1
|
Yang Y, Zhang Z. α-Synuclein pathology from the body to the brain: so many seeds so close to the central soil. Neural Regen Res 2024; 19:1463-1472. [PMID: 38051888 PMCID: PMC10883481 DOI: 10.4103/1673-5374.387967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/24/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT α-Synuclein is a protein that mainly exists in the presynaptic terminals. Abnormal folding and accumulation of α-synuclein are found in several neurodegenerative diseases, including Parkinson's disease. Aggregated and highly phosphorylated α-synuclein constitutes the main component of Lewy bodies in the brain, the pathological hallmark of Parkinson's disease. For decades, much attention has been focused on the accumulation of α-synuclein in the brain parenchyma rather than considering Parkinson's disease as a systemic disease. Recent evidence demonstrates that, at least in some patients, the initial α-synuclein pathology originates in the peripheral organs and spreads to the brain. Injection of α-synuclein preformed fibrils into the gastrointestinal tract triggers the gut-to-brain propagation of α-synuclein pathology. However, whether α-synuclein pathology can occur spontaneously in peripheral organs independent of exogenous α-synuclein preformed fibrils or pathological α-synuclein leakage from the central nervous system remains under investigation. In this review, we aimed to summarize the role of peripheral α-synuclein pathology in the pathogenesis of Parkinson's disease. We also discuss the pathways by which α-synuclein pathology spreads from the body to the brain.
Collapse
Affiliation(s)
- Yunying Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Shu H, Zhang P, Gu L. Alpha-synuclein in peripheral body fluid as a biomarker for Parkinson's disease. Acta Neurol Belg 2024; 124:831-842. [PMID: 38170418 DOI: 10.1007/s13760-023-02452-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024]
Abstract
OBJECTIVE Whether alpha-synuclein in peripheral body fluids can be used for the diagnosis of Parkinson's disease (PD) remains in controversy. This study evaluates diagnostic potential of alpha-synuclein for PD in various peripheral body fluids using a meta-analysis approach. METHODS Studies published before October 2022 were searched in Web of Science and PubMed databases. The results were computed using the STATA 12.0 statistical software. RESULTS In plasma, PD patients exhibited elevated alpha-synuclein levels relative to healthy controls (HCs) [standard mean difference (SMD) = 0.78, 95% confidence interval (CI) = 0.42 to 1.15] with a sensitivity of 0.79 (95% CI: 0.64-0.89) and a specificity of 0.95 (95% CI: 0.90-0.98). Higher plasma alpha-synuclein levels were correlated with longer disease durations, higher Unified Parkinson's Disease Rating Scale motor scores, and higher Hoehn and Yahr stages in PD patients. Plasma neural-derived exosomal alpha-synuclein levels (SMD = 1.82, 95% CI = 0.30 to 3.35), ratio of plasma neural-derived exosomal alpha-synuclein to total alpha-synuclein (SMD = 1.26, 95% CI = 0.19 to 2.33), and erythrocytic alpha-synuclein levels were also increased in PD patients (SMD = 6.57, 95% CI = 3.55 to 9.58). In serum, there was no significant difference in alpha-synuclein levels between PD patients and HCs (SMD = 0.54, 95% CI = - 0.27 to 1.34). In saliva, reduced alpha-synuclein levels were observed in PD patients (SMD = - 0.85, 95% CI = - 1.67 to - 0.04). CONCLUSIONS Alpha-synuclein levels in plasma, plasma neural-derived exosome, erythrocyte, and saliva may serve as potential biomarkers for the diagnosis of PD.
Collapse
Affiliation(s)
- Hao Shu
- Department of Neurology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210031, China
| | - Pengcheng Zhang
- Institute of Environment and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300041, China
| | - Lihua Gu
- Department of Neurology, Tianjin Huanhu Hospital, No. 6 Jizhao Road, Tianjin, 300350, China.
| |
Collapse
|
3
|
Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Santos-García D, Martínez-Valbuena I, Agúndez JAG. Alpha-Synuclein in Peripheral Tissues as a Possible Marker for Neurological Diseases and Other Medical Conditions. Biomolecules 2023; 13:1263. [PMID: 37627328 PMCID: PMC10452242 DOI: 10.3390/biom13081263] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The possible usefulness of alpha-synuclein (aSyn) determinations in peripheral tissues (blood cells, salivary gland biopsies, olfactory mucosa, digestive tract, skin) and in biological fluids, except for cerebrospinal fluid (serum, plasma, saliva, feces, urine), as a marker of several diseases, has been the subject of numerous publications. This narrative review summarizes data from studies trying to determine the role of total, oligomeric, and phosphorylated aSyn determinations as a marker of various diseases, especially PD and other alpha-synucleinopathies. In summary, the results of studies addressing the determinations of aSyn in its different forms in peripheral tissues (especially in platelets, skin, and digestive tract, but also salivary glands and olfactory mucosa), in combination with other potential biomarkers, could be a useful tool to discriminate PD from controls and from other causes of parkinsonisms, including synucleinopathies.
Collapse
Affiliation(s)
| | | | - Elena García-Martín
- Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| | - Diego Santos-García
- Department of Neurology, CHUAC—Complejo Hospitalario Universitario de A Coruña, 15006 A Coruña, Spain;
| | - Iván Martínez-Valbuena
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 2S8, Canada;
| | - José A. G. Agúndez
- Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| |
Collapse
|
4
|
Gonzalez-Robles C, Weil RS, van Wamelen D, Bartlett M, Burnell M, Clarke CS, Hu MT, Huxford B, Jha A, Lambert C, Lawton M, Mills G, Noyce A, Piccini P, Pushparatnam K, Rochester L, Siu C, Williams-Gray CH, Zeissler ML, Zetterberg H, Carroll CB, Foltynie T, Schrag A. Outcome Measures for Disease-Modifying Trials in Parkinson's Disease: Consensus Paper by the EJS ACT-PD Multi-Arm Multi-Stage Trial Initiative. JOURNAL OF PARKINSON'S DISEASE 2023; 13:1011-1033. [PMID: 37545260 PMCID: PMC10578294 DOI: 10.3233/jpd-230051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/23/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Multi-arm, multi-stage (MAMS) platform trials can accelerate the identification of disease-modifying treatments for Parkinson's disease (PD) but there is no current consensus on the optimal outcome measures (OM) for this approach. OBJECTIVE To provide an up-to-date inventory of OM for disease-modifying PD trials, and a framework for future selection of OM for such trials. METHODS As part of the Edmond J Safra Accelerating Clinical Trials in Parkinson Disease (EJS ACT-PD) initiative, an expert group with Patient and Public Involvement and Engagement (PPIE) representatives' input reviewed and evaluated available evidence on OM for potential use in trials to delay progression of PD. Each OM was ranked based on aspects such as validity, sensitivity to change, participant burden and practicality for a multi-site trial. Review of evidence and expert opinion led to the present inventory. RESULTS An extensive inventory of OM was created, divided into: general, motor and non-motor scales, diaries and fluctuation questionnaires, cognitive, disability and health-related quality of life, capability, quantitative motor, wearable and digital, combined, resource use, imaging and wet biomarkers, and milestone-based. A framework for evaluation of OM is presented to update the inventory in the future. PPIE input highlighted the need for OM which reflect their experience of disease progression and are applicable to diverse populations and disease stages. CONCLUSION We present a range of OM, classified according to a transparent framework, to aid selection of OM for disease-modifying PD trials, whilst allowing for inclusion or re-classification of relevant OM as new evidence emerges.
