1
|
Wessel RE, Dolatshahi S. Regulators of placental antibody transfer through a modeling lens. Nat Immunol 2024; 25:2024-2036. [PMID: 39379658 DOI: 10.1038/s41590-024-01971-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/03/2024] [Indexed: 10/10/2024]
Abstract
Infants are vulnerable to infections owing to a limited ability to mount a humoral immune response and their tolerogenic immune phenotype, which has impeded the success of newborn vaccination. Transplacental transfer of IgG from mother to fetus provides crucial protection in the first weeks of life, and maternal immunization has recently been implemented as a public health strategy to protect newborns against serious infections. Despite their early success, current maternal vaccines do not provide comparable protection across pregnancies with varying gestational lengths and placental and maternal immune features, and they do not account for the dynamic interplay between the maternal immune response and placental transfer. Moreover, progress toward the rational design of maternal vaccines has been hindered by inadequacies of existing experimental models and safety challenges of investigating longitudinal dynamics of IgG transfer in pregnant humans. Alternatively, in silico mechanistic models are a logical framework to disentangle the processes regulating placental antibody transfer. This Review synthesizes current literature through a mechanistic modeling lens to identify placental and maternal regulators of antibody transfer, their clinical covariates, and knowledge gaps to guide future research. We also describe opportunities to use integrated modeling and experimental approaches toward the rational design of vaccines against existing and emerging neonatal pathogen threats.
Collapse
Affiliation(s)
- Remziye E Wessel
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Virginia, Charlottesville, VA, USA
| | - Sepideh Dolatshahi
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Virginia, Charlottesville, VA, USA.
- Carter Immunology Center, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
2
|
Noguchi S, Ohkura S, Negishi Y, Tozawa S, Takizawa T, Morita R, Takahashi H, Ohkuchi A, Takizawa T. Cytoplasmic and nuclear DROSHA in human villous trophoblasts. J Reprod Immunol 2024; 162:104189. [PMID: 38241848 DOI: 10.1016/j.jri.2023.104189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/21/2024]
Abstract
In villous trophoblasts, DROSHA is a key ribonuclease III enzyme that processes pri-microRNAs (pri-miRNAs) into pre-miRNAs at the placenta-specific, chromosome 19 miRNA cluster (C19MC) locus. However, little is known of its other functions. We performed formaldehyde crosslinking, immunoprecipitation, and sequencing (fCLIP-seq) analysis of terminal chorionic villi to identify DROSHA-binding RNAs in villous trophoblasts. In villous trophoblasts, DROSHA predominantly generated placenta-specific C19MC pre-miRNAs, including antiviral C19MC pre-miRNAs. The fCLIP-seq analysis also identified non-miRNA transcripts with hairpin structures potentially capable of binding to DROSHA (e.g., SNORD100 and VTRNA1-1). Moreover, in vivo immunohistochemical analysis revealed DROSHA in the cytoplasm of villous trophoblasts. DROSHA was abundant in the cytoplasm of villous trophoblasts, particularly in the apical region of syncytiotrophoblast, in the full-term placenta. Furthermore, in BeWo trophoblasts infected with Sindbis virus (SINV), DROSHA translocated to the cytoplasm and recognized the genomic RNA of SINV. Therefore, in trophoblasts, DROSHA not only regulates RNA metabolism, including the biogenesis of placenta-specific miRNAs, but also recognizes viral RNAs. After SINV infection, BeWo DROSHA-binding VTRNA1-1 was significantly upregulated, and cellular VTRNA1-1 was significantly downregulated, suggesting that DROSHA soaks up VTRNA1-1 in response to viral infection. These results suggest that the DROSHA-mediated recognition of RNAs defends against viral infection in villous trophoblasts. Our data provide insight into the antiviral functions of DROSHA in villous trophoblasts of the human placenta.
Collapse
Affiliation(s)
- Syunya Noguchi
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo 113-8602, Japan
| | - Sadayuki Ohkura
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Yasuyuki Negishi
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Shohei Tozawa
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo 113-8602, Japan; Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Takami Takizawa
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo 113-8602, Japan
| | - Rimpei Morita
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Hironori Takahashi
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Akihide Ohkuchi
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Toshihiro Takizawa
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo 113-8602, Japan.
