1
|
Qiu L, Liu Z, Chen S, Wu Y, Yan J. LIM homeobox 1 (LHX1) induces endoplasmic reticulum stress and promotes preterm birth. Heliyon 2024; 10:e32457. [PMID: 39027525 PMCID: PMC467042 DOI: 10.1016/j.heliyon.2024.e32457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 07/20/2024] Open
Abstract
Background Premature birth (PTB) is a major cause of neonatal mortality and has enduring consequences. LIM Homeobox 1 (LHX1) is vital in embryonic organogenesis, while Inositol-Requiring Enzyme 1 (IRE-1) regulates endoplasmic reticulum stress (ERS). This study explores whether IRE-1 impacts PTB via LHX1 modulation. Methods We analyzed LHX1 expression in placental samples from PTB patients and examined its impact on the viability, migration, invasion, and apoptosis of the human placental trophoblast cell line HTR8/Svneo, particularly when treated with the ERS inducer tunicamycin (TM). We also assessed the levels of ERS-related genes and autophagy activation in response to LHX1 deficiency. To gain mechanistic insights, we evaluated the ERS-mediated activation of the IRE-1/XBP1/CHOP signaling pathway in LHX1-silenced HTR8/Svneo cells. Additionally, we examined the transcriptional activation of IRE-1 and the binding of LHX1 to the IRE-1 promoter in HTR8/Svneo cells. We overexpressed IRE-1 in LHX1-silenced HTR8/Svneo cells to assess its effects on cell viability, migration, invasion, apoptosis, and autophagy. Finally, we induced LHX1 knockdown in mice through intraperitoneal injections of tunicamycin (TM) and Sh-LHX1 over a 24-h period to evaluate PTB symptoms. Results We observed LHX1 overexpression in placental tissue from PTB cases and TM-induced HTR8/Svneo cells. LHX1 depletion enhanced cell viability, migration, and invasion while reducing autophagy and apoptosis. This reduction in LHX1 led to decreased levels of IRE-1, XBP1, CHOP, and other ERS-related genes, indicating LHX1's role in ERS induction and the activation of the IRE-1/XBP1/CHOP pathway. Mechanistically, LHX1 was found to bind to the IRE-1 promoter, inducing its transcriptional activation. Notably, overexpressing IRE-1 counteracted the impact of LHX1 depletion on trophoblast cell behavior, suggesting that LHX1 modulates IRE-1. In line with our in vitro studies, LHX1 knockdown ameliorated PTB symptoms in TM-treated mice. Conclusion LHX1 contributes to the progression of PTB by regulating the IRE-1-XBP1-CHOP pathway.
Collapse
Affiliation(s)
- Liyin Qiu
- Department of Obstetrics, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Zhaozhen Liu
- Department of Histology and Embryology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Shouzhen Chen
- Department of Obstetrics, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Yiting Wu
- Department of Obstetrics, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Jianying Yan
- Department of Obstetrics, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350001, China
| |
Collapse
|
2
|
Šket T, Ramuta TŽ, Starčič Erjavec M, Kreft ME. The Role of Innate Immune System in the Human Amniotic Membrane and Human Amniotic Fluid in Protection Against Intra-Amniotic Infections and Inflammation. Front Immunol 2021; 12:735324. [PMID: 34745106 PMCID: PMC8566738 DOI: 10.3389/fimmu.2021.735324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/23/2021] [Indexed: 01/18/2023] Open
Abstract
Intra-amniotic infection and inflammation (IAI) affect fetal development and are highly associated with preterm labor and premature rupture of membranes, which often lead to adverse neonatal outcomes. Human amniotic membrane (hAM), the inner part of the amnio-chorionic membrane, protects the embryo/fetus from environmental dangers, including microbial infection. However, weakened amnio-chorionic membrane may be breached or pathogens may enter through a different route, leading to IAI. The hAM and human amniotic fluid (hAF) respond by activation of all components of the innate immune system. This includes changes in 1) hAM structure, 2) presence of immune cells, 3) pattern recognition receptors, 4) cytokines, 5) antimicrobial peptides, 6) lipid derivatives, and 7) complement system. Herein we provide a comprehensive and integrative review of the current understanding of the innate immune response in the hAM and hAF, which will aid in design of novel studies that may lead to breakthroughs in how we perceive the IAI.
Collapse
Affiliation(s)
- Tina Šket
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Taja Železnik Ramuta
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
3
|
Padron JG, Saito Reis CA, Kendal-Wright CE. The Role of Danger Associated Molecular Patterns in Human Fetal Membrane Weakening. Front Physiol 2020; 11:602. [PMID: 32625109 PMCID: PMC7311766 DOI: 10.3389/fphys.2020.00602] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022] Open
Abstract
The idea that cellular stress (including that precipitated by stretch), plays a significant role in the mechanisms initiating parturition, has gained considerable traction over the last decade. One key consequence of this cellular stress is the increased production of Danger Associated Molecular Patterns (DAMPs). This diverse family of molecules are known to initiate inflammation through their interaction with Pattern Recognition Receptors (PRRs) including, Toll-like receptors (TLRs). TLRs are the key innate immune system surveillance receptors that detect Pathogen Associated Molecular Patterns (PAMPs) during bacterial and viral infection. This is also seen during Chorioamnionitis. The activation of TLR commonly results in the activation of the pro-inflammatory transcription factor Nuclear Factor Kappa-B (NF-kB) and the downstream production of pro-inflammatory cytokines. It is thought that in the human fetal membranes both DAMPs and PAMPs are able, perhaps via their interaction with PRRs and the induction of their downstream inflammatory cascades, to lead to both tissue remodeling and weakening. Due to the high incidence of infection-driven Pre-Term Birth (PTB), including those that have preterm Premature Rupture of the Membranes (pPROM), the role of TLR in fetal membranes with Chorioamnionitis has been the subject of considerable study. Most of the work in this field has focused on the effect of PAMPs on whole pieces of fetal membrane and the resultant inflammatory cascade. This is important to understand, in order to develop novel prevention, detection, and therapeutic approaches, which aim to reduce the high number of mothers suffering from infection driven PTB, including those with pPROM. Studying the role of sterile inflammation driven by these endogenous ligands (DAMPs) activating PRRs system in the mesenchymal and epithelial cells in the amnion is important. These cells are key for the maintenance of the integrity and strength of the human fetal membranes. This review aims to (1) summarize the knowledge to date pertinent to the role of DAMPs and PRRs in fetal membrane weakening and (2) discuss the clinical potential brought by a better understanding of these pathways by pathway manipulation strategies.