Collapse
Affiliation(s)
| | | | | | | | - Matthew Burnell
- Medical Research Council Clinical Trials Unit at University College London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Is peripheral alpha synuclein a marker for gait velocity in Parkinson's disease? Neurosci Lett 2022; 786:136819. [PMID: 35905887 DOI: 10.1016/j.neulet.2022.136819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/15/2022] [Accepted: 07/24/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND The extent of gait abnormality is non-uniform across motor phenotypes of Parkinson's disease (PD). The biological basis of this heterogeneity remains intriguing. Moreover, the relationship of gait impairment with various neurodegenerative protein markers in PD is not well established. OBJECTIVES Here, we aimed to explore the interplay between gait parameters and specific serum protein markers in PD. METHODS A total of 62 PD patients were consecutively recruited. Blood samples and gait data were acquired from 37 and 34 patients respectively. Two-dimensional spatio-temporal gait parameters were estimated using an electronic walkway (GAITRite®, CIR Systems Inc., USA). Serum phosphorylated alpha synuclein (p-Ser129-a-syn) and total a-syn levels were measured using commercially available ELISA kit. Data was analyzed using SPSS Version 20 (IBM). RESULTS We found that phosphorylated a-syn levels were significantly higher in PD patients with postural instability and gait difficulty compared to tremor dominant variant. Significant reduction in gait velocity was also observed with increasing levels of this pathological form of a-syn. Regression modelling showed that phosphorylated a-syn is an independent predictor of gait velocity. DISCUSSION Our findings indicate that concentrations of peripheral p-Ser129-a-syn but not total a-syn could be a potential contributor of gait impairment in PD. Further investigation on the systemic role of phosphorylated a-syn on gait would bridge the gap between central and peripheral mechanisms underlying phenotypic variability in PD.
Collapse
|
6
|
Sergi CM. Epigallocatechin Gallate (EGCG) for Parkinson's Disease. Clin Exp Pharmacol Physiol 2022; 49:1029-1041. [PMID: 35748799 DOI: 10.1111/1440-1681.13691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 01/03/2022] [Accepted: 06/19/2022] [Indexed: 11/28/2022]
Abstract
In the last couple of decades, we have experienced increased use of nutraceuticals worldwide with a demand for organic foods, which has been elevated to an extent probably unmatched with other periods of our civilization. One of the nutraceuticals that gained attention is epigallocatechin gallate (EGCG), a polyphenol in green tea. It has been suggested that diseases of the central nervous system (CNS) can benefit from consuming some antioxidants, despite current results showing little evidence for their use in preventing and treating these diseases. ECGC may be beneficial in delaying the neurodegeneration of the substantia nigra (SN) regardless of the origin of Parkinson's disease (PD). This review covers the effect of EGCG on vitro and animal models of PD, the potential mechanisms of neuroprotection involved and summaries recent clinical trials in human PD. This review also aims to provide an investigative analysis of the current knowledge in this field and identify putative crucial issues. Environmental factors such as dietary habits, drug use, and social interaction are all factors that influence the evolution of neurodegenerative diseases. Therefore, the use of nutraceuticals requires further investigation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Consolato M Sergi
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, Hubei, China.,Anatomic Pathology, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada.,Department of Orthopedics, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Laboratory Medicine and Pathology, University of Alberta, AB, Canada
| |
Collapse
|
7
|
Pandian SRK, Vijayakumar KK, Murugesan S, Kunjiappan S. Liposomes: An emerging carrier for targeting Alzheimer's and Parkinson's diseases. Heliyon 2022; 8:e09575. [PMID: 35706935 PMCID: PMC9189891 DOI: 10.1016/j.heliyon.2022.e09575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/19/2022] [Accepted: 05/23/2022] [Indexed: 11/19/2022] Open
Abstract
The function of the brain can be affected by various factors that include infection, tumor, and stroke. The major disorders reported with altered brain function are Alzheimer's disease (AD), Parkinson's disease (PD), dementia, brain cancer, seizures, mental disorders, and other movement disorders. The major barrier in treating CNS disease is the blood-brain barrier (BBB), which protects the brain from toxic molecules, and the cerebrospinal fluid (CSF) barrier, which separates blood from CSF. Brain endothelial cells and perivascular elements provide an integrated cellular barrier, the BBB, which hamper the invasion of molecules from the blood to the brain. Even though many drugs are available to treat neurological disorders, it fails to reach the desired site with the required concentration. In this purview, liposomes can carry required concentrations of molecules intracellular by diverse routes such as carrier-mediated transport and receptor-mediated transcytosis. Surface modification of liposomes enables them to deliver drugs to various brain cells, including neurons, astrocytes, oligodendrocytes, and microglia. The research studies supported the role of liposomes in delivering drugs across BBB and in reducing the pathogenesis of AD and PD. The liposomes were surface-functionalized with various molecules to reach the cells intricated with the AD or PD pathogenesis. The targeted and sustained delivery of drugs by liposomes is disturbed due to the antibody formation, renal clearance, accelerated blood clearance, and complement activation-related pseudoallergy (CARPA). Hence, this review will focus on the characteristics, surface functionalization, drug loading, and biodistribution of liposomes respective to AD and PD. In addition, the alternative strategies to overcome immunogenicity are discussed briefly.