| |
Collapse
|
3
|
Wessel RE, Dolatshahi S. Quantitative mechanistic model reveals key determinants of placental IgG transfer and informs prenatal immunization strategies. PLoS Comput Biol 2023; 19:e1011109. [PMID: 37934786 PMCID: PMC10656024 DOI: 10.1371/journal.pcbi.1011109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/17/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023] Open
Abstract
Transplacental antibody transfer is crucially important in shaping neonatal immunity. Recently, prenatal maternal immunization has been employed to boost pathogen-specific immunoglobulin G (IgG) transfer to the fetus. Multiple factors have been implicated in antibody transfer, but how these key regulators work together to elicit selective transfer is pertinent to engineering vaccines for mothers to optimally immunize their newborns. Here, we present the first quantitative mechanistic model to uncover the determinants of placental antibody transfer and inform personalized immunization approaches. We identified placental FcγRIIb expressed by endothelial cells as a limiting factor in receptor-mediated transfer, which plays a key role in promoting preferential transport of subclasses IgG1, IgG3, and IgG4, but not IgG2. Integrated computational modeling and in vitro experiments reveal that IgG subclass abundance, Fc receptor (FcR) binding affinity, and FcR abundance in syncytiotrophoblasts and endothelial cells contribute to inter-subclass competition and potentially inter- and intra-patient antibody transfer heterogeneity. We developed an in silico prenatal vaccine testbed by combining a computational model of maternal vaccination with this placental transfer model using the tetanus, diphtheria, and acellular pertussis (Tdap) vaccine as a case study. Model simulations unveiled precision prenatal immunization opportunities that account for a patient's anticipated gestational length, placental size, and FcR expression by modulating vaccine timing, dosage, and adjuvant. This computational approach provides new perspectives on the dynamics of maternal-fetal antibody transfer in humans and potential avenues to optimize prenatal vaccinations that promote neonatal immunity.
Collapse
Affiliation(s)
- Remziye E. Wessel
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Sepideh Dolatshahi
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| |
Collapse
|
4
|
Rosenberg YJ, Ordonez T, Khanwalkar US, Barnette P, Pandey S, Backes IM, Otero CE, Goldberg BS, Crowley AR, Leib DA, Shapiro MB, Jiang X, Urban LA, Lees J, Hessell AJ, Permar S, Haigwood NL, Ackerman ME. Evidence for the Role of a Second Fc-Binding Receptor in Placental IgG Transfer in Nonhuman Primates. mBio 2023; 14:e0034123. [PMID: 36946726 PMCID: PMC10127586 DOI: 10.1128/mbio.00341-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 03/23/2023] Open
Abstract
Transplacental transfer of maternal antibodies provides the fetus and newborn with passive protection against infectious diseases. While the role of the highly conserved neonatal Fc receptor (FcRn) in transfer of IgG in mammals is undisputed, recent reports have suggested that a second receptor may contribute to transport in humans. We report poor transfer efficiency of plant-expressed recombinant HIV-specific antibodies, including engineered variants with high FcRn affinity, following subcutaneous infusion into rhesus macaques close to parturition. Unexpectedly, unlike those derived from mammalian tissue culture, plant-derived antibodies were essentially unable to cross macaque placentas. This defect was associated with poor Fcγ receptor binding and altered Fc glycans and was not recapitulated in mice. These results suggest that maternal-fetal transfer of IgG across the three-layer primate placenta may require a second receptor and suggest a means of providing maternal antibody treatments during pregnancy while avoiding fetal harm. IMPORTANCE This study compared the ability of several human HIV envelope-directed monoclonal antibodies produced in plants with the same antibodies produced in mammalian cells for their ability to cross monkey and mouse placentas. We found that the two types of antibodies have comparable transfer efficiencies in mice, but they are differentially transferred across macaque placentas, consistent with a two-receptor IgG transport model in primates. Importantly, plant-produced monoclonal antibodies have excellent binding characteristics for human FcRn receptors, permitting desirable pharmacokinetics in humans. The lack of efficient transfer across the primate placenta suggests that therapeutic plant-based antibody treatments against autoimmune diseases and cancer could be provided to the mother while avoiding transfer and preventing harm to the fetus.