Collapse
Affiliation(s)
- Justin G Padron
- Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Chelsea A Saito Reis
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI, United States
| | - Claire E Kendal-Wright
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI, United States.,Obstetrics, Gynecology and Women's Health, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States
| |
Collapse
|
4
|
Poženel L, Lindenmair A, Schmidt K, Kozlov AV, Grillari J, Wolbank S, Banerjee A, Weidinger A. Critical Impact of Human Amniotic Membrane Tension on Mitochondrial Function and Cell Viability In Vitro. Cells 2019; 8:cells8121641. [PMID: 31847452 PMCID: PMC6953074 DOI: 10.3390/cells8121641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/03/2019] [Accepted: 12/13/2019] [Indexed: 12/20/2022] Open
Abstract
Amniotic cells show exciting stem cell features, which has led to the idea of using living cells of human amniotic membranes (hAMs) in toto for clinical applications. However, under common cell culture conditions, viability of amniotic cells decreases rapidly, whereby reasons for this decrease are unknown so far. Recently, it has been suggested that loss of tissue tension in vivo leads to apoptosis. Therefore, the aim of this study was to investigate the effect of tissue distention on the viability of amniotic cells in vitro. Thereby, particular focus was put on vital mitochondria-linked parameters, such as respiration and ATP synthesis. Biopsies of hAMs were incubated for 7–21 days either non-distended or distended. We observed increased B-cell lymphoma 2-associated X protein (BAX)/B-cell lymphoma (BCL)-2 ratios in non-distended hAMs at day seven, followed by increased caspase 3 expression at day 14, and, consequently, loss of viability at day 21. In contrast, under distention, caspase 3 expression increased only slightly, and mitochondrial function and cellular viability were largely maintained. Our data suggest that a mechano-sensing pathway may control viability of hAM cells by triggering mitochondria-mediated apoptosis upon loss of tension in vitro. Further studies are required to elucidate the underlying molecular mechanisms between tissue distention and viability of hAM cells.
Collapse
Affiliation(s)
- Laura Poženel
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingenstraße 13, 1200 Vienna, Austria; (L.P.); (A.V.K.); (J.G.); (S.W.); (A.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria;
| | - Andrea Lindenmair
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria;
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Garnisonstraße 21, 4020 Linz, Austria
| | - Katy Schmidt
- Medical University of Vienna, Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Schwarzspanierstraße 17, 1090 Vienna, Austria;
| | - Andrey V. Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingenstraße 13, 1200 Vienna, Austria; (L.P.); (A.V.K.); (J.G.); (S.W.); (A.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria;
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingenstraße 13, 1200 Vienna, Austria; (L.P.); (A.V.K.); (J.G.); (S.W.); (A.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria;
- University of Natural Resources and Life Sciences Vienna, Department of Biotechnology, Muthgasse 18, 1190 Vienna, Austria
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingenstraße 13, 1200 Vienna, Austria; (L.P.); (A.V.K.); (J.G.); (S.W.); (A.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria;
| | - Asmita Banerjee
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingenstraße 13, 1200 Vienna, Austria; (L.P.); (A.V.K.); (J.G.); (S.W.); (A.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria;
- Correspondence: ; Tel.: +43-59-3934-1984
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingenstraße 13, 1200 Vienna, Austria; (L.P.); (A.V.K.); (J.G.); (S.W.); (A.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria;
| |
Collapse
|
5
|
Involvement of serum amyloid A1 in the rupture of fetal membranes through induction of collagen I degradation. Clin Sci (Lond) 2019; 133:515-530. [PMID: 30683734 DOI: 10.1042/cs20180950] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/03/2019] [Accepted: 01/25/2019] [Indexed: 12/22/2022]
Abstract
The de novo synthesis of serum amyloid A1 (SAA1) is augmented in human fetal membranes at parturition. However, its role in parturition remains largely unknown. Here, we investigated whether SAA1 was involved in the rupture of fetal membranes, a crucial event in parturition accompanied with extensive degradation of collagens. Results showed that SAA1 decreased both intracellular and extracellular COL1A1 and COL1A2 abundance, the two subunits of collagen I, without affecting their mRNA levels in human amnion fibroblasts. These reductions were completely blocked only with inhibition of both matrix metalloproteases (MMPs) and autophagy. Consistently, SAA1 increased MMP-2/9 abundance and the markers for autophagic activation including autophagy related (ATG) 7 (ATG7) and the microtubule-associated protein light chain 3 β (LC3B) II/I ratio with the formation of LC3 punctas and autophagic vacuoles in the fibroblasts. Moreover, the autophagic degradation of COL1A1/COL1A2 and activation of MMP-2/9 by SAA1 were blocked by inhibitors for the toll-like receptors 2/4 (TLR2/4) or NF-κB. Finally, reciprocal corresponding changes of SAA1 and collagen I were observed in the amnion following spontaneous rupture of membranes (ROM) at parturition. Conclusively, SAA1 may participate in membrane rupture at parturition by degradating collagen I via both autophagic and MMP pathways. These effects of SAA1 appear to be mediated by the TLR2/4 receptors and the NF-κB pathway.