Collapse
Affiliation(s)
- Sureshbabu Ram Kumar Pandian
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, 626126, Tamilnadu, India
| | - Kevin Kumar Vijayakumar
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamilnadu, India
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Vidya Vihar, Pilani, 333031, Rajasthan, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, 626126, Tamilnadu, India
| |
Collapse
|
8
|
Zubelzu M, Morera-Herreras T, Irastorza G, Gómez-Esteban JC, Murueta-Goyena A. Plasma and serum alpha-synuclein as a biomarker in Parkinson's disease: A meta-analysis. Parkinsonism Relat Disord 2022; 99:107-115. [PMID: 35717321 DOI: 10.1016/j.parkreldis.2022.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/18/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Reliable biomarkers for Parkinson's disease (PD) diagnosis are urgently needed. Alpha-synuclein (α-syn) and its proteoforms play a key role in PD pathology but in vivo measurements have raised conflicting results, and whether α-syn in blood could distinguish PD patients from healthy controls is still controversial. METHODS A systematic literature search yielded 35 eligible studies for meta-analysis reporting the concentration of total, oligomeric or phosphorylated α-syn in plasma and/or serum of PD patients and healthy controls. Standardized mean differences (SMD) were pooled using multivariate/multilevel linear mixed-effects models. Meta-regression analyses were conducted to investigate possible modifiers. RESULTS A meta-analysis of 32 articles involving 2683 PD patients and 1838 controls showed a significant overall effect of PD on total α-syn levels (SMD = 0.85, p = 0.004). Meta-regression showed that increased SMD of total α-syn in PD was significantly associated with lower age, shorter disease duration, mild motor impairment, and Immunomagnetic Reduction assay for protein quantification. In contrast, no significant differences were observed for oligomeric or phosphorylated α-syn between PD and controls but increased oligomeric α-syn was significantly associated with shorter disease duration. The heterogeneity among studies was high (>98%). CONCLUSIONS These findings suggest that increased total plasma/serum α-syn levels in PD primarily occur in early phases of the disease. The evidence obtained from a small number of studies measuring plasma/serum concentrations of oligomeric and phosphorylated species of α-syn shows no difference. The clinical applicability of measuring plasma or serum α-syn species for differentiating PD from healthy control warrants further studies with better clinical profiling of PD patients.
Collapse
Affiliation(s)
- Maider Zubelzu
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain; Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Teresa Morera-Herreras
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain; Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain.
| | - Gorka Irastorza
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Juan Carlos Gómez-Esteban
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain; Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain; Department of Neurology, Cruces University Hospital, Osakidetza, Barakaldo, Bizkaia, Spain
| | - Ane Murueta-Goyena
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain; Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| |
Collapse
|
9
|
Detection and assessment of alpha-synuclein in Parkinson disease. Neurochem Int 2022; 158:105358. [PMID: 35561817 DOI: 10.1016/j.neuint.2022.105358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/19/2022] [Accepted: 05/01/2022] [Indexed: 11/21/2022]
Abstract
PURPOSE Different studies have reported varying alpha-synuclein values in the cerebrospinal fluid (CSF), serum, and plasma, making determination of the alpha-synuclein cutoff value for Parkinson's disease difficult and rendering identifying the cause of variation essential. METHOD We searched PubMed from inception to June 2021 and identified 76 eligible studies. Included studies reported data on total, phosphorylated, and oligomeric alpha-synuclein in the CSF, serum, or plasma from individuals with Parkinson's disease and healthy controls. The mean or median alpha-synuclein values from the included studies were summarized and categorized through laboratory assays to visualize potential trends. RESULTS The enzyme-linked immunosorbent assay (ELISA) is the most common assay used to determine alpha-synuclein concentrations. Less common assays include Luminex, single molecule arrays, electrochemiluminescence, and immunomagnetic reduction (IMR). IMR is a single-antibody and wash-free immunoassay designed for determining the extremely low concentration of bio-molecules. For patients with Parkinson's disease, the median or mean testing values ranged from 60.9 to 55,000 pg/mL in the CSF, 0.446 to 1,777,100 pg/mL in plasma, and 0.0292 to 38,200,000 pg/mL in serum. The antibody selection was diverse between studies. The tendency of distribution was more centralized among studies that used the same kit. Studies adopting specific antibodies or in-house assays contribute to the extreme values. Only a few studies on phosphorylated and oligomeric alpha-synuclein were included. CONCLUSION The type of assay and antibody selection in the laboratory played major roles in the alpha-synuclein variation. Studies that used the same assay and kit yielded relatively unanimous results. Furthermore, IMR may be a promising assay for plasma and serum alpha-synuclein quantification. A consensus on sample preparation and testing protocol unification is warranted in the future.
Collapse
|
10
|
Lucien F, Benarroch EE, Mullan A, Ali F, Boeve BF, Mielke MM, Petersen RC, Kim Y, Stang C, Camerucci E, Ross OA, Wszolek ZK, Knopman D, Bower J, Singer W, Savica R. Poly (ADP-Ribose) and α-synuclein extracellular vesicles in patients with Parkinson disease: A possible biomarker of disease severity. PLoS One 2022; 17:e0264446. [PMID: 35395000 PMCID: PMC8993007 DOI: 10.1371/journal.pone.0264446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 02/10/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND/OBJECTIVE Despite multiple attempts, no surrogate biomarker of Parkinson disease (PD) has been definitively identified. Alternatively, identifying a non-invasive biomarker is crucial to understanding the natural history, severity, and progression of PD and to guide future therapeutic trials. Recent work highlighted alpha synuclein-containing extracellular vesicles and Poly (ADP-ribose) polymerase (PARP-1) activity as drivers of PD pathogenesis and putative PD biomarkers. This exploratory study evaluated the role of alpha-synuclein-positive extracellular vesicles and PARP-1 activity in the plasma of PD patients as non-invasive markers of the disease's severity and progression. METHODS We collected plasma of 57 PD patients (discovery cohort 20, replication cohort 37) and compared it with 20 unaffected individuals, 20 individuals with clinically diagnosed Alzheimer's disease, and 20 individuals with dementia with Lewy bodies. We analyzed alpha-synuclein-positive extracellular vesicles from platelet-free plasma by nanoscale flow cytometry and blood concentrations of poly ADP-ribose using sandwich ELISA kits. RESULTS Median concentration of α-synuclein extracellular vesicles was significantly higher in PD patients compared to the other groups (Kruskal-Wallis, p < .0001). In the discovery cohort, patients with higher α-synuclein extracellular vesicles had a higher Unified Parkinson Disease Rating Scale score (UPDRS III median = 22 vs. 5, p = 0.045). Seven out of 20 patients (35%) showed detectable PAR levels, with positive patients showing significantly higher levels of α-synuclein extracellular vesicles. In the replication cohort, we did not observe a significant difference in the PAR-positive cases in relationship with UPDRS III. CONCLUSIONS Non-invasive determination of α-synuclein-positive extracellular vesicles may provide a potential non-invasive marker of PD disease severity, and longitudinal studies are needed to evaluate the role of α-synuclein-positive extracellular vesicles as a marker of disease progression.