Collapse
Affiliation(s)
| | - Tracy Ordonez
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | | | - Philip Barnette
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Shilpi Pandey
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Iara M. Backes
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Claire E. Otero
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | | | - Andrew R. Crowley
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - David A. Leib
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Mariya B. Shapiro
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | | | | | | | - Ann J. Hessell
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Sallie Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Nancy L. Haigwood
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Margaret E. Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
5
|
Estrogen-Driven Changes in Immunoglobulin G Fc Glycosylation. EXPERIENTIA. SUPPLEMENTUM 2021. [PMID: 34687016 DOI: 10.1007/978-3-030-76912-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Glycosylation within the immunoglobulin G (IgG) Fc region modulates its ability to engage complement and Fc receptors, affording the opportunity to fine-tune effector functions. Mechanisms regulating IgG Fc glycans remain poorly understood. Changes accompanying menarche, menopause, and pregnancy have long implicated hormonal factors. Intervention studies now confirm that estrogens enhance IgG Fc galactosylation, in females and also in males, defining the first pathway modulating Fc glycans and thereby a new link between sex and immunity. This mechanism may participate in fetal-maternal immunity, antibody-mediated inflammation, and other aspects of age- and sex-specific immune function. Here we review the changes affecting the IgG Fc glycome from childhood through old age, the evidence establishing a role for estrogens, and research directions to uncover associated mechanisms that may inform therapeutic intervention.
Collapse
|
6
|
Figueroa-Espada CG, Hofbauer S, Mitchell MJ, Riley RS. Exploiting the placenta for nanoparticle-mediated drug delivery during pregnancy. Adv Drug Deliv Rev 2020; 160:244-261. [PMID: 32956719 DOI: 10.1016/j.addr.2020.09.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/07/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022]
Abstract
A major challenge to treating diseases during pregnancy is that small molecule therapeutics are transported through the placenta and incur toxicities to the developing fetus. The placenta is responsible for providing nutrients, removing waste, and protecting the fetus from toxic substances. Thus, the placenta acts as a biological barrier between the mother and fetus that can be exploited for drug delivery. Nanoparticle technologies provide the opportunity for safe drug delivery during pregnancy by controlling how therapeutics interact with the placenta. In this Review, we present nanoparticle drug delivery technologies specifically designed to exploit the placenta as a biological barrier to treat maternal, placental, or fetal diseases exclusively, while minimizing off-target toxicities. Further, we discuss opportunities, challenges, and future directions for implementing drug delivery technologies during pregnancy.
Collapse
|
7
|
Kiskova T, Mytsko Y, Schepelmann M, Helmer H, Fuchs R, Miedl H, Wadsack C, Ellinger I. Expression of the neonatal Fc-receptor in placental-fetal endothelium and in cells of the placental immune system. Placenta 2019; 78:36-43. [PMID: 30955709 DOI: 10.1016/j.placenta.2019.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/21/2019] [Accepted: 02/22/2019] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Starting from the second trimester of pregnancy, passive immunity is provided to the human fetus by transplacental transfer of maternal IgG. IgG transfer depends on the neonatal Fc receptor, FcRn. While FcRn localization in the placental syncytiotrophoblast (STB) has been demonstrated unequivocally, FcRn expression in placental-fetal endothelial cells (pFECs), which are part of the materno-fetal barrier, is still unclear. Therefore, this study aimed to elucidate the spatio-specific expression pattern of FcRn in placental tissue. METHODS FcRn expression was investigated by western blotting in term placentas and in isolated human placental arterial and venous endothelial cells (HPAEC, HPVEC) using a validated affinity-purified polyclonal anti-peptide antibody against the cytoplasmic tail of FcRn α-chain. In situ localization of FcRn and IgG was studied by immunofluorescence microscopy on tissue sections of healthy term placentas. RESULTS FcRn expression was demonstrated in placental vasculature particularly, in HPAEC, and HPVEC. FcRn was localized in cytokeratin 7+ STB and in CD31+ pFECs in terminal as well as stem villi in situ. Additionally, CD68+ placental macrophages exhibited FcRn expression in situ. Endogenous IgG partially co-localized with FcRn in STB, pFECs, and in placental macrophages. DISCUSSION Placental FcRn expression in endothelial cells and macrophages is analogous to the expression pattern in other organs. FcRn expression in pFECs suggests an involvement of FcRn in IgG transcytosis and/or participation in recycling/salvaging of maternal IgG present in the fetal circulation. FcRn expression in placental macrophages may account for recycling of monomeric IgG and/or processing and presentation of immune complexes.