Collapse
|
6
|
Sanz Cortes M, Castro E, Sharhan D, Torres P, Yepez M, Espinoza J, Shamshirsaz AA, Nassr AA, Popek E, Whitehead W, Belfort MA. Amniotic membrane and placental histopathological findings after open and fetoscopic prenatal neural tube defect repair. Prenat Diagn 2019; 39:269-279. [PMID: 30609053 DOI: 10.1002/pd.5414] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/20/2018] [Accepted: 12/24/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVES To describe and compare placental and amniotic histology in women who underwent a fetoscopic myelomeningocele repair to those who underwent an open hysterotomy myelomeningocele repair. Also, we intended to compare findings from both prenatal repair groups to age-matched control pregnant patients. METHODS Placental and membrane histopathology from 43 prenatally repaired spina bifida cases (17 fetoscopic and 26 open) and 18 healthy controls were retrospectively assessed. Quantitative assessment of histopathology included apoptosis count and maternal and fetal underperfusion scores. Qualitative assessment included the detection of pigmented macrophages and/or signs of placental/amniotic inflammation. Associations between the duration of surgery or the duration of CO2 insufflation and quantitative histological parameters were tested. RESULTS Fetoscopic surgery cases did not show significant differences in any of the studied parameters when compared against controls. No differences were detected either when compared with open repaired cases, except for lower proportion of pigmented laden macrophages in the fetoscopic group (11.8% vs 61.5%, P < 0.01). No associations between the duration of surgery or the duration of CO2 exposure and any of the quantitative histological parameters were detected. CONCLUSIONS These preliminary results support the lack of detrimental effects of the use of heated and humidified CO2 gas for uterine insufflation to fetal membranes and placenta.
Collapse
Affiliation(s)
- Magdalena Sanz Cortes
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine & Texas Children's Hospital, Houston, TX, USA
| | - Eumenia Castro
- Department of Pathology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX, USA
| | - Dina Sharhan
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine & Texas Children's Hospital, Houston, TX, USA
| | - Paola Torres
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine & Texas Children's Hospital, Houston, TX, USA
| | - Mayel Yepez
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine & Texas Children's Hospital, Houston, TX, USA
| | - Jimmy Espinoza
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine & Texas Children's Hospital, Houston, TX, USA
| | - Alireza A Shamshirsaz
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine & Texas Children's Hospital, Houston, TX, USA
| | - Ahmed A Nassr
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine & Texas Children's Hospital, Houston, TX, USA
| | - Edwina Popek
- Department of Pathology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX, USA
| | - William Whitehead
- Department of Neurosurgery, Baylor College of Medicine & Texas Children's Hospital, Houston, TX, USA
| | - Michael A Belfort
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine & Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
7
|
Wang L, Ye X, Zhao T. The physiological roles of autophagy in the mammalian life cycle. Biol Rev Camb Philos Soc 2018; 94:503-516. [PMID: 30239126 PMCID: PMC7379196 DOI: 10.1111/brv.12464] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 01/08/2023]
Abstract
Autophagy is primarily an efficient intracellular catabolic pathway used for degradation of abnormal cellular protein aggregates and damaged organelles. Although autophagy was initially proposed to be a cellular stress responder, increasing evidence suggests that it carries out normal physiological roles in multiple biological processes. To date, autophagy has been identified in most organs and at many different developmental stages, indicating that it is not only essential for cellular homeostasis and renovation, but is also important for organ development. Herein, we summarize our current understanding of the functions of autophagy (which here refers to macroautophagy) in the mammalian life cycle.
Collapse
Affiliation(s)
- Liang Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xiongjun Ye
- Department of Urology, Peking University People's Hospital, 100034 Beijing, China
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
8
|
Wang W, Chen ZJ, Myatt L, Sun K. 11β-HSD1 in Human Fetal Membranes as a Potential Therapeutic Target for Preterm Birth. Endocr Rev 2018; 39:241-260. [PMID: 29385440 DOI: 10.1210/er.2017-00188] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 01/23/2018] [Indexed: 12/18/2022]
Abstract
Human parturition is a complex process involving interactions between the myometrium and signals derived from the placenta, fetal membranes, and fetus. Signals originating from fetal membranes are crucial components that trigger parturition, which is clearly illustrated by the labor-initiating consequence of membrane rupture. It has been recognized for a long time that among fetal tissues in late gestation the fetal membranes possess the highest capacity for cortisol regeneration by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). However, the exact role of this unique feature remains a mystery. Accumulating evidence indicates that this extra-adrenal source of cortisol may serve as an upstream signal for critical events in human parturition, including enhanced prostaglandin and estrogen synthesis as well as extracellular matrix remodeling. This may explain why such high capacity for cortisol regeneration develops in human fetal membranes at late gestation. Therefore, inhibition of 11β-HSD1 may provide a potential therapeutic target for prevention of preterm birth. This review summarizes the current understanding of the functional role of cortisol regeneration by 11β-HSD1 in human fetal membranes.