Collapse
Affiliation(s)
- Fabrice Lucien
- Department of Urology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Eduardo E. Benarroch
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Aidan Mullan
- Department of Health Science Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Farwa Ali
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Bradley F. Boeve
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Michelle M. Mielke
- Department of Health Science Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Ronald C. Petersen
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Yohan Kim
- Department of Urology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Cole Stang
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Emanuele Camerucci
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Owen A. Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, United States of America
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Zbigniew K. Wszolek
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - David Knopman
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - James Bower
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Wolfgang Singer
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Health Science Research, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
11
|
Barba L, Paolini Paoletti F, Bellomo G, Gaetani L, Halbgebauer S, Oeckl P, Otto M, Parnetti L. Alpha and Beta Synucleins: From Pathophysiology to Clinical Application as Biomarkers. Mov Disord 2022; 37:669-683. [PMID: 35122299 PMCID: PMC9303453 DOI: 10.1002/mds.28941] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
The synuclein family includes three neuronal proteins, named α‐synuclein, β‐synuclein, and γ‐synuclein, that have peculiar structural features. α‐synuclein is largely known for being a key protein in the pathophysiology of Parkinson's disease (PD) and other synucleinopathies, namely, dementia with Lewy bodies and multisystem atrophy. The role of β‐synuclein and γ‐synuclein is less well understood in terms of physiological functions and potential contribution to human diseases. α‐synuclein has been investigated extensively in both cerebrospinal fluid (CSF) and blood as a potential biomarker for synucleinopathies. Recently, great attention has been also paid to β‐synuclein, whose CSF and blood levels seem to reflect synaptic damage and neurodegeneration independent of the presence of synucleinopathy. In this review, we aim to provide an overview on the pathophysiological roles of the synucleins. Because γ‐synuclein has been poorly investigated in the field of synucleinopathy and its pathophysiological roles are far from being clear, we focus on the interactions between α‐synuclein and β‐synuclein in PD. We also discuss the role of α‐synuclein and β‐synuclein as potential biomarkers to improve the diagnostic characterization of synucleinopathies, thus highlighting their potential application in clinical trials for disease‐modifying therapies. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Lorenzo Barba
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery University of Perugia Perugia Italy
- Department of Neurology University of Ulm Ulm Germany
- Department of Neurology Martin‐Luther‐University Halle‐Wittenberg Halle/Saale Germany
| | - Federico Paolini Paoletti
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery University of Perugia Perugia Italy
| | - Giovanni Bellomo
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery University of Perugia Perugia Italy
| | - Lorenzo Gaetani
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery University of Perugia Perugia Italy
| | | | - Patrick Oeckl
- Department of Neurology University of Ulm Ulm Germany
- German Center for Neurodegenerative Disorders Ulm (DZNE e. V.) Ulm Germany
| | - Markus Otto
- Department of Neurology University of Ulm Ulm Germany
- Department of Neurology Martin‐Luther‐University Halle‐Wittenberg Halle/Saale Germany
| | - Lucilla Parnetti
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery University of Perugia Perugia Italy
| |
Collapse
|
12
|
Park DG, Kang J, An YS, Chang J, Yoon JH. Association of plasma α-synuclein with cardiac 123I-MIBG scintigraphy in early Parkinson’s disease. Neurosci Lett 2022; 770:136399. [DOI: 10.1016/j.neulet.2021.136399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 10/06/2021] [Accepted: 12/13/2021] [Indexed: 01/28/2023]
|
13
|
Lin W, Shaw J, Cheng F, Chen P. Plasma total tau predicts executive dysfunction in Parkinson's disease. Acta Neurol Scand 2022; 145:30-37. [PMID: 34398474 DOI: 10.1111/ane.13517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/21/2021] [Accepted: 08/08/2021] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Cognitive impairment is an important non-motor aspect of Parkinson's disease (PD). Amyloid-β and tau pathologies are well-established in Alzheimer's disease and commonly coexist with synucleinopathy in PD. However, the levels of these biomarkers in the plasma of patients with PD and their relationship with specific cognition domains remain to be clarified. The current study compared the motor severity and neuropsychological assessment of general and specific cognition, with plasma levels of α-synuclein (α-syn), amyloid-β 42 (Aβ42), and total tau (t-tau) in PD subjects. METHODS Plasma levels of α-syn, Aβ42, and t-tau were measured in 55 participants with PD through immunomagnetic reduction assay. The evaluation of motor severity and comprehensive neuropsychological assessment was performed in all participants. RESULTS The level of plasma α-syn was negatively correlated with the scores of Unified Parkinson's Disease Rating Scale part III [r = (-.352), p = .008]. The level of plasma t-tau was negatively correlated with the scores of digits recall forwards and digits recall backwards [r = (-.446), p = .001; r = (-.417), p = .002, respectively]. No correlations were found between the levels of α-syn and Aβ42 and any neuropsychological tests. CONCLUSIONS This study concluded a lower level of plasma α-syn was correlated with motor dysfunction in PD patients, and a higher level of plasma t-tau was correlated with lower cognitive performance, especially for attention and executive function. These results propose the possibility of using plasma biomarkers to predict specific cognitive performance in PD subjects.
Collapse
Affiliation(s)
- Wei‐Ting Lin
- Department of Neurology MacKay Memorial Hospital Taipei Taiwan
| | - Jin‐Siang Shaw
- Institute of Mechatronic Engineering National Taipei University of Technology Taipei Taiwan
| | - Fang‐Yu Cheng
- Institute of Long‐Term Care MacKay Medical College New Taipei City Taiwan
| | - Pei‐Hao Chen
- Department of Neurology MacKay Memorial Hospital Taipei Taiwan
- Department of Medicine MacKay Medical College New Taipei City Taiwan
- College of Mechanical and Electrical Engineering National Taipei University of Technology Taipei Taiwan
| |
Collapse
|
14
|
Chelliah SS, Bhuvanendran S, Magalingam KB, Kamarudin MNA, Radhakrishnan AK. Identification of blood-based biomarkers for diagnosis and prognosis of Parkinson's disease: A systematic review of proteomics studies. Ageing Res Rev 2022; 73:101514. [PMID: 34798300 DOI: 10.1016/j.arr.2021.101514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/14/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022]
Abstract
Parkinson's Disease (PD), a neurodegenerative disorder, is characterised by the loss of motor function and dopamine neurons. Therapeutic avenues remain a challenge due to lack of accuracy in early diagnosis, monitoring of disease progression and limited therapeutic options. Proteomic platforms have been utilised to discover biomarkers for numerous diseases, a tool that may benefit the diagnosis and monitoring of disease progression in PD patients. Therefore, this systematic review focuses on analysing blood-based candidate biomarkers (CB) identified via proteomics platforms for PD. This study systematically reviewed articles across six databases (EMBASE, Cochrane, Ovid Medline, Scopus, Science Direct and PubMed) published between 2010 and 2020. Of the 504 articles identified, 12 controlled-PD studies were selected for further analysis. A total of 115 candidate biomarkers (CB) were identified across selected 12-controlled studies, of which 23 CB were found to be replicable in more than two cohorts. Using the PANTHER Go-Slim classification system and STRING network, the gene function and protein interactions between biomarkers were analysed. Our analysis highlights Apolipoprotein A-I (ApoA-I), which is essential in lipid metabolism, oxidative stress, and neuroprotection demonstrates high replicability across five cohorts with consistent downregulation across four cohorts. Since ApoA-I was highly replicable across blood fractions, proteomic platforms and continents, its relationship with cholesterol, statin and oxidative stress as PD biomarker, its role in the pathogenesis of PD is discussed in this paper. The present study identified ApoA-I as a potential biomarker via proteomics analysis of PD for the early diagnosis and prediction of disease progression.