Collapse
Affiliation(s)
- Terezia Kiskova
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Yuliya Mytsko
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Martin Schepelmann
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Hanns Helmer
- Division of Obstetrics and Feto-Maternal Medicine, University Department of Obstetrics and Gynaecology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Renate Fuchs
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Heidi Miedl
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Isabella Ellinger
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
8
|
Martinez DR, Fouda GG, Peng X, Ackerman ME, Permar SR. Noncanonical placental Fc receptors: What is their role in modulating transplacental transfer of maternal IgG? PLoS Pathog 2018; 14:e1007161. [PMID: 30161231 PMCID: PMC6117057 DOI: 10.1371/journal.ppat.1007161] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- David R. Martinez
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Genevieve G. Fouda
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Xinxia Peng
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Margaret E. Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Sallie R. Permar
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
9
|
Stapleton NM, Armstrong-Fisher SS, Andersen JT, van der Schoot CE, Porter C, Page KR, Falconer D, de Haas M, Williamson LM, Clark MR, Vidarsson G, Armour KL. Human IgG lacking effector functions demonstrate lower FcRn-binding and reduced transplacental transport. Mol Immunol 2018; 95:1-9. [PMID: 29367080 DOI: 10.1016/j.molimm.2018.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 01/07/2018] [Accepted: 01/10/2018] [Indexed: 11/24/2022]
Abstract
We have previously generated human IgG1 antibodies that were engineered for reduced binding to the classical Fcγ receptors (FcγRI-III) and C1q, thereby eliminating their destructive effector functions (constant region G1Δnab). In their potential use as blocking agents, favorable binding to the neonatal Fc receptor (FcRn) is important to preserve the long half-life typical of IgG. An ability to cross the placenta, which is also mediated, at least in part, by FcRn is desirable in some indications, such as feto-maternal alloimmune disorders. Here, we show that G1Δnab mutants retain pH-dependent binding to human FcRn but that the amino acid alterations reduce the affinity of the IgG1:FcRn interaction by 2.0-fold and 1.6-fold for the two antibodies investigated. The transport of the modified G1Δnab mutants across monolayers of human cell lines expressing FcRn was approximately 75% of the wild-type, except that no difference was observed with human umbilical vein endothelial cells. G1Δnab mutation also reduced transport in an ex vivo placenta model. In conclusion, we demonstrate that, although the G1Δnab mutations are away from the FcRn-binding site, they have long-distance effects, modulating FcRn binding and transcellular transport. Our findings have implications for the design of therapeutic human IgG with tailored effector functions.
Collapse
Affiliation(s)
- Nigel M Stapleton
- Department of Experimental Immunohematology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Plesmanlaan 125, Amsterdam, 1066 CX, The Netherlands
| | - Sylvia S Armstrong-Fisher
- RDI Clinical Transfusion Group, Scottish National Blood Transfusion Service, Foresterhill, Aberdeen, AB25 2ZW, UK; Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Jan Terje Andersen
- Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, PO Box 4950, Nydalen, Oslo, 0424, Norway; Centre for Immune Regulation and Department of Biosciences, University of Oslo, PO box 1041, Blindern, Oslo, 0316, Norway; Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Problemveien 7, 0315, Oslo, Norway
| | - C Ellen van der Schoot
- Department of Experimental Immunohematology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Plesmanlaan 125, Amsterdam, 1066 CX, The Netherlands
| | - Charlene Porter
- Immunology Laboratory, Department of Pathology, Aberdeen Royal Infirmary, Aberdeen, AB25 2ZB, UK
| | - Kenneth R Page
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Donald Falconer
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Masja de Haas
- Department of Experimental Immunohematology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Plesmanlaan 125, Amsterdam, 1066 CX, The Netherlands
| | - Lorna M Williamson
- Department of Haematology, University of Cambridge, UK; NHS Blood and Transplant, Long Road, Cambridge, CB2 2PT, UK
| | - Michael R Clark
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Plesmanlaan 125, Amsterdam, 1066 CX, The Netherlands.
| | - Kathryn L Armour
- Department of Haematology, University of Cambridge, UK; Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| |
Collapse
|
10
|
Roghanian A, Stopforth RJ, Dahal LN, Cragg MS. New revelations from an old receptor: Immunoregulatory functions of the inhibitory Fc gamma receptor, FcγRIIB (CD32B). J Leukoc Biol 2018; 103:1077-1088. [PMID: 29406570 DOI: 10.1002/jlb.2mir0917-354r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/03/2017] [Accepted: 12/14/2017] [Indexed: 12/11/2022] Open
Abstract
The Fc gamma receptor IIB (FcγRIIB/CD32B) was generated million years ago during evolution. It is the sole inhibitory receptor for IgG, and has long been associated with the regulation of humoral immunity and innate immune homeostasis. However, new and surprising functions of FcγRIIB are emerging. In particular, FcγRIIB has been shown to perform unexpected activatory roles in both immune-signaling and monoclonal antibody (mAb) immunotherapy. Furthermore, although ITIM signaling is an integral part of FcγRIIB regulatory activity, it is now clear that inhibition/activation of immune responses can occur independently of the ITIM. In light of these new findings, we present an overview of the established and noncanonical functions of FcγRIIB and discuss how this knowledge might be exploited therapeutically.