Collapse
Affiliation(s)
- Wangsheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| |
Collapse
|
9
|
Nakashima A, Aoki A, Kusabiraki T, Shima T, Yoshino O, Cheng SB, Sharma S, Saito S. Role of autophagy in oocytogenesis, embryogenesis, implantation, and pathophysiology of pre-eclampsia. J Obstet Gynaecol Res 2017; 43:633-643. [PMID: 28418212 DOI: 10.1111/jog.13292] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/12/2016] [Accepted: 12/25/2016] [Indexed: 12/23/2022]
Abstract
Autophagy is a well-conserved mechanism in cells from yeast to mammals, and autophagy maintains homeostasis against stress. The role of autophagy was originally shown to be a mechanism of energy production under starvation. In fact, multiple lines of evidence reveal that autophagy has numerous functions, such as protection from stress, energy regulation, immune regulation, differentiation, proliferation, and cell death. In the field of reproduction, the role of autophagy in implantation, embryogenesis, placentation, and delivery has become clearer. In addition, recent study has elucidated that the placenta has the ability to protect extraplacental cells from virus infection by activating autophagy. During resent research into autophagy, several issues have occurred in the interpretation of the autophagy status. In this review, we discuss the relation between autophagy and reproductive events, and show the importance of autophagy for placentation and pre-eclampsia.
Collapse
Affiliation(s)
- Akitoshi Nakashima
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Aiko Aoki
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Tae Kusabiraki
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Tomoko Shima
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Osamu Yoshino
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Shi-Bin Cheng
- Department of Pediatrics, Women and Infants Hospital, Brown University, Providence, Rhode Island, USA
| | - Surendra Sharma
- Department of Pediatrics, Women and Infants Hospital, Brown University, Providence, Rhode Island, USA
| | - Shigeru Saito
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
10
|
Cao B, Camden AJ, Parnell LA, Mysorekar IU. Autophagy regulation of physiological and pathological processes in the female reproductive tract. Am J Reprod Immunol 2017; 77. [PMID: 28194822 DOI: 10.1111/aji.12650] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/17/2017] [Indexed: 12/20/2022] Open
Abstract
Autophagy is a ubiquitous cell recycling pathway that delivers cytoplasmic constituents to the lysosome and is essential for normal cellular function. Autophagic activity is up-regulated under physiological conditions as well as stressful conditions such as nutrient deprivation, oxidative stress, hypoxia, inflammation, and infection. Thus, it is essential to regard the functional importance of the pathway and its components in a given tissue context. Here we review what is known about the involvement of autophagy process during physiological processes in the female reproductive tract and in pregnancy from preimplantation to oocyte function to placental development, parturition, and postpartum remodeling of the uterus; as well as in pathological and adverse events during these processes.
Collapse
Affiliation(s)
- Bin Cao
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alison J Camden
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lindsay A Parnell
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Indira U Mysorekar
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
11
|
Histologic changes of the fetal membranes after fetoscopic laser surgery for twin-twin transfusion syndrome. Pediatr Res 2015; 78:247-55. [PMID: 26020146 DOI: 10.1038/pr.2015.105] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/27/2015] [Indexed: 11/08/2022]
Abstract
BACKGROUND Preterm premature rupture of membranes remains a major complication after fetoscopic laser surgery (FLS) for twin-twin transfusion syndrome (TTTS). We studied the histologic changes of fetal membranes post-FLS and investigated a possible impact of amniotic fluid (AF) dilution. METHODS Fetal membranes of 31 pregnancies that underwent FLS for TTTS were investigated histologically at delivery at different sites: trocar site of recipient sac and at distance, donor sac, and inter-twin membrane. RESULTS The trocar insertion site on the recipient sac showed no signs of histologic hallmarks of healing. Wide-spread alteration in collagen organization and higher apoptotic index in the amnion of the recipient sac which were absent in donor's and reference membranes. To explain the mechanisms, we analyzed the AF composition of recipient sacs from TTTS pregnancies vs. GA-matched healthy singleton controls and found glucose, protein and lactate dehydrogenase activity were all significantly lower in TTTS sacs consistent with over-dilution of recipient's AF (~2-fold). In-vitro exposure of healthy amniochorion to analogous dilutional stress conditions recapitulated the histologic changes and induced apoptosis and autophagy. CONCLUSION Alteration in structural integrity of the recipient's amniochorion, possibly in response to dilution stress, along with ineffective repair mechanisms may explain the increased incidence of preterm birth post-FLS.
