1
|
Roshdi Maleki M. Species and genetic diversity of nontuberculous mycobacteria in suspected tuberculosis cases in East Azerbaijan, Iran: a cross-sectional analysis. Front Cell Infect Microbiol 2024; 14:1477015. [PMID: 39512592 PMCID: PMC11540818 DOI: 10.3389/fcimb.2024.1477015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/01/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction The incidence of nontuberculous mycobacterial (NTM) infections has increased worldwide, attracting attention in routine diagnostic settings, particularly among patients with suspected tuberculosis. This study aimed to acquire knowledge of NTM infections in patients with suspected tuberculosis and to evaluate the genetic diversity of the strains. Methods In this study, 230 clinical specimens were collected from suspected tuberculosis patients. Following decontamination with N-Acetyl-L-cysteine-sodium hydroxide (NALC-NaOH), the sediments of specimens were inoculated onto Löwenstein-Jensen medium and then incubated at 37°C for 8 weeks. The samples that yielded positive cultures were evaluated through the sequencing of conserved fragments of IS6110 and hsp65. For those samples that were not identified as part of the M. tuberculosis complex (MTC) by IS6110 PCR, further analysis was conducted via PCR to detect fragments of the hsp65 gene. Results Twenty-one NTM species were isolated from 230 clinical specimens (14 NTM from pulmonary specimens and 7 from extrapulmonary specimens). Among these, 12 (57.14%) were rapid-growing mycobacteria (RGM), and 9 (42.85%) were slow-growing mycobacteria (SGM). No M. avium complex (MAC) was identified in any of the specimens. Notably, the M. kansasii, M. gordonae, and M. abscessus strains presented significant genetic diversity. Conclusions The prevalence of infections attributed to nontuberculous species surpasses that attributed to tuberculosis. These findings underscore the importance of exploring NTM species in individuals suspected of having TB.
Collapse
|
2
|
Yadav RN, Chowdary YY, Bhalla M, Verma AK. Identification of Nontuberculous Mycobacterium Species by Polymerase Chain Reaction - Restriction Enzyme Analysis (PCR-REA) of rpoB gene in Clinical Isolates. Int J Mycobacteriol 2024; 13:307-313. [PMID: 39277894 DOI: 10.4103/ijmy.ijmy_134_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/16/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Nontuberculous mycobacteria (NTM) infections are an emerging global health concern with increasing incidence. Conventional identification methods for NTM species in clinical settings are prone to errors. This study evaluates a newer method, polymerase chain reaction-restriction enzyme analysis (PCR-REA) of the rpoB gene, for NTM species identification. The study identified NTM species in clinical samples using conventional biochemical techniques and compared the results with PCR-REA of the rpoB gene. This cross-sectional study was conducted at a tertiary health-care center in North India over 18 months, analyzing both pulmonary and extrapulmonary samples. METHODS Two hundred and forty-seven NTM isolates were identified using phenotypic and biochemical methods. The same isolates were subjected to rpoB gene amplification by PCR followed by REA using Msp I and Hae III enzymes. RESULTS Conventional methods identified 12 different NTM species (153 slow-growing and 94 rapid-growing), whereas PCR-REA identified 16 species (140 slow-growing, 107 rapid-growing). The Mycobacterium avium intracellulare complex was the most common species isolated. PCR-REA demonstrated higher resolution in species identification, particularly in differentiating within species complexes. CONCLUSIONS PCR-REA of the rpoB gene proves to be a simple, rapid, and more discriminative tool for NTM species identification compared to conventional methods. This technique could significantly improve the diagnosis and management of emerging NTM infections in clinical settings.
