department, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Mohamed R Elghobashy
- Faculty of Pharmacy, Analytical Chemistry Department, Cairo University, Cairo 11562, Egypt.,Faculty of Pharmacy, October 6 University, October 6 city, Giza 12585, Egypt
| |
Collapse
|
6
|
IKBKB siRNA-Encapsulated Poly (Lactic- co-Glycolic Acid) Nanoparticles Diminish Neuropathic Pain by Inhibiting Microglial Activation. Int J Mol Sci 2021; 22:ijms22115657. [PMID: 34073390 PMCID: PMC8203094 DOI: 10.3390/ijms22115657] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 01/08/2023] Open
Abstract
Activation of nuclear factor-kappa B (NF-κB) in microglia plays a decisive role in the progress of neuropathic pain, and the inhibitor of kappa B (IκB) is a protein that blocks the activation of NF-κB and is degraded by the inhibitor of NF-κB kinase subunit beta (IKBKB). The role of IKBKB is to break down IκB, which blocks the activity of NF-kB. Therefore, it prevents the activity of NK-kB. This study investigated whether neuropathic pain can be reduced in spinal nerve ligation (SNL) rats by reducing the activity of microglia by delivering IKBKB small interfering RNA (siRNA)-encapsulated poly (lactic-co-glycolic acid) (PLGA) nanoparticles. PLGA nanoparticles, as a carrier for the delivery of IKBKB genes silencer, were used because they have shown potential to enhance microglial targeting. SNL rats were injected with IKBKB siRNA-encapsulated PLGA nanoparticles intrathecally for behavioral tests on pain response. IKBKB siRNA was delivered for suppressing the expression of IKBKB. In rats injected with IKBKB siRNA-encapsulated PLGA nanoparticles, allodynia caused by mechanical stimulation was reduced, and the secretion of pro-inflammatory mediators due to NF-κB was reduced. Delivering IKBKB siRNA through PLGA nanoparticles can effectively control the inflammatory response and is worth studying as a treatment for neuropathic pain.
Collapse
|
7
|
ESI–LC–MS/MS for Therapeutic Drug Monitoring of Binary Mixture of Pregabalin and Tramadol: Human Plasma and Urine Applications. SEPARATIONS 2021. [DOI: 10.3390/separations8020021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Tramadol (TRM) and pregabalin (PGB) are frequently used in combination for neuropathic pain management. Accordingly, a selective and sensitive high-performance liquid chromatography–electrospray ionization–mass/mass spectrometric (ESI–LC–MS/MS) method is presented for determination of TRM and PGB, whether in pure forms or human biological fluids (plasma/urine), using gabapentin (GBP) (IS) as the internal standard. Chromatographic separation was effected in total run time of 2.5 min, on Phenomenex Luna® Omega 1.6 um polar C18 (LC 150 × 2.1 mm) column with a mobile phase of methanol/water (70:30, v/v), 0.1% (v/v) formic acid at a flow rate of 0.3 mL/min. Ionization of the analytes was obtained using electrospray in the positive ion mode (ESI+). The MS/MS detection was performed by monitoring the fragments for TRM, PGB and GBP on a triple quadrupole mass spectrometer. Assay calibration was over the range of 10–1000 ng mL−1 for TRM and PGB with the correlation coefficients over 0.999 in pure form, human plasma and urine spiked with the studied compounds. Validation data showed the inter-run relative standard deviations (RSDs) were less than 4.3% for TRM and 3.8% for PGB, whereas the intra-run RSDs were less than 3.7% for TRM and 3.6% for PGB. The mean extraction recoveries for TRM and PGB were in the ranges of 86.51–93.38% and 86.20–92.42%. This method was successfully performed on real plasma and urine samples taken from neuropathic patients and proved to be an applicable method for routine therapeutic drug monitoring of the proposed drug combination.