Collapse
|
12
|
Wu PF, Chiu CC, Chen CY, Wang HMD. 7-Hydroxydehydronuciferine induces human melanoma death via triggering autophagy and apoptosis. Exp Dermatol 2015; 24:930-5. [DOI: 10.1111/exd.12805] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Pei-Fang Wu
- Department of Fragrance and Cosmetic Science; Kaohsiung Medical University; Kaohsiung Taiwan, ROC
| | - Chien-Chih Chiu
- Department of Biotechnology; Kaohsiung Medical University; Kaohsiung Taiwan, ROC
| | - Chung-Yi Chen
- School of Medical and Health Sciences; Fooyin University; Kaohsiung Taiwan, ROC
| | - Hui-Min David Wang
- Department of Fragrance and Cosmetic Science; Kaohsiung Medical University; Kaohsiung Taiwan, ROC
- Graduate Institute of Natural Products; Kaohsiung Medical University; Kaohsiung Taiwan, ROC
- Center for Stem Cell Research; Kaohsiung Medical University; Kaohsiung Taiwan, ROC
- Department of Marine Biotechnology and Resources; National Sun Yat-Sen University; Kaohsiung Taiwan, ROC
| |
Collapse
|
13
|
Nikoletopoulou V, Papandreou ME, Tavernarakis N. Autophagy in the physiology and pathology of the central nervous system. Cell Death Differ 2014; 22:398-407. [PMID: 25526091 PMCID: PMC4326580 DOI: 10.1038/cdd.2014.204] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 02/07/2023] Open
Abstract
Neurons are highly specialized postmitotic cells that depend on dynamic cellular processes for their proper function.These include among others, neuronal growth and maturation, axonal migration, synapse formation and elimination, all requiring continuous protein synthesis and degradation. Therefore quality-control processes in neurons are directly linked to their physiology. Autophagy is a tightly regulated cellular degradation pathway by which defective or superfluouscytosolic proteins, organelles and other cellular constituents are sequestered in autophagosomes and delivered to lysosomes for degradation. Here we present emerging evidence indicating that constitutive autophagic fluxin neurons has essential roles in key neuronal processes under physiological conditions.Moreover, we discuss how perturbations of the autophagic pathway may underlie diverse pathological phenotypes in neurons associated with neurodevelopmental and neurodegenerative diseases.
Collapse
Affiliation(s)
- V Nikoletopoulou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete 71110, Greece
| | - M-E Papandreou
- 1] Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete 71110, Greece [2] Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete 71110, Greece
| | - N Tavernarakis
- 1] Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete 71110, Greece [2] Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete 71110, Greece
| |
Collapse
|
14
|
Vanderhoeven JP, Bierle CJ, Kapur RP, McAdams RM, Beyer RP, Bammler TK, Farin FM, Bansal A, Spencer M, Deng M, Gravett MG, Rubens CE, Rajagopal L, Adams Waldorf KM. Group B streptococcal infection of the choriodecidua induces dysfunction of the cytokeratin network in amniotic epithelium: a pathway to membrane weakening. PLoS Pathog 2014; 10:e1003920. [PMID: 24603861 PMCID: PMC3946355 DOI: 10.1371/journal.ppat.1003920] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 12/27/2013] [Indexed: 11/18/2022] Open
Abstract
Early events leading to intrauterine infection remain poorly defined, but may hold the key to preventing preterm delivery. To determine molecular pathways within fetal membranes (chorioamnion) associated with early choriodecidual infection that may progress to preterm premature rupture of membranes (PPROM), we examined the effects of a Group B Streptococcus (GBS) choriodecidual infection on chorioamnion in a nonhuman primate model. Ten chronically catheterized pregnant monkeys (Macaca nemestrina) at 118–125 days gestation (term = 172 days) received choriodecidual inoculation of either GBS (n = 5) or saline (n = 5). Cesarean section was performed in the first week after GBS or saline inoculation. RNA extracted from chorioamnion (inoculation site) was profiled by microarray. Single gene, Gene Set, and Ingenuity Pathway Analysis results were validated using qRT-PCR (chorioamnion), Luminex (amniotic fluid, AF), immunohistochemistry, and transmission electron microscopy (TEM). Despite uterine quiescence in most cases, significant elevations of AF cytokines (TNF-α, IL-8, IL-1β, IL-6) were detected in GBS versus controls (p<0.05). Choriodecidual infection resolved by the time of cesarean section in 3 of 5 cases and GBS was undetectable by culture and PCR in the AF. A total of 331 genes were differentially expressed (>2-fold change, p<0.05). Remarkably, GBS exposure was associated with significantly downregulated expression of multiple cytokeratin (CK) and other cytoskeletal genes critical for maintenance of tissue tensile strength. Immunofluorescence revealed highly significant changes in the CK network within amniocytes with dense CK aggregates and retraction from the cell periphery (all p = 0.006). In human pregnancies affected by PPROM, there was further evidence of CK network retraction with significantly shorter amniocyte foot processes (p = 0.002). These results suggest early choriodecidual infection results in decreased cellular membrane integrity and tensile strength via dysfunction of CK networks. Downregulation of CK expression and perturbations in the amniotic epithelial cell intermediate filament network occur after GBS choriodecidual infection, which may contribute to PPROM. Group B Streptococcus (GBS) is one cause of preterm birth, stillbirth, and fetal brain injury. GBS is present in the vagina and is thought to ascend into the uterus of some women where it can cause placental inflammation and preterm birth. Understanding the earliest events in the placenta that lead to preterm birth is elusive in humans, because the placenta cannot be studied until after birth. Here, we use a nonhuman primate model to show that an early GBS infection can damage the structural support of the fetal membranes, specifically the cytokeratin network in the epithelium of the amnion (one part of the membranes). Next, we obtained human placentas to show that this cytokeratin network was also damaged in human patients that had preterm premature rupture of the membranes, a major cause of preterm birth. Our work is important in understanding why fetal membranes may rupture prematurely, which may lead to early interventions to prevent membrane damage after placental infection and preterm birth.