Collapse
Affiliation(s)
- Raj Narayan Yadav
- Department of Microbiology, National Institute of Tuberculosis and Respiratory Diseases, New Delhi, India
| | - Yellanki Yashwanth Chowdary
- Department of Medicine, Shri B. M. Patil Medical College Hospital and Research Center, BLDE (DU), Vijaypura, Karnataka, India
| | - Manpreet Bhalla
- Department of Microbiology, National Institute of Tuberculosis and Respiratory Diseases, New Delhi, India
| | - Ajoy Kumar Verma
- Department of Microbiology, National Institute of Tuberculosis and Respiratory Diseases, New Delhi, India
| |
Collapse
|
3
|
Kooti S, Kadivarian S, Abiri R, Mohajeri P, Atashi S, Ahmadpor H, Alvandi A. Modified gold nanoparticle colorimetric probe-based biosensor for direct and rapid detection of Mycobacterium tuberculosis in sputum specimens. World J Microbiol Biotechnol 2023; 39:118. [PMID: 36918442 DOI: 10.1007/s11274-023-03564-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/02/2023] [Indexed: 03/16/2023]
Abstract
The incidence of Mycobacterium tuberculosis (MTB) is increasing due to lack of appropriate diagnostic and therapeutic methods. Therefore, early and accurate detection of this bacteria plays a significant role in controlling tuberculosis. This study aimed to design, develop, and implement a direct and rapid detection method of MTB using modified gold nanoparticle (AuNP) colorimetric probe-based biosensor in sputum specimens. Spherical AuNPs were synthesized by the citrate reduction method and were functionalized using thiol-modified oligonucleotides (AuNP-biosensor). AuNP-biosensor and IS6110 PCR were compared to the gold standard in terms of analytical and clinical sensitivity and specificity, positive predictive value (PPV), negative predictive value (NPV), diagnostic odds ratio (DOR), and accuracy in 52 clinical specimens. Gold standard was defined as a positive result in concentrated sputum smear microscopy (SSM), culture, or Xpert MTB/RIF.The AuNP-biosensor had 100% sensitivity and specificity for detection of total sputum DNA in less than 15 min with ready-to-use AuNP-biosensor. PPV, NPV, DOR and accuracy of this method were 100%, 100%, 2325 and 100%, respectively. Considering the promising results of the diagnostic value indices of the AuNP-biosensor, the designed method is an affordable, rapid, reliable, and cost-beneficial way for direct detection of MTB in sputum specimens.
Collapse
Affiliation(s)
- Sara Kooti
- Student Research Committee, Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sepide Kadivarian
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ramin Abiri
- Fertility and Infertility Research Center, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parviz Mohajeri
- Department of Microbiology, School of Medicine, Infectious Diseases Research Center, Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sara Atashi
- West Tuberculosis Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Ahmadpor
- Department of Medical Biotechnology, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amirhooshang Alvandi
- Medical Technology Research Center, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Department of Microbiology, School of Medicine, Medical Technology Research Center, Research Institute for Health Technology, Kermanshah University of Medical Sciences, 6714415333, Kermanshah, Iran.
| |
Collapse
|
4
|
Akwani WC, van Vliet AH, Joel JO, Andres S, Diricks M, Maurer FP, Chambers MA, Hingley-Wilson SM. The Use of Comparative Genomic Analysis for the Development of Subspecies-Specific PCR Assays for Mycobacterium abscessus. Front Cell Infect Microbiol 2022; 12:816615. [PMID: 35419298 PMCID: PMC8995789 DOI: 10.3389/fcimb.2022.816615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/07/2022] [Indexed: 01/21/2023] Open
Abstract
Mycobacterium abscessus complex (MABC) is an important pathogen of immunocompromised patients. Accurate and rapid determination of MABC at the subspecies level is vital for optimal antibiotic therapy. Here we have used comparative genomics to design MABC subspecies-specific PCR assays. Analysis of single nucleotide polymorphisms and core genome multilocus sequence typing showed clustering of genomes into three distinct clusters representing the MABC subspecies M. abscessus, M. bolletii and M. massiliense. Pangenome analysis of 318 MABC genomes from the three subspecies allowed for the identification of 15 MABC subspecies-specific genes. In silico testing of primer sets against 1,663 publicly available MABC genomes and 66 other closely related Mycobacterium genomes showed that all assays had >97% sensitivity and >98% specificity. Subsequent experimental validation of two subspecies-specific genes each showed the PCR assays worked well in individual and multiplex format with no false-positivity with 5 other mycobacteria of clinical importance. In conclusion, we have developed a rapid, accurate, multiplex PCR-assay for discriminating MABC subspecies that could improve their detection, diagnosis and inform correct treatment choice.
