1
|
Islam M, Behura SK. Single-Cell Transcriptional Response of the Placenta to the Ablation of Caveolin-1: Insights into the Adaptive Regulation of Brain-Placental Axis in Mice. Cells 2024; 13:215. [PMID: 38334607 PMCID: PMC10854826 DOI: 10.3390/cells13030215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Caveolin-1 (Cav1) is a major plasma membrane protein that plays important functions in cellular metabolism, proliferation, and senescence. Mice lacking Cav1 show abnormal gene expression in the fetal brain. Though evidence for placental influence on brain development is emerging, whether the ablation of Cav1 affects the regulation of the brain-placental axis remains unexamined. The current study tests the hypothesis that gene expression changes in specific cells of the placenta and the fetal brain are linked to the deregulation of the brain-placental axis in Cav1-null mice. By performing single-nuclei RNA sequencing (snRNA-seq) analyses, we show that the abundance of the extravillious trophoblast (EVT) and stromal cells, but not the cytotrophoblast (CTB) or syncytiotrophoblast (STB), are significantly impacted due to Cav1 ablation in mice. Interestingly, specific genes related to brain development and neurogenesis were significantly differentially expressed in trophoblast cells due to Cav1 deletion. Comparison of single-cell gene expression between the placenta and the fetal brain further showed that specific genes such as plexin A1 (Plxna1), phosphatase and actin regulator 1 (Phactr1) and amyloid precursor-like protein 2 (Aplp2) were differentially expressed between the EVT and STB cells of the placenta, and also, between the radial glia and ependymal cells of the fetal brain. Bulk RNA-seq analysis of the whole placenta and the fetal brain further identified genes differentially expressed in a similar manner between the placenta and the fetal brain due to the absence of Cav1. The deconvolution of reference cell types from the bulk RNA-seq data further showed that the loss of Cav1 impacted the abundance of EVT cells relative to the stromal cells in the placenta, and that of the glia cells relative to the neuronal cells in the fetal brain. Together, the results of this study suggest that the ablation of Cav1 causes deregulated gene expression in specific cell types of the placenta and the fetal brain in mice.
Collapse
Affiliation(s)
- Maliha Islam
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA;
| | - Susanta K. Behura
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA;
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
- Interdisciplinary Reproduction and Health Group, University of Missouri, Columbia, MO 65211, USA
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
2
|
Islam M, Behura SK. Role of caveolin-1 in metabolic programming of fetal brain. iScience 2023; 26:107710. [PMID: 37720105 PMCID: PMC10500482 DOI: 10.1016/j.isci.2023.107710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/10/2023] [Accepted: 08/23/2023] [Indexed: 09/19/2023] Open
Abstract
Mice lacking caveolin-1 (Cav1), a key protein of plasma membrane, exhibit brain aging at an early adult stage. Here, integrative analyses of metabolomics, transcriptomics, epigenetics, and single-cell data were performed to test the hypothesis that metabolic deregulation of fetal brain due to the ablation of Cav1 is linked to brain aging in these mice. The results of this study show that lack of Cav1 caused deregulation in the lipid and amino acid metabolism in the fetal brain, and genes associated with these deregulated metabolites were significantly altered in the brain upon aging. Moreover, ablation of Cav1 deregulated several metabolic genes in specific cell types of the fetal brain and impacted DNA methylation of those genes in coordination with mouse epigenetic clock. The findings of this study suggest that the aging program of brain is confounded by metabolic abnormalities in the fetal stage due to the absence of Cav1.
Collapse
Affiliation(s)
- Maliha Islam
- Division of Animal Sciences, 920 East Campus Drive, University of Missouri, Columbia, MO 65211, USA
| | - Susanta K. Behura
- Division of Animal Sciences, 920 East Campus Drive, University of Missouri, Columbia, MO 65211, USA
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
- Interdisciplinary Reproduction and Health Group, University of Missouri, Columbia, MO, USA
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA
| |
Collapse
|
3
|
Samara A, Khalil A, O’Brien P, Herlenius E. The effect of the delta SARS-CoV-2 variant on maternal infection and pregnancy. iScience 2022; 25:104295. [PMID: 35492217 PMCID: PMC9040522 DOI: 10.1016/j.isci.2022.104295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A greater proportion of pregnant women with COVID-19 have mild disease compared with their non-pregnant counterparts. Paradoxically, however, they are at higher risk of developing severe disease, requiring respiratory support and admission to intensive care. The delta SARS-Cov-2 variant is associated with increased risk of hospitalization and morbidity in unvaccinated pregnant populations. However, it is not known whether the worse pregnancy outcomes associated with the delta variant are due to a direct effect of the virus on the pregnancy, or whether this effect is mediated through more severe maternal infection. Here, we synthesize studies of COVID-19 pregnancies, focusing on the different routes of SARS-CoV-2 infection of lung and placenta, and the mechanisms of syncytial formation for each SARS-CoV-2 variant. To delineate COVID-19 complications in pregnant women, future studies should explore whether the delta variant causes greater placental infection compared to other variants and contributes to increased syncytial formation.