Collapse
Affiliation(s)
- Jeroen P Vanderhoeven
- Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Craig J Bierle
- Center for Childhood Infections and Prematurity Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Raj P Kapur
- Departments of Pathology, Seattle Children's and University of Washington, Seattle, Washington, United States of America
| | - Ryan M McAdams
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Richard P Beyer
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Federico M Farin
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Aasthaa Bansal
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Min Spencer
- Center on Human Development and Disability, University of Washington, Seattle, Washington, United States of America
| | - Mei Deng
- Center on Human Development and Disability, University of Washington, Seattle, Washington, United States of America
| | - Michael G Gravett
- Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington, United States of America; Global Alliance to Prevent Prematurity & Stillbirth, Seattle, Washington, United States of America
| | - Craig E Rubens
- Center for Childhood Infections and Prematurity Research, Seattle Children's Research Institute, Seattle, Washington, United States of America; Department of Pediatrics, University of Washington, Seattle, Washington, United States of America; Global Alliance to Prevent Prematurity & Stillbirth, Seattle, Washington, United States of America
| | - Lakshmi Rajagopal
- Center for Childhood Infections and Prematurity Research, Seattle Children's Research Institute, Seattle, Washington, United States of America; Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Kristina M Adams Waldorf
- Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington, United States of America; Center on Human Development and Disability, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
15
|
Jayaram A, Orfanelli T, Doulaveris G, Linhares IM, Ledger WJ, Witkin SS. Autophagy and female genital tract infections: new insights and research directions. BJOG 2014; 121:801-8. [PMID: 24506514 DOI: 10.1111/1471-0528.12523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2013] [Indexed: 12/17/2022]
Abstract
Autophagy is a highly conserved process by which defective organelles, non-functional proteins, and intracellular microorganisms become sequestered within structures called autophagosomes, which fuse with lysosomes and the engulfed components are degraded by lysosomal enzymes. In microbial autophagy degraded peptides are used to induce antigen-specific acquired immunity. Viruses, bacteria, fungi, and protozoa have developed strategies to subvert autophagy and/or to use this process to promote their replication and persistence. This review details the mechanisms by which microorganisms that infect the female genital tract and/or are detrimental to pregnancy interact with this host defence mechanism. Based on an understanding of autophagy-related pathological mechanisms, we propose new avenues for research to more effectively prevent and/or treat these infectious diseases.
Collapse
Affiliation(s)
- A Jayaram
- Division of Immunology and Infectious Diseases, Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
16
|
Papanna R, Block-Abraham D, Mann LK, Buhimschi IA, Bebbington M, Garcia E, Kahlek N, Harman C, Johnson A, Baschat A, Moise KJ. Risk factors associated with preterm delivery after fetoscopic laser ablation for twin-twin transfusion syndrome. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2014; 43:48-53. [PMID: 24013922 PMCID: PMC4142227 DOI: 10.1002/uog.13206] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/02/2013] [Indexed: 06/02/2023]
Abstract
OBJECTIVE Despite improved perinatal survival following fetoscopic laser ablation (FLA) for twin-twin transfusion syndrome (TTTS), prematurity remains an important contributor to perinatal mortality and morbidity. The objective of the study was to identify risk factors for complicated preterm delivery after FLA. METHODS Retrospective cohort study of prospectively collected data on maternal/fetal demographics and pre-operative, operative and postoperative variables of 459 patients treated with FLA in three USA fetal centers. Multivariate linear regression was performed to identify significant risk factors associated with preterm delivery, which were cross-validated using the k-fold method. Multivariate logistic regression was performed to identify risk factors for early compared with late preterm delivery based on median gestational age at delivery of 32 weeks. RESULTS There were significant differences in case selection and outcomes between the centers. After controlling for the center of surgery, multivariate analysis indicated that a lower maternal age at procedure, a history of previous prematurity, shortened cervical length, use of amnioinfusion, a cannula diameter of 12 French (Fr), lack of a collagen plug placement and iatrogenic preterm premature rupture of membranes (iPPROM) were significantly associated with a lower gestational age at delivery. CONCLUSIONS Specific fetal/maternal and operative variables are associated with preterm delivery after FLA for the treatment of TTTS. Further studies to modify some of these variables may decrease the perinatal morbidity after laser therapy.
Collapse
Affiliation(s)
- R Papanna
- Section of Maternal-Fetal Medicine, Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA; Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
BACKGROUND Autophagy has been reported to be essential for pre-implantation development and embryo survival. However, its role in placental development and regulation of autophagy during pregnancy remain unclear. The aims of this study were to (1) study autophagy by characterizing changes in levels of beclin-1, DRAM, and LC3B in human placenta throughout gestation; (2) determine whether autophagy is involved in regulation of trophoblast invasion in JEG-3 cells (a choriocarcinoma cell line); (3) examine the effects of reduced oxygen and glucose on the autophagic changes; and (4) investigate the effect of reoxygenation and supplementation of glucose after oxygen-glucose deprivation (OGD) on the autophagic changes in primary cytotrophoblasts obtained from normal term pregnancy. METHODOLOGY/PRINCIPAL FINDINGS An analysis of 40 placental samples representing different gestational stages showed (1) no significant differences in beclin-1, DRAM, and LC3B-II levels in placentas between early and mid-gestation, and late gestation with vaginal delivery; (2) placentas from late gestation with cesarean section had lower levels of LC3B-II compared to early and mid-gestation, and late gestation with vaginal delivery; levels of DRAM were also lower compared to placentas from early and mid-gestation; and (3) using explant cultures, villous tissues from early and late gestation had similar rates of autophagic flux under physiological oxygen concentrations. Knockdown of BECN1, DRAM, and LC3B had no effects on viability and invasion activity of JEG-3 cells. On the other hand, OGD caused a significant increase in the levels of LC3B-II in primary cytotrophoblasts, while re-supplementation of oxygen and glucose reduced these changes. Furthermore, there were differential changes in levels of beclin-1, DRAM, and LC3B-II in response to changes in oxygen and glucose levels. CONCLUSIONS/SIGNIFICANCE Our results indicate that autophagy is involved in development of the human placenta and that changes in oxygen and glucose levels participate in regulation of autophagic changes in cytotrophoblast cells.