Collapse
Affiliation(s)
- Shalini Sundramurthi Chelliah
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| | - Saatheeyavaane Bhuvanendran
- Brain Research Institute Monash Sunway (BRIMS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| | - Kasthuri Bai Magalingam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| | - Muhamad Noor Alfarizal Kamarudin
- Brain Research Institute Monash Sunway (BRIMS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| | - Ammu Kutty Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| |
Collapse
|
15
|
Stuendl A, Kraus T, Chatterjee M, Zapke B, Sadowski B, Moebius W, Hobert MA, Deuschle C, Brockmann K, Maetzler W, Mollenhauer B, Schneider A. α-Synuclein in Plasma-Derived Extracellular Vesicles Is a Potential Biomarker of Parkinson's Disease. Mov Disord 2021; 36:2508-2518. [PMID: 34002893 DOI: 10.1002/mds.28639] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Extracellular vesicles are small vesicles that are released from many cells, including neurons. α-Synuclein has recently been described in extracellular vesicles derived from the central nervous system and may contribute to the spreading of disease pathology in α-synuclein-related neurodegeneration. OBJECTIVES We aimed to examine the potential diagnostic value of α-synuclein in plasma extracellular vesicles from patients with Parkinson's disease (PD). METHODS Preanalytical variables were studied to establish an optimized assay for preparation of plasma extracellular vesicles and detection of extracellular vesicle-derived α-synuclein. Plasma samples were obtained from 2 independent cohorts. The Tübingen cohort contained 96 patients with PD, 50 patients with dementia with Lewy bodies, 50 patients with progressive supranuclear palsy (PSP), and 42 healthy controls; the Kassel cohort included 47 patients with PD, 43 patients with dementia with Lewy bodies, and 36 controls with secondary parkinsonian syndromes. Extracellular vesicles were prepared from total plasma by size exclusion chromatography and quantified by nanoparticle tracking analysis, α-synuclein content was measured by an electrochemiluminescence assay. RESULTS α-Synuclein concentration in plasma extracellular vesicles provided the best discrimination between PD, dementia with Lewy bodies, PSP, and healthy controls, with an area under the curve of 0.804 (PD vs dementia with Lewy bodies), 0.815 (PD vs. PSP), and 0.769 (PD vs healthy controls) in the Tübingen cohort. Results were validated in the Kassel cohort. CONCLUSIONS The concentration of α-synuclein in plasma extracellular vesicles may serve as a potential diagnostic biomarker for PD. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Anne Stuendl
- German Center for Neurodegenerative Diseases, DZNE, Bonn, Germany
| | - Tanja Kraus
- German Center for Neurodegenerative Diseases, DZNE, Bonn, Germany
| | | | - Björn Zapke
- German Center for Neurodegenerative Diseases, DZNE, Bonn, Germany
| | - Boguslawa Sadowski
- Department of Neurogenetics, Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Wiebke Moebius
- Department of Neurogenetics, Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Markus A Hobert
- Department of Neurology, Christian-Albrechts-University, Kiel, Germany
| | - Christian Deuschle
- Department of Neurology, University of Tübingen, Tübingen, Germany.,Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research HiH, Tübingen, Germany.,German Center for Neurodegenerative Diseases DZNE, Tübingen, Germany
| | - Kathrin Brockmann
- Department of Neurology, University of Tübingen, Tübingen, Germany.,Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research HiH, Tübingen, Germany.,German Center for Neurodegenerative Diseases DZNE, Tübingen, Germany
| | - Walter Maetzler
- Department of Neurology, Christian-Albrechts-University, Kiel, Germany
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,Paracelsus-Elena-Klinik, Kassel, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases, DZNE, Bonn, Germany.,Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
16
|
|
17
|
Insights into the Pathophysiology of Psychiatric Symptoms in Central Nervous System Disorders: Implications for Early and Differential Diagnosis. Int J Mol Sci 2021; 22:ijms22094440. [PMID: 33922780 PMCID: PMC8123079 DOI: 10.3390/ijms22094440] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
Different psychopathological manifestations, such as affective, psychotic, obsessive-compulsive symptoms, and impulse control disturbances, may occur in most central nervous system (CNS) disorders including neurodegenerative and neuroinflammatory diseases. Psychiatric symptoms often represent the clinical onset of such disorders, thus potentially leading to misdiagnosis, delay in treatment, and a worse outcome. In this review, psychiatric symptoms observed along the course of several neurological diseases, namely Alzheimer’s disease, fronto-temporal dementia, Parkinson’s disease, Huntington’s disease, and multiple sclerosis, are discussed, as well as the involved brain circuits and molecular/synaptic alterations. Special attention has been paid to the emerging role of fluid biomarkers in early detection of these neurodegenerative diseases. The frequent occurrence of psychiatric symptoms in neurological diseases, even as the first clinical manifestations, should prompt neurologists and psychiatrists to share a common clinico-biological background and a coordinated diagnostic approach.
Collapse
|
18
|
Zhao X, Chen Y, Wang L, Li X, Chen X, Zhang H. Associations of ATG7 rs1375206 polymorphism and elevated plasma ATG7 levels with late-onset sporadic Parkinson's disease in a cohort of Han Chinese from southern China. Int J Neurosci 2020; 130:1206-1214. [PMID: 32065549 DOI: 10.1080/00207454.2020.1731507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 01/25/2020] [Accepted: 02/09/2020] [Indexed: 10/25/2022]
Abstract
Background: Autophagy-related gene 7 (ATG7) plays a key role in autophagy and is strongly implicated in Parkinson's disease (PD). This study investigated the associations of rs1375206 polymorphism in ATG7 gene promoter and plasma ATG7 levels with late-onset sporadic PD in a cohort of Han Chinese from southern China.Methods: Variant genotypes were identified using polymerase chain reaction-restriction fragment length polymorphism and gene sequencing in 124 patients with late-onset sporadic PD, as well as in 105 age- and sex-matched healthy controls. Plasma ATG7 levels were determined using an enzyme-linked immunosorbent assay.Results: No significant differences in genotype distributions were found between the two groups. Stratification analyses by sex and clinical motor subtypes revealed that the differences remained non-significant in each subgroup (all p > 0.05). Plasma ATG7 protein levels were significantly higher in the PD group than in the control group (p = 0.000). Haplotype analysis demonstrated that the A-T haplotype was significantly associated with late-onset sporadic PD (p = 0.045).Conclusion: Our study suggests that the rs1375206 polymorphism in ATG7 may not be associated with late-onset sporadic PD; however, high plasma ATG7 levels and the A-T haplotype may be associated with susceptibility to late-onset sporadic PD in the Han population from Zhejiang and Guangdong provinces.