Collapse
Affiliation(s)
- Winifred C. Akwani
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Arnoud H.M. van Vliet
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Jordan O. Joel
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Sönke Andres
- National and Supranational Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
| | - Margo Diricks
- National and Supranational Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Florian P. Maurer
- National and Supranational Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- Institute of Medical Microbiology, Virology, and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mark A. Chambers
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Suzanne M. Hingley-Wilson
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
5
|
Ahn K, Kim YK, Hwang GY, Cho H, Uh Y. Continued Upward Trend in Non-Tuberculous Mycobacteria Isolation over 13 Years in a Tertiary Care Hospital in Korea. Yonsei Med J 2021; 62:903-910. [PMID: 34558869 PMCID: PMC8470563 DOI: 10.3349/ymj.2021.62.10.903] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/02/2022] Open
Abstract
PURPOSE Despite decreased prevalence of tuberculosis, the incidence of the diseases associated with nontuberculous mycobacteria (NTM) has been increasing in South Korea and around the world. The present retrospective study was conducted to determine longitudinal changes in the epidemiology and distribution of NTM over 13 years at a tertiary care hospital in Korea. MATERIALS AND METHODS We retrospectively analyzed data on Mycobacterium species over 13 years (January 2007 to December 2019) by utilizing the laboratory information system. Mycobacterium species were identified using biochemical tests and PCR-restriction fragment length polymorphism and Mycobacteria GenoBlot assays. RESULTS After excluding duplicates from the initial pool of 17996 mycobacterial isolates, 7674 strains were analyzed and 2984 (38.9%) NTM were isolated. The proportion of NTM continuously increased over the 13-year period, from 17.0% in 2007 to 57.5% in 2019. Among the NTM isolates, the most common species were Mycobacterium intracellulare (50.6%), M. avium (18.3%), M. fortuitumcomplex (4.9%), M. abscessus (4.5%), M. gordonae (3.3%), M. kansasii (1.1%), M. chelonae (1.0%), and M. massiliense (0.9%). In patients over the age of 70 years, the proportion of NTM among the isolates increased from 26.6% in 2007 to 62.0% in 2019, and that of M. intracellulare isolates among the NTM increased from 13.9% (11/79) in 2007 to 37.4% (175/468) in 2019. CONCLUSION The number of NTM isolates continuously increased over the study period, and the increase in the proportion of M.intracellulare in patients aged over 70 years was notable.
Collapse
Affiliation(s)
- Kwangjin Ahn
- Department of Public Health Inspection, Armed Forces Medical Research Institute, Daejeon, Korea
| | - Young Keun Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Gyu Yel Hwang
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Hyunmi Cho
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Young Uh
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea.
| |
Collapse
|
6
|
Algammal AM, Hashem HR, Al-Otaibi AS, Alfifi KJ, El-Dawody EM, Mahrous E, Hetta HF, El-Kholy AW, Ramadan H, El-Tarabili RM. Emerging MDR-Mycobacterium avium subsp. avium in house-reared domestic birds as the first report in Egypt. BMC Microbiol 2021; 21:237. [PMID: 34445951 PMCID: PMC8393820 DOI: 10.1186/s12866-021-02287-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/26/2021] [Indexed: 12/01/2022] Open
Abstract
Background Avian tuberculosis is a chronic and zoonotic disease that affects a wide variety of birds, mammals, and humans. This study aimed to estimate the frequency of Mycobacterium avium subsp. avium in some domestic birds based on molecular diagnosis, antibiogram profile, and PCR-based detection of inhA, rpoB, rpsL, and otrB antibiotic resistance-related genes. Methods A total of 120 fecal samples were collected from small flocks of house-reared domestic birds at Ismailia Governorate, Egypt. The collected samples were processed and subjected to the bacteriological examination. The antimicrobial susceptibility testing of the recovered isolates was performed using the broth microdilution method for the detection of minimum inhibitory concentrations (MICs). The genetic detection of the IS901confirmatory gene, inhA, rpoB, rpsL, and otrB genes was carried out using PCR. Results The frequency of M. avium subsp. avium was 4.1% (5/120); 10% (4/40) in ducks, and 2.5% (1/10) in geese. The identification of the recovered isolates was confirmed using PCR, where all the tested isolates were positive for IS901confirmatory gene. The results of the broth microdilution method revealed that most of the recovered isolates exhibited multidrug resistance (MDR) to isoniazid, rifampicin, streptomycin, oxytetracycline, and doxycycline, and harbored the inhA, rpoB, rpsL, and otrB genes. Conclusion In brief, to the best of our knowledge this is the first report that emphasized the emergence of avian tuberculosis in house-reared domestic birds in Egypt. The emergence of MDR- M. avium subsp. avium is considered a public health threat. Emerging MDR-M. avium subsp. avium in domestic birds are commonly harbored the IS901, inhA, rpoB, rpsL, and otrB genes. Azithromycin and clofazimine revealed a promising in-vitro antibacterial activity against M. avium subsp. avium.