Collapse
|
18
|
Kanninen TT, de Andrade Ramos BR, Witkin SS. The role of autophagy in reproduction from gametogenesis to parturition. Eur J Obstet Gynecol Reprod Biol 2013; 171:3-8. [PMID: 23932305 DOI: 10.1016/j.ejogrb.2013.07.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 06/04/2013] [Accepted: 07/10/2013] [Indexed: 12/12/2022]
Abstract
Autophagy is an intracellular process responsible for maintaining cellular homeostasis by the removal of cytoplasmic organelles, intracellular bacteria and viruses, and is a critical component of both the innate and acquired immune systems. A failure in physiological activation, assembly and function of the autophagic pathway has been implicated in a broad range of diseases including neurogenerative diseases, cardiopathy, infectious diseases, autoimmunity and cancer. Its involvement in reproduction, however, has not been extensively studied. Its activity is fundamental to many processes across the reproduction spectrum from development of the primordial follicle and spermatozoa to embryogenesis, placental development and maintaining uterine quiescence during pregnancy. Malfunctions in autophagy are associated with deleterious repercussions throughout reproduction. In this review we examine what is known about the involvement of autophagy in gamete formation, early post-fertilization embryogenesis, placental development and parturition, and propose promising areas for future research.
Collapse
Affiliation(s)
- Tomi T Kanninen
- Division of Immunology and Infectious Diseases, Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, United States
| | | | | |
Collapse
|
19
|
Saito S, Nakashima A. A review of the mechanism for poor placentation in early-onset preeclampsia: the role of autophagy in trophoblast invasion and vascular remodeling. J Reprod Immunol 2013; 101-102:80-88. [PMID: 23969229 DOI: 10.1016/j.jri.2013.06.002] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/07/2013] [Accepted: 06/08/2013] [Indexed: 01/12/2023]
Abstract
Shallow trophoblast invasion and impaired vascular remodeling of spiral arteries have been recognized in early-onset preeclampsia. Placentation and vascular remodeling are multistep processes, and hypoxia, placental oxidative stress, excessive or atypical maternal immune response to trophoblasts, exaggerated inflammation, and increased production of anti-angiogenic factors such as the soluble form of the vascular endothelial growth factor (VEGF) receptor (sFlt-1) and soluble endoglin (sENG) may play a role in poor placentation in preeclampsia. Recent findings suggest that autophagy plays an important role in extravillous trophoblast (EVT) invasion and vascular remodeling under hypoxia, and sENG inhibits EVT invasion and vascular remodeling by the inhibition of autophagy under hypoxic conditions. In this review, we discuss the relationship between inadequate autophagy and poor placentation in preeclampsia.
Collapse
Affiliation(s)
- Shigeru Saito
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan.
| | - Akitoshi Nakashima
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| |
Collapse
|
20
|
Saito S, Nakashima A. Review: The role of autophagy in extravillous trophoblast function under hypoxia. Placenta 2013; 34 Suppl:S79-84. [PMID: 23306070 DOI: 10.1016/j.placenta.2012.11.026] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 11/23/2012] [Accepted: 11/27/2012] [Indexed: 01/30/2023]
Abstract
Autophagy, a process for cellular cleaning through the removal of intracellular components in lysosomes, is a well conserved mechanism from yeast to mammalian cells, and also contributes to the maintenance of cellular homeostasis and of the energetic balance, in cellular and tissue remodeling, and cellular defense against extracellular insults and pathogens. The role of autophagy in placentation has been clarified. Autophagy is induced in trophoblasts under physiological hypoxia during early pregnancy and seems to have a role in placentation. Recent findings suggest that impaired autophagy might induce poor placentation in preeclamptic cases. In this review, we discuss the role of autophagy and summarize the role of autophagy-related genes in placentas.
Collapse
Affiliation(s)
- S Saito
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | | |
Collapse
|
21
|
Hung TH, Chen SF, Lo LM, Li MJ, Yeh YL, Hsieh TT. Increased autophagy in placentas of intrauterine growth-restricted pregnancies. PLoS One 2012; 7:e40957. [PMID: 22815878 PMCID: PMC3397998 DOI: 10.1371/journal.pone.0040957] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 06/15/2012] [Indexed: 01/07/2023] Open
Abstract
Background Unexplained intrauterine growth restriction (IUGR) may be a consequence of placental insufficiency; however, its etiology is not fully understood. We surmised that defective placentation in IUGR dysregulates cellular bioenergic homeostasis, leading to increased autophagy in the villous trophoblast. The aims of this work were (1) to compare the differences in autophagy, p53 expression, and apoptosis between placentas of women with normal or IUGR pregnancies; (2) to study the effects of hypoxia and the role of p53 in regulating trophoblast autophagy; and (3) to investigate the relationship between autophagy and apoptosis in hypoxic trophoblasts. Methodology/Principal Findings Compared with normal pregnant women, women with IUGR had higher placental levels of autophagy-related proteins LC3B-II, beclin-1, and damage-regulated autophagy modulator (DRAM), with increased p53 and caspase-cleaved cytokeratin 18 (M30). Furthermore, cytotrophoblasts cultured under hypoxia (2% oxygen) in the presence or absence of nutlin-3 (a p53 activity stimulator) had higher levels of LC3B-II, DRAM, and M30 proteins and increased Bax mRNA expression compared with controls cultured under standard conditions. In contrast, administration of pifithrin-α (a p53 activity inhibitor) during hypoxia resulted in protein levels that were similar to those of the control groups. Moreover, cytotrophoblasts transfected with LC3B, beclin-1, or DRAM siRNA had higher levels of M30 compared with the controls under hypoxia. However, transfection with Bcl-2 or Bax siRNA did not cause any significant change in the levels of LC3B-II in hypoxic cytotrophoblasts. Conclusions/Significance Together, these results suggest that there is a crosstalk between autophagy and apoptosis in IUGR and that p53 plays a pivotal and complex role in regulating trophoblast cell turnover in response to hypoxic stress.