Collapse
Affiliation(s)
- Athina Samara
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Asma Khalil
- Fetal Medicine Unit, St George’s Hospital, St George’s University of London, London, UK
- Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George’s University of London, London, UK
- Fetal Medicine Unit, Liverpool Women’s Hospital, University of Liverpool, Liverpool, UK
| | - Patrick O’Brien
- The Royal College of Obstetricians and Gynaecologists, London, UK
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Eric Herlenius
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
4
|
Bukowska-Ośko I, Popiel M, Kowalczyk P. The Immunological Role of the Placenta in SARS-CoV-2 Infection-Viral Transmission, Immune Regulation, and Lactoferrin Activity. Int J Mol Sci 2021; 22:5799. [PMID: 34071527 PMCID: PMC8198160 DOI: 10.3390/ijms22115799] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
A pandemic of acute respiratory infections, due to a new type of coronavirus, can cause Severe Acute Respiratory Syndrome 2 (SARS-CoV-2) and has created the need for a better understanding of the clinical, epidemiological, and pathological features of COVID-19, especially in high-risk groups, such as pregnant women. Viral infections in pregnant women may have a much more severe course, and result in an increase in the rate of complications, including spontaneous abortion, stillbirth, and premature birth-which may cause long-term consequences in the offspring. In this review, we focus on the mother-fetal-placenta interface and its role in the potential transmission of SARS-CoV-2, including expression of viral receptors and proteases, placental pathology, and the presence of the virus in neonatal tissues and fluids. This review summarizes the current knowledge on the anti-viral activity of lactoferrin during viral infection in pregnant women, analyzes its role in the pathogenicity of pandemic virus particles, and describes the potential evidence for placental blocking/limiting of the transmission of the virus.
Collapse
Affiliation(s)
- Iwona Bukowska-Ośko
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, 02-091Warsaw, Poland;
| | - Marta Popiel
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland;
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland;
| |
Collapse
|
5
|
Kreis NN, Ritter A, Louwen F, Yuan J. A Message from the Human Placenta: Structural and Immunomodulatory Defense against SARS-CoV-2. Cells 2020; 9:E1777. [PMID: 32722449 PMCID: PMC7465902 DOI: 10.3390/cells9081777] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/31/2022] Open
Abstract
The outbreak of the coronavirus disease 2019 (COVID-19) pandemic has caused a global public health crisis. Viral infections may predispose pregnant women to a higher rate of pregnancy complications, including preterm births, miscarriage, and stillbirth. Despite reports of neonatal COVID-19, definitive proof of vertical transmission is still lacking. In this review, we summarize studies regarding the potential evidence for transplacental transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), characterize the expression of its receptors and proteases, describe the placental pathology and analyze virus-host interactions at the maternal-fetal interface. We focus on the syncytium, the barrier between mother and fetus, and describe in detail its physical and structural defense against viral infections. We further discuss the potential molecular mechanisms, whereby the placenta serves as a defense front against pathogens by regulating the interferon type III signaling, microRNA-triggered autophagy and the nuclear factor-κB pathway. Based on these data, we conclude that vertical transmission may occur but rare, ascribed to the potent physical barrier, the fine-regulated placental immune defense and modulation strategies. Particularly, immunomodulatory mechanisms employed by the placenta may mitigate violent immune response, maybe soften cytokine storm tightly associated with severely ill COVID-19 patients, possibly minimizing cell and tissue damages, and potentially reducing SARS-CoV-2 transmission.
Collapse
Affiliation(s)
- Nina-Naomi Kreis
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany; (A.R.); (F.L.)
| | | | | | - Juping Yuan
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany; (A.R.); (F.L.)