Collapse
Affiliation(s)
- Abdelazeem M Algammal
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Hany R Hashem
- Department of Microbiology and Immunology, Faculty of Pharmacy, Fayoum University, Fayoum, 63514, Egypt
| | - Amenah S Al-Otaibi
- Biology Department, College of Sciences, Tabuk University, Tabuk, 71491, Saudi Arabia
| | - Khyreyah J Alfifi
- Biology Department, College of Sciences, Tabuk University, Tabuk, 71491, Saudi Arabia
| | | | - Eman Mahrous
- Animal Health Research Institute, Dokki, Giza, 12618, Egypt
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assuit University, Assuit, 71515, Egypt
| | - Ali W El-Kholy
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Hazem Ramadan
- Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Reham M El-Tarabili
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
7
|
Pereira AC, Ramos B, Reis AC, Cunha MV. Non-Tuberculous Mycobacteria: Molecular and Physiological Bases of Virulence and Adaptation to Ecological Niches. Microorganisms 2020; 8:microorganisms8091380. [PMID: 32916931 PMCID: PMC7563442 DOI: 10.3390/microorganisms8091380] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
Non-tuberculous mycobacteria (NTM) are paradigmatic colonizers of the total environment, circulating at the interfaces of the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. Their striking adaptive ecology on the interconnection of multiple spheres results from the combination of several biological features related to their exclusive hydrophobic and lipid-rich impermeable cell wall, transcriptional regulation signatures, biofilm phenotype, and symbiosis with protozoa. This unique blend of traits is reviewed in this work, with highlights to the prodigious plasticity and persistence hallmarks of NTM in a wide diversity of environments, from extreme natural milieus to microniches in the human body. Knowledge on the taxonomy, evolution, and functional diversity of NTM is updated, as well as the molecular and physiological bases for environmental adaptation, tolerance to xenobiotics, and infection biology in the human and non-human host. The complex interplay between individual, species-specific and ecological niche traits contributing to NTM resilience across ecosystems are also explored. This work hinges current understandings of NTM, approaching their biology and heterogeneity from several angles and reinforcing the complexity of these microorganisms often associated with a multiplicity of diseases, including pulmonary, soft-tissue, or milliary. In addition to emphasizing the cornerstones of knowledge involving these bacteria, we identify research gaps that need to be addressed, stressing out the need for decision-makers to recognize NTM infection as a public health issue that has to be tackled, especially when considering an increasingly susceptible elderly and immunocompromised population in developed countries, as well as in low- or middle-income countries, where NTM infections are still highly misdiagnosed and neglected.
Collapse
Affiliation(s)
- André C. Pereira
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; (A.C.P.); (B.R.); (A.C.R.)
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Beatriz Ramos
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; (A.C.P.); (B.R.); (A.C.R.)
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Ana C. Reis
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; (A.C.P.); (B.R.); (A.C.R.)
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Mónica V. Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; (A.C.P.); (B.R.); (A.C.R.)
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Correspondence: ; Tel.: +351-217-500-000 (ext. 22461)
| |
Collapse
|
8
|
Mycobacteriosis and Infections with Non-tuberculous Mycobacteria in Aquatic Organisms: A Review. Microorganisms 2020; 8:microorganisms8091368. [PMID: 32906655 PMCID: PMC7564596 DOI: 10.3390/microorganisms8091368] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/19/2022] Open
Abstract
The Mycobacteriaceae constitute a family of varied Gram-positive organisms that include a large number of pathogenic bacteria. Among these, non-tuberculous mycobacteria are endemic worldwide and have been associated with infections in a large number of organisms, including humans and other mammals and reptiles, as well as fish. In this review, we summarize the most recent findings regarding this group of pathogens in fish. There, four species are most commonly associated with disease outbreaks: Mycobacterium marinum, the most common of these fish mycobacterial pathogens, Mycobacterium fortuitum, Mycobacterium gordonae, and Mycobacterium chelonae. These bacteria have a broad host range: they are zoonotic, and infections have been reported in a large number of fish species. The main route of entry of the bacterium into the fish is through the gastrointestinal route, and the disease is associated with ulcerative dermatitis as well as organomegaly and the development of granulomatous lesions in the internal organs. Mycobacteriaceae are slow-growing and fastidious and isolation is difficult and time consuming and diagnostic is mostly performed using serological and molecular tools. Control of the disease is also difficult: there is currently no effective vaccine and infections react poorly to antibiotherapy. For this reason, more research is needed on the subject of these vexing pathogens.