Collapse
Affiliation(s)
- Tai-Ho Hung
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Taipei, Taipei, Taiwan.
| | | | | | | | | | | |
Collapse
|
22
|
Choi JH, Lee HJ, Yang TH, Kim GJ. Effects of hypoxia inducible factors-1α on autophagy and invasion of trophoblasts. Clin Exp Reprod Med 2012; 39:73-80. [PMID: 22816073 PMCID: PMC3398120 DOI: 10.5653/cerm.2012.39.2.73] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 03/21/2012] [Accepted: 03/30/2012] [Indexed: 11/22/2022] Open
Abstract
Objective This study was undertaken to determine the effect of hypoxia inducible factor (HIF)-1α on the cell death, autophagy, and invasion of trophoblasts. Methods To understand the effect of HIF-1α, we inhibited HIF-1α using siRNA under normoxia and hypoxia conditions. Invasion assay and zymography were performed to determine changes in the invasion ability of HIF-1α. Western blotting and immunofluorescence were performed to determine some of the signal events involved in apoptosis and autophagy. Results There was no difference in cell death through the inhibition of HIF-1α expression by siRNA; however, the expression of LC3 and autophagosome formation increased. On the other hand, autophagy was increased, and the invasive ability of trophoblast cells decreased according to the inhibition of HIF-1α expression by siRNA. These experimental results mean that HIF-1α genes regulate the invasive ability of trophoblasts by increasing autophagy. Conclusion This study contributes important data for understanding the mechanism of early pregnancy implantation and the invasive ability of trophoblasts by defining the relationship between the roles of HIF-1α and autophagy.
Collapse
Affiliation(s)
- Jong-Ho Choi
- Department of Biomedical Science, CHA University, Seoul, Korea
| | | | | | | |
Collapse
|
23
|
Abstract
The extracellular matrix (ECM) plays an important role in determining cell and organ function: (1) it is an organizing substrate that provides tissue tensile strength; (2) it anchors cells and influences cell morphology and function via interaction with cell surface receptors; and (3) it is a reservoir for growth factors. Alterations in the content and the composition of the ECM determine its physical and biological properties, including strength and susceptibility to degradation. The ECM components themselves also harbor cryptic matrikines, which when exposed by conformational change or proteolysis have potent effects on cell function, including stimulating the production of cytokines and matrix metalloproteinases (MMPs). Collectively, these properties of the ECM reflect a dynamic tissue component that influences both tissue form and function. This review illustrates how defects in ECM synthesis and metabolism and the physiological process of ECM turnover contribute to changes in the fetal membranes that precede normal parturition and contribute to the pathological events leading to preterm premature rupture of membranes (PPROM).
Collapse
Affiliation(s)
- Jerome F Strauss
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
24
|
Hung TH, Chen SF, Li MJ, Yeh YL, Hsieh TT. Differential effects of concomitant use of vitamins C and E on trophoblast apoptosis and autophagy between normoxia and hypoxia-reoxygenation. PLoS One 2010; 5:e12202. [PMID: 20808946 PMCID: PMC2922378 DOI: 10.1371/journal.pone.0012202] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 07/22/2010] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Concomitant supplementation of vitamins C and E during pregnancy has been reportedly associated with low birth weight, the premature rupture of membranes and fetal loss or perinatal death in women at risk for preeclampsia; however, the cause is unknown. We surmise that hypoxia-reoxygenation (HR) within the intervillous space due to abnormal placentation is the mechanism and hypothesize that concomitant administration of aforementioned vitamin antioxidants detrimentally affects trophoblast cells during HR. METHODOLOGY/PRINCIPAL FINDINGS Using villous explants, concomitant administration of 50 microM of vitamins C and E was observed to reduce apoptotic and autophagic changes in the trophoblast layer at normoxia (8% oxygen) but to cause more prominent apoptosis and autophagy during HR. Furthermore, increased levels of Bcl-2 and Bcl-xL in association with a decrease in the autophagy-related protein LC3-II were noted in cytotrophoblastic cells treated with vitamins C and E under standard culture conditions. In contrast, vitamin treatment decreased Bcl-2 and Bcl-xL as well as increased mitochondrial Bak and cytosolic LC3-II in cytotrophoblasts subjected to HR. CONCLUSIONS/SIGNIFICANCE Our results indicate that concomitant administration of vitamins C and E has differential effects on the changes of apoptosis, autophagy and the expression of Bcl-2 family of proteins in the trophoblasts between normoxia and HR. These changes may probably lead to the impairment of placental function and suboptimal growth of the fetus.
Collapse
Affiliation(s)
- Tai-Ho Hung
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Taipei, Taipei, Taiwan.
| | | | | | | | | |
Collapse
|