Collapse
|
8
|
Naguib IA, Ali NA, Elroby FA, El Ghobashy MR, Abdallah FF. Ecologically evaluated and FDA-validated HPTLC method for assay of pregabalin and tramadol in human biological fluids. Biomed Chromatogr 2020; 35:e5023. [PMID: 33169415 DOI: 10.1002/bmc.5023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/03/2020] [Accepted: 11/04/2020] [Indexed: 11/12/2022]
Abstract
The introduced research presents a novel in vivo quantitative method for assay of mixtures of pregabalin and tramadol as a common combinations approved for treatment of neuropathic pain. Green analytical chemistry is a recently emerging science concerned with control of the use of chemicals harmful to the environment in various analytical methods. Consequently, a green high-performance thin layer chromatography (HPTLC) method was achieved for determination of the mixture in human plasma and urine satisfying both analytical and environmental standards. The separation was achieved on HPTLC sheets using a separating mixture of ethanol-ethyl acetate-acetone-ammonia solution (8:2:1:0.05, by volume) as a mobile phase. The sheets were dried in air then scanned at two wavelengths. For tramadol, 220 nm was chosen; however, pregabalin is an unconjugated drug, so its determination was a challenge. Hence for pregabalin, the plates were sprayed with ethanolic solution of ninhydrin (3%, w/v), to obtain a conjugated complex, which could be assessed at 550 nm. Furthermore, the developed method fulfilled the US Food and Drug Administration validation guidelines, and proved to be useful in therapeutic drug monitoring of this combination. The Eco-scale assessment protocol was implemented to determine the greenness profile of the applied method.
Collapse
Affiliation(s)
- Ibrahim A Naguib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.,Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Alshaheed Shehata Ahmad Hegazy St, Beni-Suef, 62541, Egypt
| | - Nesma A Ali
- Toxicology Laboratory, Forensic Medicine Authority, Ministry of Justice, Cairo, 11647, Egypt
| | - Fadwa A Elroby
- Forensic Medicine Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed R El Ghobashy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.,Faculty of Pharmacy, October 6 University, October 6 City, Giza, Egypt
| | - Fatma F Abdallah
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Alshaheed Shehata Ahmad Hegazy St, Beni-Suef, 62541, Egypt
| |
Collapse
|
9
|
US FDA-validated green GC-MS method for analysis of gabapentin, tramadol and/or amitriptyline mixtures in biological fluids. Bioanalysis 2020; 12:1521-1533. [PMID: 33118848 DOI: 10.4155/bio-2020-0217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background: Mixtures of gabapentin, tramadol and/or amitriptyline are usually recommended for treatment of neuropathic pain. Materials & methods/results: A novel GC-MS/MS method was developed to assess the studied mixture whether in pure forms or human biological fluids (plasma/urine). The chromatographic detection was performed using MS detector applying the selected ion-monitoring mode. An (Agilent, CA, USA) GC-MS with triple axis single quadrupole detector unit was used for the analysis equipped with HP-5MS (5% phenyl methyl siloxane) column. Helium was the carrier gas and positive electron impact ionization mode was applied. Conclusion: The developed method was able to assess the mixture components simultaneously within six minutes. Validation of the method was assured according to US FDA guidelines and Eco-Scale assessment.
Collapse
|
10
|
Yi D, Wang K, Zhu B, Li S, Liu X. Identification of neuropathic pain-associated genes and pathways via random walk with restart algorithm. J Neurosurg Sci 2020; 65:414-420. [PMID: 32536116 DOI: 10.23736/s0390-5616.20.04920-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Neuropathic pain (NP) develops from neuropathic lesions or diseases affecting the nervous system, and has become a serious public health issue due to its complex symptoms, high incidence and long duration. At present, the exact pathogenesis of NP is still unclear. In this study, we sought to identify the genes as well as the related molecular mechanisms associated with NP occurrence and development. METHODS We firstly identified the differentially expressed genes between NP spinal nerve ligation (SNL) rats and control sham rats and then projected them onto a STRING network for functional association analysis. Then, Random Walk with Restart (RWR) was conducted to find some new NP-related genes, with their potential functions sequentially analyzed by GO annotation and KEGG pathway analysis. RESULTS Some new NP-related genes, like Gng13, C3 and Cxcl2, were identified by RWR analysis. Meanwhile, some biological functions like inflammatory responses, chemotaxis and immune responses, as well as some signaling pathways, such as those involved in neuroactive ligand-receptor interactions, complement and blood coagulation cascade reactions, and cytokine-receptor interactions that the new NP- related genes were most activated were found to be associated with NP occurrence and development. CONCLUSIONS This study extends our knowledge of NP occurrence and development and provides new therapeutic targets for future NP treatment.