Collapse
Affiliation(s)
- Ali Roghanian
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Richard J Stopforth
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Lekh N Dahal
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Mark S Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| |
Collapse
|
11
|
Jennewein MF, Abu-Raya B, Jiang Y, Alter G, Marchant A. Transfer of maternal immunity and programming of the newborn immune system. Semin Immunopathol 2017; 39:605-613. [PMID: 28971246 DOI: 10.1007/s00281-017-0653-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/05/2017] [Indexed: 12/20/2022]
Abstract
As placental mammals, the pregnant women and the fetus have intense and prolonged interactions during gestation. There is increasing evidence that multiple molecular as well as cellular components originating in pregnant women are transferred to the fetus. The transfer of maternal antibodies has long been recognized as a central component of newborn immunity against pathogens. More recent studies indicate that inflammatory mediators, micronutrients, microbial products and maternal cells are transferred in utero and influence the fetal immune system. Together, these multiple signals are likely to form a complex network of interactions that program the neonatal immune system and tune its homeostatic regulation. Maternal disorders, in particular infectious diseases, modify these signals and may thereby alter immunity in early life. Understanding maternal programming of the newborn immune system could provide a basis for interventions promoting child health.
Collapse
Affiliation(s)
| | - Bahaa Abu-Raya
- Vaccine Evaluation Center, BC Children's Hospital, Department of Pediatrics, Division of Infectious Diseases, University of British Columbia, Vancouver, BC, Canada
| | - Yiwei Jiang
- Institute for Medical Immunology, Université Libre de Bruxelles, Rue Adrienne Bolland 8, 6041 Gosselies, Charleroi, Belgium
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Arnaud Marchant
- Institute for Medical Immunology, Université Libre de Bruxelles, Rue Adrienne Bolland 8, 6041 Gosselies, Charleroi, Belgium.
| |
Collapse
|
12
|
Ishikawa T, Takizawa T, Iwaki J, Mishima T, Ui-Tei K, Takeshita T, Matsubara S, Takizawa T. Fc gamma receptor IIb participates in maternal IgG trafficking of human placental endothelial cells. Int J Mol Med 2015; 35:1273-89. [PMID: 25778799 PMCID: PMC4380207 DOI: 10.3892/ijmm.2015.2141] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/17/2015] [Indexed: 12/21/2022] Open
Abstract
The human placental transfer of maternal IgG is crucial for fetal and newborn immunity. Low-affinity immunoglobulin gamma Fc region receptor IIb2 (FCGR2B2 or FcγRIIb2) is exclusively expressed in an IgG-containing, vesicle-like organelle (the FCGR2B2 compartment) in human placental endothelial cells; thus, we hypothesized that the FCGR2B2 compartment functions as an IgG transporter. In this study, to examine this hypothesis, we performed in vitro bio-imaging analysis of IgG trafficking by FCGR2B2 compartments using human umbilical vein endothelial cells transfected with a plasmid vector containing enhanced GFP-tagged FCGR2B2 (pFCGR2B2-EGFP). FCGR2B2-EGFP signals were detected as intracellular vesicular structures similar to FCGR2B2 compartments in vivo. The internalization and transcytosis of IgG was significantly higher in the pFCGR2B2-EGFP-transfected cells than in the mock-transfected cells, and the majority of the internalized IgG was co-localized with the FCGR2B2-EGFP signals. Furthermore, we isolated FCGR2B2 compartments from the human placenta and found that the Rab family of proteins [RAS-related protein Rab family (RABs)] were associated with FCGR2B2 compartments. Among the RABs, RAB3D was expressed predominantly in placental endothelial cells. The downregulation of RAB3D by small interfering RNA (siRNA) resulted in a marked reduction in the FCGR2B2-EGFP signals at the cell periphery. Taken together, these findings suggest that FCGR2B2 compartments participate in the transcytosis of maternal IgG across the human placental endothelium and that RAB3D plays a role in regulating the intracellular dynamics of FCGR2B2 compartments.