Collapse
Affiliation(s)
- Xiyao Zhao
- Department of Neurology, The Second Affiliated Hospital (Jiande Branch), School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yusen Chen
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Li Wang
- Department of Neurology, The Second Affiliated Hospital (Jiande Branch), School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xiangxin Li
- Department of Neurology, The Second Affiliated Hospital (Jiande Branch), School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xiaoyi Chen
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Hao Zhang
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
19
|
Camporesi E, Nilsson J, Brinkmalm A, Becker B, Ashton NJ, Blennow K, Zetterberg H. Fluid Biomarkers for Synaptic Dysfunction and Loss. Biomark Insights 2020; 15:1177271920950319. [PMID: 32913390 PMCID: PMC7444114 DOI: 10.1177/1177271920950319] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
Synapses are the site for brain communication where information is transmitted between neurons and stored for memory formation. Synaptic degeneration is a global and early pathogenic event in neurodegenerative disorders with reduced levels of pre- and postsynaptic proteins being recognized as a core feature of Alzheimer's disease (AD) pathophysiology. Together with AD, other neurodegenerative and neurodevelopmental disorders show altered synaptic homeostasis as an important pathogenic event, and due to that, they are commonly referred to as synaptopathies. The exact mechanisms of synapse dysfunction in the different diseases are not well understood and their study would help understanding the pathogenic role of synaptic degeneration, as well as differences and commonalities among them and highlight candidate synaptic biomarkers for specific disorders. The assessment of synaptic proteins in cerebrospinal fluid (CSF), which can reflect synaptic dysfunction in patients with cognitive disorders, is a keen area of interest. Substantial research efforts are now directed toward the investigation of CSF synaptic pathology to improve the diagnosis of neurodegenerative disorders at an early stage as well as to monitor clinical progression. In this review, we will first summarize the pathological events that lead to synapse loss and then discuss the available data on established (eg, neurogranin, SNAP-25, synaptotagmin-1, GAP-43, and α-syn) and emerging (eg, synaptic vesicle glycoprotein 2A and neuronal pentraxins) CSF biomarkers for synapse dysfunction, while highlighting possible utilities, disease specificity, and technical challenges for their detection.
Collapse
Affiliation(s)
- Elena Camporesi
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johanna Nilsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ann Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bruno Becker
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- King’s College London, Institute of Psychiatry, Psychology & Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
- Wallenberg Centre for Molecular and Translational Medicine, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| |
Collapse
|
20
|
Wang L, Wang G, Duan Y, Wang F, Lin S, Zhang F, Li H, Li A, Li H. A Comparative Study of the Diagnostic Potential of Plasma and Erythrocytic α-Synuclein in Parkinson's Disease. NEURODEGENER DIS 2020; 19:204-210. [PMID: 32485710 DOI: 10.1159/000506480] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/10/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disease characterized by intracellular α-synuclein (α-Syn) deposition. Alternation of the α-Syn expression level in plasma or erythrocytes may be used as a potential PD biomarker. However, no studies have compared their prognostic value directly with the same cohort. METHODS The levels of α-Syn in plasma and erythrocytes, obtained from 45 PD patients and 45 control subjects, were measured with enzyme-linked immunosorbent assay. Then, correlation and receiver operating characteristic curve (ROC) analysis were performed to characterize the predictive power of erythrocytic and plasma α-Syn. RESULTS Our results showed that α-Syn expression levels in both plasma and erythrocytes were significantly higher in PD patients than in control subjects (823.14 ± 257.79 vs. 297.10 ± 192.82 pg/mL, p < 0.0001 in plasma; 3,104.14 ± 143.03 vs. 2,944.82 ± 200.41 pg/mL, p < 0.001 in erythrocytes, respectively). The results of the ROC analysis suggested that plasma α-Syn exhibited better predictive power than erythrocytic α-Syn with a sensitivity of 80.0%, specificity of 97.7%, and a positive predictive value of 77.8%. The expression level of plasma α-Syn correlated well with the age of patients, H-Y stage, MoCA scale, and UPDRS motor scale. On the contrary, there was no correlation between erythrocytic α-Syn level and clinical parameters in this study. CONCLUSION Our results suggest that plasma α-Syn could be a specific and sensitive potential diagnostic biomarker for PD.
Collapse
Affiliation(s)
- Luxuan Wang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China.,Department of Neurology, General Hospital of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, China
| | - Guowei Wang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China.,Department of Neurology, General Hospital of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, China
| | - Yangyang Duan
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China.,Department of Neurology, General Hospital of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, China
| | - Feng Wang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, China
| | - Shaoqing Lin
- Department of Neurology, Brain Center of Sunshine Union Hospital, Sunshine Union Hospital, Weifang, China
| | - Fengting Zhang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China.,Department of Neurology, General Hospital of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, China
| | - Hui Li
- Department of Computer Science, Jiangsu Ocean University, Lianyungang, China
| | - Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, Durham, North Carolina, USA,
| | - Haining Li
- Department of Neurology, General Hospital of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, China
| |
Collapse
|
21
|
Ashton NJ, Hye A, Rajkumar AP, Leuzy A, Snowden S, Suárez-Calvet M, Karikari TK, Schöll M, La Joie R, Rabinovici GD, Höglund K, Ballard C, Hortobágyi T, Svenningsson P, Blennow K, Zetterberg H, Aarsland D. An update on blood-based biomarkers for non-Alzheimer neurodegenerative disorders. Nat Rev Neurol 2020; 16:265-284. [PMID: 32322100 DOI: 10.1038/s41582-020-0348-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2020] [Indexed: 01/11/2023]
Abstract
Cerebrospinal fluid analyses and neuroimaging can identify the underlying pathophysiology at the earliest stage of some neurodegenerative disorders, but do not have the scalability needed for population screening. Therefore, a blood-based marker for such pathophysiology would have greater utility in a primary care setting and in eligibility screening for clinical trials. Rapid advances in ultra-sensitive assays have enabled the levels of pathological proteins to be measured in blood samples, but research has been predominantly focused on Alzheimer disease (AD). Nonetheless, proteins that were identified as potential blood-based biomarkers for AD, for example, amyloid-β, tau, phosphorylated tau and neurofilament light chain, are likely to be relevant to other neurodegenerative disorders that involve similar pathological processes and could also be useful for the differential diagnosis of clinical symptoms. This Review outlines the neuropathological, clinical, molecular imaging and cerebrospinal fluid features of the most common neurodegenerative disorders outside the AD continuum and gives an overview of the current status of blood-based biomarkers for these disorders.