Collapse
Affiliation(s)
- Duan Yi
- Department of Pain Medicine Center, Peking University Third Hospital, Beijing China
| | - Kai Wang
- Department of Pain Medicine Center, Peking University Third Hospital, Beijing China
| | - Bin Zhu
- Department of Pain Medicine Center, Peking University Third Hospital, Beijing China
| | - Shuiqing Li
- Department of Pain Medicine Center, Peking University Third Hospital, Beijing China
| | - Xiaoguang Liu
- Department of Orthopedic, Peking University Third Hospital, Beijing China -
| |
Collapse
|
11
|
Rojewska E, Ciapała K, Mika J. Kynurenic acid and zaprinast diminished CXCL17-evoked pain-related behaviour and enhanced morphine analgesia in a mouse neuropathic pain model. Pharmacol Rep 2019; 71:139-148. [DOI: 10.1016/j.pharep.2018.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/03/2018] [Accepted: 10/02/2018] [Indexed: 12/23/2022]
|
12
|
Asahchop EL, Branton WG, Krishnan A, Chen PA, Yang D, Kong L, Zochodne DW, Brew BJ, Gill MJ, Power C. HIV-associated sensory polyneuropathy and neuronal injury are associated with miRNA-455-3p induction. JCI Insight 2018; 3:122450. [PMID: 30518697 DOI: 10.1172/jci.insight.122450] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/24/2018] [Indexed: 11/17/2022] Open
Abstract
Symptomatic distal sensory polyneuropathy (sDSP) is common and debilitating in people with HIV/AIDS, leading to neuropathic pain, although the condition's cause is unknown. To investigate biomarkers and associated pathogenic mechanisms for sDSP, we examined plasma miRNA profiles in HIV/AIDS patients with sDSP or without sDSP in 2 independent cohorts together with assessing related pathogenic effects. Several miRNAs were found to be increased in the Discovery Cohort (sDSP, n = 29; non-DSP, n = 40) by array analyses and were increased in patients with sDSP compared with patients without sDSP. miR-455-3p displayed a 12-fold median increase in the sDSP group, which was confirmed by machine learning analyses and verified by reverse transcription PCR. In the Validation Cohort (sDSP n = 16, non-DSP n = 20, healthy controls n = 15), significant upregulation of miR-455-3p was also observed in the sDSP group. Bioinformatics revealed that miR-455-3p targeted multiple host genes implicated in peripheral nerve maintenance, including nerve growth factor (NGF) and related genes. Transfection of cultured human dorsal root ganglia with miR-455-3p showed a concentration-dependent reduction in neuronal β-III tubulin expression. Human neurons transfected with miR-455-3p demonstrated reduced neurite outgrowth and NGF expression that was reversed by anti-miR-455-3p antagomir cotreatment. miR-455-3p represents a potential biomarker for HIV-associated sDSP and might also exert pathogenic effects leading to sDSP.
Collapse
Affiliation(s)
- Eugene L Asahchop
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada
| | - William G Branton
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada
| | - Anand Krishnan
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada
| | - Patricia A Chen
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada
| | - Dong Yang
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Linglong Kong
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Douglas W Zochodne
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Bruce J Brew
- Departments of Neurology and HIV, St. Vincent's Hospital, and Peter Duncan Neurosciences Unit, St. Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, Australia
| | - M John Gill
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Christopher Power
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
13
|
Zaprinast diminished pain and enhanced opioid analgesia in a rat neuropathic pain model. Eur J Pharmacol 2018; 839:21-32. [PMID: 30213497 DOI: 10.1016/j.ejphar.2018.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/25/2018] [Accepted: 09/04/2018] [Indexed: 01/11/2023]
Abstract
The mechanism of neuropathic pain is complex and unclear. Based on our results, we postulate that an intensification of the kynurenine pathway occurs as a consequence of nerve injury. The G protein-coupled receptor 35 (GPR35) is important for kynurenine pathway activation. Cyclic GMP-specific phosphodiesterase inhibitors have also been shown to have beneficial effects on neuropathic pain. Therefore, the aims of our research were to elucidate how a substance that acts as both an agonist of GPR35 and an inhibitor of phosphodiesterase influences neuropathic pain in a rat model. Here, we demonstrated that preemptive and repeated intrathecal (i.t.) administration (16 h and 1 h before injury and then after nerve ligation daily for 7 days) of zaprinast (1 μg/5 μl) significantly attenuated mechanical (von Frey test) and thermal (cold plate test) hypersensitivity measured on day 7 after chronic constriction injury, and the effect of even a single injection lasted up to 24 h. Our data indicate that zaprinast diminished the number of IBA1-positive cells and consequently attenuated the levels of IL-1beta, IL-6, IL-18, and NOS2 in the lumbar spinal cord and/or dorsal root ganglia. Our results also demonstrated that zaprinast potentiated the analgesic properties of morphine and buprenorphine. In summary, in a neuropathic pain model, zaprinast significantly reduced pain symptoms and enhanced the effectiveness of opioids. Our data provide new evidence that modulation of both GPR35 and phosphodiesterase could be an important strategy for innovative pharmacological treatments designed to decrease hypersensitivity evoked by nerve injury.