Collapse
Affiliation(s)
- Tomoko Ishikawa
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo 113-8602, Japan
| | - Takami Takizawa
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo 113-8602, Japan
| | - Jun Iwaki
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo 113-8602, Japan
| | - Takuya Mishima
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo 113-8602, Japan
| | - Kumiko Ui-Tei
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Toshiyuki Takeshita
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Shigeki Matsubara
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Toshihiro Takizawa
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo 113-8602, Japan
| |
Collapse
|
13
|
Takahashi H, Takizawa T, Matsubara S, Ohkuchi A, Kuwata T, Usui R, Matsumoto H, Sato Y, Fujiwara H, Okamoto A, Suzuki M, Takizawa T. Extravillous trophoblast cell invasion is promoted by the CD44-hyaluronic acid interaction. Placenta 2013; 35:163-70. [PMID: 24439029 DOI: 10.1016/j.placenta.2013.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 12/13/2013] [Accepted: 12/19/2013] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Extravillous trophoblast (EVT) cell invasion plays a crucial role in establishment of successful pregnancy. CD44, a cell-surface receptor for hyaluronic acid (HA), plays a key role in HA-mediated remodeling and degradation that triggers cancer cell invasion. However, few studies have reported on the expression or functions of CD44 in human EVT cells. We hypothesized that CD44-HA interaction was involved in invasion by EVT cells. METHODS To test our hypothesis, we conducted in situ examinations of CD44 and HA expression in the human first-trimester placenta. We also assessed the methylation status of CD44 promoter and exon 1 regions in EVT cells. Finally, we conducted transwell cell invasion assays using EVT cell lines and EVT cells isolated from first-trimester human villous explant cultures. RESULTS AND DISCUSSION EVT cells, but not villous trophoblast cells, in the first-trimester placenta expressed CD44. HA was strongly expressed in adventitia surrounding the spiral uterine arterial walls of the decidua. The extent of demethylation of CD44 promoter and exon 1 CpG islands was increased in EVT cells compared to those of first-trimester chorionic villi (including villous trophoblast cells), suggesting that CD44 expression was, at least in part, associated with methylation status. Data from transwell cell invasion assay with siRNA knockdown of CD44 revealed that CD44 expression significantly promoted invasion by EVT cells in an HA-dependent manner. CONCLUSIONS The discovery of a CD44-HA interaction between EVT cells and the extracellular matrix contributes to our understanding of the mechanism underlying invasion by EVT cells.
Collapse
Affiliation(s)
- H Takahashi
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi 329-0498, Japan; Department of Molecular Medicine and Anatomy, Nippon Medical School, 1-1-5 Sendagi, Tokyo 113-8602, Japan
| | - T Takizawa
- Department of Molecular Medicine and Anatomy, Nippon Medical School, 1-1-5 Sendagi, Tokyo 113-8602, Japan
| | - S Matsubara
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi 329-0498, Japan
| | - A Ohkuchi
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi 329-0498, Japan
| | - T Kuwata
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi 329-0498, Japan
| | - R Usui
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi 329-0498, Japan
| | - H Matsumoto
- Department of Obstetrics and Gynecology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Y Sato
- Department of Obstetrics and Gynecology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - H Fujiwara
- Department of Obstetrics and Gynecology, Graduate School of Medicine Science, Kanazawa University, Ishikawa 920-8641, Japan
| | - A Okamoto
- Department of Obstetrics and Gynecology, Jikei University School of Medicine, Tokyo 105-0003, Japan
| | - M Suzuki
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi 329-0498, Japan
| | - T Takizawa
- Department of Molecular Medicine and Anatomy, Nippon Medical School, 1-1-5 Sendagi, Tokyo 113-8602, Japan.
| |
Collapse
|
14
|
Wang Y, Sugita N, Kikuchi A, Iwanaga R, Hirano E, Shimada Y, Sasahara J, Tanaka K, Yoshie H. FcγRIIB-nt645+25A/G gene polymorphism and periodontitis in Japanese women with preeclampsia. Int J Immunogenet 2012; 39:492-500. [DOI: 10.1111/j.1744-313x.2012.01124.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Heterogeneous pathways of maternal-fetal transmission of human viruses (review). Pathol Oncol Res 2010; 15:451-65. [PMID: 19350418 DOI: 10.1007/s12253-009-9166-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 03/24/2009] [Indexed: 12/18/2022]
Abstract
Several viruses can pass the maternal-fetal barrier, and cause diseases of the fetus or the newborn. Recently, however, it became obvious, that viruses may invade fetal cells and organs through different routes without acute consequences. Spermatozoa, seminal fluid and lymphocytes in the sperm may transfer viruses into the human zygotes. Viruses were shown to be integrated into human chromosomes and transferred into fetal tissues. The regular maternal-fetal transport of maternal cells has also been discovered. This transport might implicate that lymphotropic viruses can be released into the fetal organs following cellular invasion. It has been shown that many viruses may replicate in human trophoblasts and syncytiotrophoblast cells thus passing the barrier of the maternal-fetal interface. The transport of viral immunocomplexes had also been suggested, and the possibility has been put forward that even anti-idiotypes mimicking viral epitopes might be transferred by natural mechanisms into the fetal plasma, in spite of the selective mechanisms of apical to basolateral transcytosis in syncytiotrophoblast and basolateral to apical transcytosis in fetal capillary endothelium. The mechanisms of maternal-fetal transcytosis seem to be different of those observed in differentiated cells and tissue cultures. Membrane fusion and lipid rafts of high cholesterol content are probably the main requirements of fetal transcytosis. The long term presence of viruses in fetal tissues and their interactions with the fetal immune system might result in post partum consequences as far as increased risk of the development of malignancies and chronic pathologic conditions are discussed.