Collapse
Affiliation(s)
- Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK.,NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Abdul Hye
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK.,NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Anto P Rajkumar
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK.,NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK.,Institute of Mental Health, University of Nottingham, Nottingham, UK
| | - Antoine Leuzy
- Clinical Memory Research Unit, Lund University, Malmö, Sweden
| | - Stuart Snowden
- Core Metabolomics and Lipidomics Laboratory, Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Marc Suárez-Calvet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Catalonia, Spain.,Department of Neurology, Hospital del Mar, Barcelona, Catalonia, Spain
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Michael Schöll
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Clinical Memory Research Unit, Lund University, Malmö, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Renaud La Joie
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Gil D Rabinovici
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Kina Höglund
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Disease Research, Neurogeriatrics Division, Karolinska Institutet, Novum, Huddinge, Stockholm, Sweden
| | | | - Tibor Hortobágyi
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK.,MTA-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neurology, University of Debrecen, Debrecen, Hungary
| | - Per Svenningsson
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK.,Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK. .,NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK. .,Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway.
| |
Collapse
|
22
|
Shaheen H, Sobhy S, El Mously S, Abuomira M, Mansour M. Salivary alpha-synuclein (total and oligomeric form): potential biomarkers in Parkinson’s disease. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2020. [DOI: 10.1186/s41983-020-0159-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
Background
Parkinson’s disease (PD) is one of the most common degenerative diseases of the central nervous system (CNS). Alpha-synuclein (A-syn) plays a critical role in the pathogenesis of PD. The close relation between the salivary glands and the CNS could render the A-syn secretions in the saliva useful biomarkers for PD.
Aim of the work
To study the salivary A-syn levels in a cohort of PD Egyptian patients and to correlate these A-syn levels with the patients’ clinical data and disease severity.
Patients and methods
Twenty-five PD patients and 15 age- and sex-matched healthy subjects, as a control group, were enrolled. Evaluation of PD patients was performed using the Unified Parkinson’s Disease Rating Scale (UPDRS) and modified Hoehn and Yahr scale (HYS). Samples of the saliva were analyzed using the enzyme-linked immunosorbent assay (ELISA) technique for the specific anti A-syn total and anti A-syn oligomer (A-synolig).
Results
There was a statistically significant increase in A-synolig level and A-synolig/A-syn total ratio and a decrease in A-syn total level among PD patients. A statistically significant increase in A-synolig level was detected among patients having bradykinesia and rigidity as predominant symptoms. Also, there was a statistically significant positive correlation between A-synolig level and the disease duration. No statistically significant correlation was found between A-syn concentrations and disease severity.
Conclusion
Salivary A-syn total and A-synolig can be used as potential biomarkers for PD diagnosis.
Collapse
|
23
|
Johnson PH, Weinreb NJ, Cloyd JC, Tuite PJ, Kartha RV. GBA1 mutations: Prospects for exosomal biomarkers in α-synuclein pathologies. Mol Genet Metab 2020; 129:35-46. [PMID: 31761523 PMCID: PMC7002237 DOI: 10.1016/j.ymgme.2019.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/03/2019] [Accepted: 10/12/2019] [Indexed: 12/13/2022]
Abstract
The discovery that patients with Gaucher Disease (GD), a rare lysosomal storage disorder, were developing symptoms similar to Parkinson's disease (PD) led to investigation of the relationship between the two seemingly unrelated pathologies. GD, an autosomal recessive disorder, is the result of a biallelic mutation in the gene GBA1, which encodes for the enzyme glucocerebrosidase (GCase). Since the observation of its relation to PD, GBA1 mutations have become recognized as the most common genetic risk factor for development of synucleinopathies such as PD and dementia with Lewy bodies. Although the exact mechanism by which GBA1 mutations promote PD is unknown, current understanding suggests that impaired GCase inhibits lysosomal activity and decreases the overall ability of the cell to degrade proteins, specifically the neuronal protein α-synuclein. Decreased elimination of α-synuclein can lead to its abnormal accumulation and aggregation, an important component of PD development. Further understanding of how decreased GCase activity increases risk for α-synuclein pathology can assist with the development of clinical biomarkers for early detection of synucleinopathies, as well as promote novel treatments tailored for people with a GBA1 mutation. Historically, α-synuclein has not been a reliable biomarker for PD. However, recent research on α-synuclein content within exosomes, which are small vesicles released by cells that carry specific cellular cargo, has yielded encouraging results. Moreover, decreased GCase activity has been shown to influence exosomal contents. Exosomes have emerged as a promising new avenue for the identification of novel biomarkers and therapeutic targets aimed at improving neuronal GCase function and limiting the development of synucleinopathies.
Collapse
Affiliation(s)
- Parker H Johnson
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Neal J Weinreb
- Department of Human Genetics and Medicine (Hematology), Leonard Miller School of Medicine of University of Miami, Miami, FL, United States of America
| | - James C Cloyd
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States of America; Department of Neurology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Paul J Tuite
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Reena V Kartha
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States of America.
| |
Collapse
|
24
|
Parnetti L, Gaetani L, Eusebi P, Paciotti S, Hansson O, El-Agnaf O, Mollenhauer B, Blennow K, Calabresi P. CSF and blood biomarkers for Parkinson's disease. Lancet Neurol 2019; 18:573-586. [PMID: 30981640 DOI: 10.1016/s1474-4422(19)30024-9] [Citation(s) in RCA: 349] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/21/2018] [Accepted: 01/15/2019] [Indexed: 01/09/2023]
Abstract
In the management of Parkinson's disease, reliable diagnostic and prognostic biomarkers are urgently needed. The diagnosis of Parkinson's disease mostly relies on clinical symptoms, which hampers the detection of the earliest phases of the disease-the time at which treatment with forthcoming disease-modifying drugs could have the greatest therapeutic effect. Reliable prognostic markers could help in predicting the response to treatments. Evidence suggests potential diagnostic and prognostic value of CSF and blood biomarkers closely reflecting the pathophysiology of Parkinson's disease, such as α-synuclein species, lysosomal enzymes, markers of amyloid and tau pathology, and neurofilament light chain. A combination of multiple CSF biomarkers has emerged as an accurate diagnostic and prognostic model. With respect to early diagnosis, the measurement of CSF α-synuclein aggregates is providing encouraging preliminary results. Blood α-synuclein species and neurofilament light chain are also under investigation because they would provide a non-invasive tool, both for early and differential diagnosis of Parkinson's disease versus atypical parkinsonian disorders, and for disease monitoring. In view of adopting CSF and blood biomarkers for improving Parkinson's disease diagnostic and prognostic accuracy, further validation in large independent cohorts is needed.