Collapse
|
9
|
Sharma SK, Upadhyay V. Epidemiology, diagnosis & treatment of non-tuberculous mycobacterial diseases. Indian J Med Res 2020; 152:185-226. [PMID: 33107481 PMCID: PMC7881820 DOI: 10.4103/ijmr.ijmr_902_20] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Indexed: 12/13/2022] Open
Abstract
Non-tuberculous mycobacteria (NTM) are ubiquitously present in the environment, but NTM diseases occur infrequently. NTM are generally considered to be less virulent than Mycobacterium tuberculosis, however, these organisms can cause diseases in both immunocompromised and immunocompetent hosts. As compared to tuberculosis, person-to-person transmission does not occur except with M. abscessus NTM species among cystic fibrosis patients. Lung is the most commonly involved organ, and the NTM-pulmonary disease (NTM-PD) occurs frequently in patients with pre-existing lung disease. NTM may also present as localized disease involving extrapulmonary sites such as lymph nodes, skin and soft tissues and rarely bones. Disseminated NTM disease is rare and occurs in individuals with congenital or acquired immune defects such as HIV/AIDS. Rapid molecular tests are now available for confirmation of NTM diagnosis at species and subspecies level. Drug susceptibility testing (DST) is not routinely done except in non-responsive disease due to slowly growing mycobacteria ( M. avium complex, M. kansasii) or infection due to rapidly growing mycobacteria, especially M. abscessus. While the decision to treat the patients with NTM-PD is made carefully, the treatment is given for 12 months after sputum culture conversion. Additional measures include pulmonary rehabilitation and correction of malnutrition. Treatment response in NTM-PD is variable and depends on isolated NTM species and severity of the underlying PD. Surgery is reserved for patients with localized disease with good pulmonary functions. Future research should focus on the development and validation of non-culture-based rapid diagnostic tests for early diagnosis and discovery of newer drugs with greater efficacy and lesser toxicity than the available ones.
Collapse
Affiliation(s)
- Surendra K. Sharma
- Department of Molecular Medicine, Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard (Deemed-to-be-University), New Delhi, India
| | - Vishwanath Upadhyay
- Department of Molecular Medicine, Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard (Deemed-to-be-University), New Delhi, India
| |
Collapse
|
10
|
Gopalaswamy R, Shanmugam S, Mondal R, Subbian S. Of tuberculosis and non-tuberculous mycobacterial infections - a comparative analysis of epidemiology, diagnosis and treatment. J Biomed Sci 2020; 27:74. [PMID: 32552732 PMCID: PMC7297667 DOI: 10.1186/s12929-020-00667-6] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/05/2020] [Indexed: 12/26/2022] Open
Abstract
Pulmonary diseases due to mycobacteria cause significant morbidity and mortality to human health. In addition to tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), recent epidemiological studies have shown the emergence of non-tuberculous mycobacteria (NTM) species in causing lung diseases in humans. Although more than 170 NTM species are present in various environmental niches, only a handful, primarily Mycobacterium avium complex and M. abscessus, have been implicated in pulmonary disease. While TB is transmitted through inhalation of aerosol droplets containing Mtb, generated by patients with symptomatic disease, NTM disease is mostly disseminated through aerosols originated from the environment. However, following inhalation, both Mtb and NTM are phagocytosed by alveolar macrophages in the lungs. Subsequently, various immune cells are recruited from the circulation to the site of infection, which leads to granuloma formation. Although the pathophysiology of TB and NTM diseases share several fundamental cellular and molecular events, the host-susceptibility to Mtb and NTM infections are different. Striking differences also exist in the disease presentation between TB and NTM cases. While NTM disease is primarily associated with bronchiectasis, this condition is rarely a predisposing factor for TB. Similarly, in Human Immunodeficiency Virus (HIV)-infected individuals, NTM disease presents as disseminated, extrapulmonary form rather than as a miliary, pulmonary disease, which is seen in Mtb infection. The diagnostic modalities for TB, including molecular diagnosis and drug-susceptibility testing (DST), are more advanced and possess a higher rate of sensitivity and specificity, compared to the tools available for NTM infections. In general, drug-sensitive TB is effectively treated with a standard multi-drug regimen containing well-defined first- and second-line antibiotics. However, the treatment of drug-resistant TB requires the additional, newer class of antibiotics in combination with or without the first and second-line drugs. In contrast, the NTM species display significant heterogeneity in their susceptibility to standard anti-TB drugs. Thus, the treatment for NTM diseases usually involves the use of macrolides and injectable aminoglycosides. Although well-established international guidelines are available, treatment of NTM disease is mostly empirical and not entirely successful. In general, the treatment duration is much longer for NTM diseases, compared to TB, and resection surgery of affected organ(s) is part of treatment for patients with NTM diseases that do not respond to the antibiotics treatment. Here, we discuss the epidemiology, diagnosis, and treatment modalities available for TB and NTM diseases of humans.