Collapse
|
16
|
Morris CM, Zimmerman AW, Singer HS. Childhood serum anti-fetal brain antibodies do not predict autism. Pediatr Neurol 2009; 41:288-90. [PMID: 19748049 DOI: 10.1016/j.pediatrneurol.2009.04.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 04/09/2009] [Accepted: 04/13/2009] [Indexed: 10/20/2022]
Abstract
Autoimmune hypotheses for autism include in utero transplacental exposure to maternal antibodies and acquired postnatal insults. Previous work demonstrated that some mothers of children with autistic disorder have specific antibodies against human fetal brain that differentiate them from mothers with typical children. In the present study, Western immunoblotting was used to determine whether children with autistic spectrum disorders (n = 29) have serum reactivity against human fetal brain that differs from that of controls (n = 14). There was no significant difference in reactivity, corrected for serum immunoglobulin G content and brain actin content and with special attention to reactive bands at 36, 39, 61, and 73 kDa, between autistic children and normal control subjects. Thus, in contrast to mothers, antibody reactivity against human fetal brain as measured in children ages 3-12 years does not appear to be a useful biomarker for autism.
Collapse
Affiliation(s)
- Christina M Morris
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
17
|
Luo SS, Ishibashi O, Ishikawa G, Ishikawa T, Katayama A, Mishima T, Takizawa T, Shigihara T, Goto T, Izumi A, Ohkuchi A, Matsubara S, Takeshita T, Takizawa T. Human villous trophoblasts express and secrete placenta-specific microRNAs into maternal circulation via exosomes. Biol Reprod 2009; 81:717-29. [PMID: 19494253 DOI: 10.1095/biolreprod.108.075481] [Citation(s) in RCA: 382] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In this study, we performed small RNA library sequencing using human placental tissues to identify placenta-specific miRNAs. We also tested the hypothesis that human chorionic villi could secrete miRNAs extracellularly via exosomes, which in turn enter into maternal circulation. By small RNA library sequencing, most placenta-specific miRNAs (e.g., MIR517A) were linked to a miRNA cluster on chromosome 19. The miRNA cluster genes were differentially expressed in placental development. Subsequent validation by real-time PCR and in situ hybridization revealed that villous trophoblasts express placenta-specific miRNAs. The analysis of small RNA libraries from the blood plasma showed that the placenta-specific miRNAs are abundant in the plasma of pregnant women. By real-time PCR, we confirmed the rapid clearance of the placenta-specific miRNAs from the plasma after delivery, indicating that such miRNAs enter into maternal circulation. By using the trophoblast cell line BeWo in culture, we demonstrated that miRNAs are indeed extracellularly released via exosomes. Taken together, our findings suggest that miRNAs are exported from the human placental syncytiotrophoblast into maternal circulation, where they could target maternal tissues. Finally, to address the biological functions of placenta-specific miRNAs, we performed a proteome analysis of BeWo cells transfected with MIR517A. Bioinformatic analysis suggests that this miRNA is possibly involved in tumor necrosis factor-mediated signaling. Our data provide important insights into miRNA biology of the human placenta.