Collapse
|
14
|
Piotrowska A, Rojewska E, Pawlik K, Kreiner G, Ciechanowska A, Makuch W, Zychowska M, Mika J. Pharmacological blockade of CXCR3 by (±)-NBI-74330 reduces neuropathic pain and enhances opioid effectiveness - Evidence from in vivo and in vitro studies. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3418-3437. [PMID: 30076959 DOI: 10.1016/j.bbadis.2018.07.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 07/24/2018] [Accepted: 07/30/2018] [Indexed: 12/13/2022]
Abstract
It has been suggested that CXCR3 is important for nociception. Our experiments were conducted to evaluate involvement of CXCR3 and its ligands (CXCL4, CXCL9, CXCL10, CXCL11/CCL21) in neuropathic pain. Our studies give new evidence that intrathecal administration of each CXCR3 ligand induces pain-like behaviour in naive mice that occurs shortly after injection due to its location of neurons, which is confirmed by immunofluorescent staining. Moreover, intrathecal administrations of CXCL9, CXCL10, CCL21 neutralizing antibodies diminished pain-related behaviour. RT-PCR/Western blot analysis unprecedentedly showed spinal elevated levels of CXCR3 after chronic constriction injury of the sciatic nerve in rats in parallel with different time-course changes of its endogenous ligands. Initially, on day 2 we observed spinal increased levels of CXCL10 and CXCL11 indicating that these chemokines have important roles in triggering neuropathy. Then, on day 7, we observed increased levels of CXCL4, CXCL9, CXCL10. Interestingly, changes in CXCL9 level persisted until day 28, suggesting that these chemokines are responsible for long-term, persistent neuropathy. Additionally, in DRG the CXCL4, CXCL9 were elevated. The results obtained from primary glial cultures, suggests that all CXCR3 ligands can be produced in microglia, but also, except for CXCL4, in astrocytes. We provide the first evidence that in neuropathy chronic intrathecal administration of CXCR3 antagonist, (±)-NBI-74330, attenuates hypersensitivity with concomitant occurrence of microglial and some of CXCR3 ligands activation observed in the spinal cord and/or DRG level. This paper underlies the significance of CXCR3 in neuropathic pain and shows therapeutic potential of its blockade for enhancement of morphine analgesia as the major novelty of this work.
Collapse
Affiliation(s)
- Anna Piotrowska
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Smetna Street 12, 31-343 Krakow, Poland
| | - Ewelina Rojewska
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Smetna Street 12, 31-343 Krakow, Poland
| | - Katarzyna Pawlik
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Smetna Street 12, 31-343 Krakow, Poland
| | - Grzegorz Kreiner
- Institute of Pharmacology, Polish Academy of Sciences, Department of Brain Biochemistry, Smetna Street 12, 31-343 Krakow, Poland
| | - Agata Ciechanowska
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Smetna Street 12, 31-343 Krakow, Poland
| | - Wioletta Makuch
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Smetna Street 12, 31-343 Krakow, Poland
| | - Magdalena Zychowska
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Smetna Street 12, 31-343 Krakow, Poland
| | - Joanna Mika
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Smetna Street 12, 31-343 Krakow, Poland.