Collapse
Affiliation(s)
- Lucilla Parnetti
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine, University of Perugia, Perugia, Italy.
| | - Lorenzo Gaetani
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Paolo Eusebi
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Silvia Paciotti
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine, University of Perugia, Perugia, Italy; Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden; Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Omar El-Agnaf
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Kassel, Germany; University Medical Center, Department of Neurology, Göttingen, Germany
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Paolo Calabresi
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
25
|
Ng ASL, Tan YJ, Lu Z, Ng EYL, Ng SYE, Chia NSY, Setiawan F, Xu Z, Tay KY, Prakash KM, Au WL, Tan E, Tan LCS. Plasma alpha-synuclein detected by single molecule array is increased in PD. Ann Clin Transl Neurol 2019; 6:615-619. [PMID: 30911585 PMCID: PMC6414476 DOI: 10.1002/acn3.729] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/04/2018] [Accepted: 01/03/2019] [Indexed: 12/02/2022] Open
Abstract
We utilized ultrasensitive single molecule technology to measure plasma alpha-synuclein in 221 subjects (51 controls, 170 PD). Plasma alpha-synuclein levels were significantly higher in PD than controls (15506.3 vs. 13057.0 pg/mL, P = 0.037), adjusting for age and gender. In PD, alpha-synuclein levels did not vary by H&Y stage or UPDRS motor scores but were significantly higher in PD patients with poorer cognition (MMSE ≤ 25) than controls (P = 0.016, Bonferroni corrected P = 0.047). Alpha-synuclein levels quantified using ultrasensitive single molecule technology discriminate PD from controls and correlate with cognitive severity. These preliminary findings require independent validation to determine the utility of this assay.
Collapse
Affiliation(s)
- Adeline S. L. Ng
- Department of NeurologyNational Neuroscience InstituteTan Tock Seng Hospital11 Jalan Tan Tock SengSingapore308433Singapore
| | - Yi Jayne Tan
- Department of NeurologyNational Neuroscience InstituteTan Tock Seng Hospital11 Jalan Tan Tock SengSingapore308433Singapore
| | - Zhonghao Lu
- Department of NeurologyNational Neuroscience InstituteTan Tock Seng Hospital11 Jalan Tan Tock SengSingapore308433Singapore
| | - Ebonne Y. L. Ng
- Department of NeurologyNational Neuroscience InstituteSingapore General Hospital20 College RoadSingapore169856Singapore
| | - Samuel Y. E. Ng
- Department of NeurologyNational Neuroscience InstituteTan Tock Seng Hospital11 Jalan Tan Tock SengSingapore308433Singapore
| | - Nicole S. Y. Chia
- Department of NeurologyNational Neuroscience InstituteTan Tock Seng Hospital11 Jalan Tan Tock SengSingapore308433Singapore
| | - Fiona Setiawan
- Department of NeurologyNational Neuroscience InstituteSingapore General Hospital20 College RoadSingapore169856Singapore
| | - Zheyu Xu
- Department of NeurologyNational Neuroscience InstituteTan Tock Seng Hospital11 Jalan Tan Tock SengSingapore308433Singapore
| | - Kay Yaw Tay
- Department of NeurologyNational Neuroscience InstituteTan Tock Seng Hospital11 Jalan Tan Tock SengSingapore308433Singapore
| | - Kumar M. Prakash
- Department of NeurologyNational Neuroscience InstituteSingapore General Hospital20 College RoadSingapore169856Singapore
| | - Wing Lok Au
- Department of NeurologyNational Neuroscience InstituteTan Tock Seng Hospital11 Jalan Tan Tock SengSingapore308433Singapore
| | - Eng‐King Tan
- Department of NeurologyNational Neuroscience InstituteSingapore General Hospital20 College RoadSingapore169856Singapore
- Neuroscience and Behavioural Disorders ProgramDuke‐NUS Medical School8 College RoadSingapore169857Singapore
| | - Louis C. S. Tan
- Department of NeurologyNational Neuroscience InstituteTan Tock Seng Hospital11 Jalan Tan Tock SengSingapore308433Singapore
| |
Collapse
|
26
|
Bougea A, Stefanis L, Paraskevas GP, Emmanouilidou E, Vekrelis K, Kapaki E. Plasma alpha-synuclein levels in patients with Parkinson's disease: a systematic review and meta-analysis. Neurol Sci 2019; 40:929-938. [PMID: 30715632 DOI: 10.1007/s10072-019-03738-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/23/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To date, there are no definitive biomarkers for diagnose Parkinson's disease (PD). The detection of α-synuclein (α-Syn) in plasma of PD patients has yielded promising but inconclusive results. To determine the performance of α-Syn as a diagnostic biomarker of PD, we used a meta-analysis. METHODS We identified 173 studies through a systematic literature review. From those, only studies reporting data on total α-Syn levels were included in the meta-analysis (10 publications, 1302 participants). Quality of studies was assessed by Newcastle-Ottawa scale. RESULTS The α-Syn levels were significantly higher in PD patients than healthy controls (standardized mean difference [SMD] = 0.778, 95% confidence interval = 0.284 to 1.272, p = 0.002). Similar results were found after omitting any individual study from meta-analysis, with SMD ranges from 0.318 (95% CI = 0.064 to 0.572, p = 0.014) to 0.914 (95% CI = 0.349 to 1.480, p = 0.002). According to meta-regression analysis, increased mean patients age (slope = - 0.232, 95% CI = - 0.456 to - 0.008, p = 0.042), increased total number of participants (slope = - 0.007, 95% CI = - 0.013 to - 0.0004, p = 0.038), and increased percentage of males (slope = - 6.444, 95% CI = - 10.841 to - 2.047, p = 0.004) were associated with decreased SMD of α-Syn levels across studies. We did not find any significant association between the SMD in α-Syn levels and disease duration, disease severity, and quality of studies. Most of studies applied ELISA assays. CONCLUSION Total plasma α-Syn levels were higher in PD patients than controls. Analytical factors were important limitations.
Collapse
Affiliation(s)
- Anastasia Bougea
- Neurochemistry laboratory, 1st Department of Neurology and Movement Disorders, Medical School, Aeginition Hospital, National and Kapodistrian University of Athens, 72-74 Vasilissis Sofias Avenue, 11528, Athens, Greece.
- Neuroscience laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| | - Leonidas Stefanis
- Neuroscience laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - George P Paraskevas
- Neurochemistry laboratory, 1st Department of Neurology and Movement Disorders, Medical School, Aeginition Hospital, National and Kapodistrian University of Athens, 72-74 Vasilissis Sofias Avenue, 11528, Athens, Greece
| | - Evangelia Emmanouilidou
- Neuroscience laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Kostas Vekrelis
- Neuroscience laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Elisabeth Kapaki
- Neurochemistry laboratory, 1st Department of Neurology and Movement Disorders, Medical School, Aeginition Hospital, National and Kapodistrian University of Athens, 72-74 Vasilissis Sofias Avenue, 11528, Athens, Greece
| |
Collapse
|