Collapse
Affiliation(s)
- Shan-Shun Luo
- Departments of Molecular Medicine and Anatomy, Obstetrics and Gynecology, and Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Braunschweig D, Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Croen LA, Pessah IN, Van de Water J. Autism: maternally derived antibodies specific for fetal brain proteins. Neurotoxicology 2007; 29:226-31. [PMID: 18078998 DOI: 10.1016/j.neuro.2007.10.010] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 09/15/2007] [Accepted: 10/25/2007] [Indexed: 01/19/2023]
Abstract
Autism is a profound disorder of neurodevelopment with poorly understood biological origins. A potential role for maternal autoantibodies in the etiology of some cases of autism has been proposed in previous studies. To investigate this hypothesis, maternal plasma antibodies against human fetal and adult brain proteins were analyzed by western blot in 61 mothers of children with autistic disorder and 102 controls matched for maternal age and birth year (62 mothers of typically developing children (TD) and 40 mothers of children with non-ASD developmental delays (DD)). We observed reactivity to two protein bands at approximately 73 and 37kDa in plasma from 7 of 61 (11.5%) mothers of children with autism (AU) against fetal but not adult brain, which was not noted in either control group (TD; 0/62 p=0.0061 and DD; 0/40 p=0.0401). Further, the presence of reactivity to these two bands was associated with parent report of behavioral regression in AU children when compared to the TD (p=0.0019) and DD (0.0089) groups. Individual reactivity to the 37kDa band was observed significantly more often in the AU population compared with TD (p=0.0086) and DD (p=0.002) mothers, yielding a 5.69-fold odds ratio (95% confidence interval 2.09-15.51) associated with this band. The presence of these antibodies in the plasma of some mothers of children with autism, as well as the differential findings between mothers of children with early onset and regressive autism may suggest an association between the transfer of IgG autoantibodies during early neurodevelopment and the risk of developing of autism in some children.
Collapse
Affiliation(s)
- Daniel Braunschweig
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Mousavi SA, Sporstøl M, Fladeby C, Kjeken R, Barois N, Berg T. Receptor-mediated endocytosis of immune complexes in rat liver sinusoidal endothelial cells is mediated by FcgammaRIIb2. Hepatology 2007; 46:871-84. [PMID: 17680646 DOI: 10.1002/hep.21748] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
UNLABELLED Liver sinusoidal endothelial cells (LSECs) display a number of receptors for efficient uptake of potentially injurious molecules. The receptors for the Fc portion of immunoglobulin G (IgG) antibodies (FcgammaRs) regulate a number of physiological and pathophysiological events. We used reverse transcription polymerase chain reaction (RT-PCR) and Western blotting to determine the expression of different types of FcgammaRs in LSECs. Biochemical approaches and immunofluorescence microscopy were used to characterize the FcgammaR-mediated endocytosis of immune complexes (ICs). FcgammaRIIb2 was identified as the main receptor for the efficient uptake of ICs in LSECs. The receptor was shown to use the clathrin pathway for IC uptake; however, the association with lipid rafts may slow the rate of its internalization. Moreover, despite trafficking through lysosomal integral membrane protein-II (LIMP-II)-containing compartments, the receptor was not degraded. Finally, it was shown that the receptor recycles to the cell surface both with and without IC. CONCLUSION FcgammaRIIb2 is the main receptor for endocytosis of ICs in rat LSECs. Internalized ICs are degraded with slow kinetics, and IC internalization is not linked to receptor downregulation. After internalization, the receptor recycles to the cell surface both with and without ICs. Thus, FcgammaRIIb2 in rat LSECs is used as both a recycling receptor and a receptor for efficient IC clearance.
Collapse
|
21
|
Vandré DD, Ackerman WE, Kniss DA, Tewari AK, Mori M, Takizawa T, Robinson JM. Dysferlin is expressed in human placenta but does not associate with caveolin. Biol Reprod 2007; 77:533-42. [PMID: 17554076 DOI: 10.1095/biolreprod.107.062190] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
A proteomics screen of human placental microvillous syncytiotrophoblasts (STBs) revealed the expression of dysferlin (DYSF), a plasma membrane repair protein associated with certain muscular dystrophies. This was unexpected given that previous studies of DYSF have been restricted to skeletal muscle. Within the placenta, DYSF localized to the STB and, with the exception of variable labeling in the fetal placental endothelium, none of the other cell types expressed detectable levels of DYSF. Such restricted expression was recapitulated using primary trophoblast cell cultures, because the syncytia expressed DYSF, but not the prefusion mononuclear cells. The apical plasma membrane of the STB contained approximately 4-fold more DYSF than the basal membrane, suggesting polarized trafficking. Unlike skeletal muscle, DYSF in the STB is localized to the plasma membrane in the absence of caveolin. DYSF expression in the STB was developmentally regulated, because first-trimester placentas expressed approximately 3-fold more DYSF than term placentas. As the current literature indicates that few cell types express DYSF, it is of interest that the two major syncytial structures in the human body, skeletal muscle and the STB, express this protein.
Collapse
Affiliation(s)
- Dale D Vandré
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | |
Collapse
|