| |
Collapse
|
15
|
Di Cesare Mannelli L, Ghelardini C, Micheli L, Del Bello F, Giannella M, Piergentili A, Pigini M, Quaglia W. Synergic stimulation of serotonin 5-HT1A receptor and α2-adrenoceptors for neuropathic pain relief: Preclinical effects of 2-substituted imidazoline derivatives. Eur J Pharmacol 2017. [DOI: 10.1016/j.ejphar.2017.06.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Zhao H, Alam A, Chen Q, Eusman M, Pal A, Eguchi S, Wu L, Ma D. The role of microglia in the pathobiology of neuropathic pain development: what do we know? Br J Anaesth 2017; 118:504-516. [DOI: 10.1093/bja/aex006] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
17
|
Meren IL, Chavera JA, Alcott CJ, Barker AK, Jeffery ND. Shunt tube placement for amelioration of cerebrospinal fluid flow obstruction caused by spinal cord subarachnoid fibrosis in dogs. Vet Surg 2017; 46:289-296. [DOI: 10.1111/vsu.12622] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 07/05/2016] [Accepted: 09/13/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Ilyssa L. Meren
- Lloyd Veterinary Medical Center, Department of Veterinary Clinical Sciences; Iowa State University; 1600 South 16th Street Ames Iowa
| | - Jessica A. Chavera
- Lloyd Veterinary Medical Center, Department of Veterinary Clinical Sciences; Iowa State University; 1600 South 16th Street Ames Iowa
| | - Cody J. Alcott
- Lloyd Veterinary Medical Center, Department of Veterinary Clinical Sciences; Iowa State University; 1600 South 16th Street Ames Iowa
| | - Andrew K. Barker
- Lloyd Veterinary Medical Center, Department of Veterinary Clinical Sciences; Iowa State University; 1600 South 16th Street Ames Iowa
| | - Nick D. Jeffery
- Lloyd Veterinary Medical Center, Department of Veterinary Clinical Sciences; Iowa State University; 1600 South 16th Street Ames Iowa
| |
Collapse
|
18
|
Shackleton T, Ram S, Black M, Ryder J, Clark GT, Enciso R. The efficacy of botulinum toxin for the treatment of trigeminal and postherpetic neuralgia: a systematic review with meta-analyses. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 122:61-71. [DOI: 10.1016/j.oooo.2016.03.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/04/2016] [Accepted: 03/04/2016] [Indexed: 12/18/2022]
|
19
|
Stroman PW, Khan HS, Bosma RL, Cotoi AI, Leung R, Cadotte DW, Fehlings MG. Changes in Pain Processing in the Spinal Cord and Brainstem after Spinal Cord Injury Characterized by Functional Magnetic Resonance Imaging. J Neurotrauma 2016; 33:1450-60. [PMID: 26801315 DOI: 10.1089/neu.2015.4257] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Traumatic spinal cord injury (SCI) has a number of devastating consequences, including high prevalence of chronic pain and altered pain sensitivity. The causes of altered pain states vary depending on the injury and are difficult to diagnose and treat. A better understanding of pain mechanisms after SCI is expected to lead to better diagnostic capabilities and improved treatments. We therefore applied functional magnetic resonance imaging (fMRI) of the brainstem and spinal cord in a group of participants with previous traumatic SCI to characterize changes in pain processing as a result of their injuries. The same thermal stimulus was applied to the medial palm (C8 dermatome) as a series of repeated brief noxious thermal pulses in a group of 16 participants with a cervical (n = 14) and upper thoracic (n = 2) injuries. Functional MRI of the brainstem and spinal cord was used to determine the neuronal activity evoked by the noxious stimulation, and connectivity between regions was characterized with structural equation modeling (SEM). The results show that pain ratings, the location and magnitude of blood oxygenation-level dependent fMRI results, and connectivity assessed with SEM varied widely across participants. However, the results varied in relation to the perceived pain and the level/severity of injuries, particularly in terms of hypothalamus connectivity with other regions, and descending modulation via the periaqueductal gray matter-rostral ventromedial medulla-cord pathway. The results, therefore, appear to provide sensitive indicators of each individual's pain response, and information about the mechanisms of altered pain sensitivity. The ability to characterize changes in pain processing in individuals with SCI represents a significant technological advance.