Collapse
Affiliation(s)
- Radha Gopalaswamy
- Department of Bacteriology, National Institute for Research in Tuberculosis, Chennai, India
| | - Sivakumar Shanmugam
- Department of Bacteriology, National Institute for Research in Tuberculosis, Chennai, India
| | - Rajesh Mondal
- Department of Bacteriology, National Institute for Research in Tuberculosis, Chennai, India
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States.
| |
Collapse
|
11
|
Singh Bhalla G, Grover N, Singh G, Kumar M, Bhatt P, Singh Sarao M, Mishra D. Prevalence of non tuberculous mycobacterial infection in surgical site infections and their antibiotic susceptibility profile. Med J Armed Forces India 2020; 77:343-348. [PMID: 34305289 DOI: 10.1016/j.mjafi.2020.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/23/2020] [Indexed: 10/24/2022] Open
Abstract
Background Surgical site infections (SSIs) are one of the leading causes of hospital-acquired infections contributing to about 20% of all cases, thereby causing an increase in morbidity and financial burden. Causative organisms associated with SSIs have not changed greatly over the last 10-15 years; however, the proportions of different types of causative organisms have changed with an increase in case reports of rare organisms such as non-tuberculous mycobacteria (NTM). Methods Samples received from patients with SSI were simultaneously cultured for the isolation of NTM along with routine bacteriological examination. On isolation of NTM, identification was carried out by biochemical tests, and further antibiotic susceptibility profile was determined by using RAPMYCO kit. Results SSI occurred in 3.95% of the 7675 surgeries performed during the study period of which 10.9% were caused owing to NTM. Only rapidly growing NTM were isolated of which, Mycobacterium fortuitum was the most common (51.51%) and had least resistance to drugs. Other isolates were Mycobacterium abscessus and Mycobacterium chelonae having high degree of antimicrobial resistance. Conclusion NTM are an important cause of SSI having delayed presentation, are difficult to diagnose and often not treated correctly. Identification and susceptibility testing is important as different species respond differently to antimicrobial agents.
Collapse
Affiliation(s)
| | - Naveen Grover
- Senior Advisor (Pathology & Microbiology), Army Hospital (R&R), New Delhi, India
| | - Gurpreet Singh
- PhD Scholar, Achutha Menon Centre for Health Science Studies, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Mahadevan Kumar
- Professor (Microbiology), Bharati Vidyapeeth Medical College, Pune, 411043, India
| | - Puneet Bhatt
- PhD Scholar, Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Manbeer Singh Sarao
- Medical Officer, Medical Oncology, Fortis Hospital, Shalimar Bagh, New Delhi, India
| | - Deepshikha Mishra
- Graded Specialist (Surgery), Military Hospital (Bathinda), Punjab, India
| |
Collapse
|
12
|
Keikha M. Comment on "A case of Mycobacterium chelonae mediastinitis and acute humoral rejection after heart transplantation". J Card Surg 2019; 34:647-648. [PMID: 31197871 DOI: 10.1111/jocs.14077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 04/07/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Masoud Keikha
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|