Collapse
Affiliation(s)
- Patrick W Stroman
- 1 Centre for Neuroscience Studies, Queen's University , Kingston, Ontario, Canada
| | - Hamza S Khan
- 1 Centre for Neuroscience Studies, Queen's University , Kingston, Ontario, Canada
| | - Rachel L Bosma
- 1 Centre for Neuroscience Studies, Queen's University , Kingston, Ontario, Canada
| | - Andrea I Cotoi
- 1 Centre for Neuroscience Studies, Queen's University , Kingston, Ontario, Canada
| | - Roxanne Leung
- 1 Centre for Neuroscience Studies, Queen's University , Kingston, Ontario, Canada
| | - David W Cadotte
- 2 Department of Neurosurgery, University Health Network, Toronto Western Hospital , Toronto, Ontario, Canada
| | - Michael G Fehlings
- 2 Department of Neurosurgery, University Health Network, Toronto Western Hospital , Toronto, Ontario, Canada
| |
Collapse
|
20
|
Leppert W, Kowalski G. Long-term administration of high doses of transdermal buprenorphine in cancer patients with severe neuropathic pain. Onco Targets Ther 2015; 8:3621-7. [PMID: 26675083 PMCID: PMC4675634 DOI: 10.2147/ott.s91347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background Buprenorphine is often administered by the transdermal route (transdermal buprenorphine [TB]) in cancer patients with severe neuropathic pain. However, high doses of TB of 140 µg/h are rarely used. Patients and methods Three cancer patients with severe neuropathic Numeric Rating Scale (NRS) pain scores of 8–10 who were successfully treated with high doses of TB up to 140 µg/h along with other opioids and adjuvant analgesics. Results TB was administered for a long period of follow-up (9 months to 4 years, including 34–261 days of treatment with the dose of 140 µg/h), which allowed achievement of satisfactory analgesia (NRS 3–5) and good treatment tolerance. In all three patients, TB dose was gradually titrated from 35 to 140 µg/h, and all patients used morphine at least for some time for breakthrough and background pain management along with adjuvant analgesics. Two patients continued the treatment with TB until the end of life, and one patient is still receiving the treatment. Conclusion TB at doses of up to 140 µg/h in cancer patients with severe neuropathic pain seems to be effective and safe in combination with other opioids and with adjuvant analgesics, and may significantly improve patients’ quality of life. Clinical studies may explore higher than maximal 140 µg/h TB doses recommended by a manufacturer, and also in combination with other opioids and adjuvant analgesics.
Collapse
Affiliation(s)
- Wojciech Leppert
- Chair and Department of Palliative Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Grzegorz Kowalski
- Chair and Department of Palliative Medicine, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
21
|
Zulazmi NA, Gopalsamy B, Farouk AAO, Sulaiman MR, Bharatham BH, Perimal EK. Antiallodynic and antihyperalgesic effects of zerumbone on a mouse model of chronic constriction injury-induced neuropathic pain. Fitoterapia 2015. [PMID: 26205045 DOI: 10.1016/j.fitote.2015.07.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Neuropathic pain is a chronic condition that is difficult to be treated. Current therapies available are either ineffective or non-specific thus requiring newer treatment approaches. In this study, we investigated the antiallodynic and antihyperalgesic effects of zerumbone, a bioactive sesquiterpene from Zingiber zerumbet in chronic constriction injury (CCI)-induced neuropathic pain animal model. Our findings showed that single and repeated dose of intra-peritoneal administration of zerumbone (5, 10, 50, 100 mg/kg) significantly attenuated the CCI-induced neuropathic pain when evaluated using the electronic von Frey anesthesiometer, cold plate, Randall-Selitto analgesiometer and the Hargreaves plantar test. Zerumbone significantly alleviated tactile and cold allodynia as well as mechanical and thermal hyperalgesia. Our findings are in comparison to the positive control drugs thatused gabapentin (20 mg/kgi.p.) and morphine (1 mg/kgi.p.). Together, these results showed that the systemic administration of zerumbone produced marked antiallodynic and antihyperalgesic effects in the CCI-induced neuropathic pain in mice and may serve as a potential lead compound for further analysis.
Collapse
Affiliation(s)
- Nurul Atiqah Zulazmi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Banulata Gopalsamy
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Ahmad Akira Omar Farouk
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Roslan Sulaiman
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - B Hemabarathy Bharatham
- Biomedical Science Programme, School of Diagnostic and Applied Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Enoch Kumar Perimal
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|