| |
Collapse
|
6
|
Celik O, Saglam A, Baysal B, Derwig IE, Celik N, Ak M, Aslan SN, Ulas M, Ersahin A, Tayyar AT, Duran B, Aydin S. Factors preventing materno-fetal transmission of SARS-CoV-2. Placenta 2020; 97:1-5. [PMID: 32501218 PMCID: PMC7258816 DOI: 10.1016/j.placenta.2020.05.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 05/28/2020] [Indexed: 12/05/2022]
Abstract
Although many pregnant women have been infected by coronavirus, the presence of intrauterine vertical transmission has not been conclusively reported yet. What prevents this highly contagious virus from reaching the fetus? Is it only the presence of a strong placental barrier, or is it the natural absence of the some receptor that the viruses use for transmission? We, therefore, need to comprehensively understand the mechanism of action of the mammalian epithelial barriers located in two different organs with functional similarity. The barriers selected as potential targets by SARS-CoV-2 are the alveolo-capillary barrier (ACB), and the syncytio-capillary barrier (SCB). Caveolae are omega-shaped structures located on the cell membrane. They consist of caveolin-1 protein (Cav-1) and are involved in the internalisation of some viruses. By activating leukocytes and nuclear factor-κB, Cav-1 initiates inflammatory reactions. The presence of more than one Cav-1 binding sites on coronavirus is an important finding supporting the possible relationship between SARS-CoV-2-mediated lung injury. While the ACB cells express Cav-1 there is no caveolin expression in syncytiotrophoblasts. In this short review, we will try to explain our hypothesis that the lack of caveolin expression in the SCB is one of the most important physiological mechanisms that prevents vertical transmission of SARS-CoV-2. Since the physiological Cav-1 deficiency appears to prevent acute cell damage treatment algorithms could potentially be developed to block this pathway in the non-pregnant population affected by SARS-CoV-2. Syncytiotrophoblasts do not express caveolin. SARS-CoV-2 does not bind to syncytiotrophoblasts. Placental barrier does not allow passage of SARS-CoV-2.
Collapse
Affiliation(s)
- Onder Celik
- Private Clinic Obstetrics and Gynecology, Usak, Turkey.
| | - Aylin Saglam
- Department of Obstetrics and Gynecology, Aksaray University School of Medicine, Aksaray, Turkey
| | - Bora Baysal
- Department of Neonatology, Faculty of Medicine Usak University, Usak, Turkey
| | - Iris E Derwig
- Chelsea Westminster Hospital NHS Foundation Trust, London, England, UK
| | - Nilufer Celik
- Department of Biochemistry, Dr. Behcet Uz Children's Research and Training Hospital, Izmir, Turkey
| | - Mehmet Ak
- Department of Obstetrics and Gynecology, Kayseri City Hospital, Kayseri, Turkey
| | - Selma N Aslan
- Gazi University, Faculty of Pharmacy, Toxicology Department, Ankara, Turkey
| | - Mustafa Ulas
- Department of Physiology, Firat University School of Medicine, Elazig, Turkey
| | - Aynur Ersahin
- Department of Obstetrics and Gynecology, Bahcesehir University School of Medicine, Istanbul, Turkey
| | - Ahter T Tayyar
- Department of Obstetrics and Gynecology, Bahcesehir University School of Medicine, Istanbul, Turkey
| | - Bulent Duran
- Department of Obstetrics and Gynecology, Adatıp Hospital, Sakarya, Turkey
| | - Suleyman Aydin
- Department of Medical Biochemistry, Firat University School of Medicine, Elazig, Turkey
| |
Collapse
|
7
|
Ishikawa T, Takizawa T, Iwaki J, Mishima T, Ui-Tei K, Takeshita T, Matsubara S, Takizawa T. Fc gamma receptor IIb participates in maternal IgG trafficking of human placental endothelial cells. Int J Mol Med 2015; 35:1273-89. [PMID: 25778799 PMCID: PMC4380207 DOI: 10.3892/ijmm.2015.2141] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/17/2015] [Indexed: 12/21/2022] Open
Abstract
The human placental transfer of maternal IgG is crucial for fetal and newborn immunity. Low-affinity immunoglobulin gamma Fc region receptor IIb2 (FCGR2B2 or FcγRIIb2) is exclusively expressed in an IgG-containing, vesicle-like organelle (the FCGR2B2 compartment) in human placental endothelial cells; thus, we hypothesized that the FCGR2B2 compartment functions as an IgG transporter. In this study, to examine this hypothesis, we performed in vitro bio-imaging analysis of IgG trafficking by FCGR2B2 compartments using human umbilical vein endothelial cells transfected with a plasmid vector containing enhanced GFP-tagged FCGR2B2 (pFCGR2B2-EGFP). FCGR2B2-EGFP signals were detected as intracellular vesicular structures similar to FCGR2B2 compartments in vivo. The internalization and transcytosis of IgG was significantly higher in the pFCGR2B2-EGFP-transfected cells than in the mock-transfected cells, and the majority of the internalized IgG was co-localized with the FCGR2B2-EGFP signals. Furthermore, we isolated FCGR2B2 compartments from the human placenta and found that the Rab family of proteins [RAS-related protein Rab family (RABs)] were associated with FCGR2B2 compartments. Among the RABs, RAB3D was expressed predominantly in placental endothelial cells. The downregulation of RAB3D by small interfering RNA (siRNA) resulted in a marked reduction in the FCGR2B2-EGFP signals at the cell periphery. Taken together, these findings suggest that FCGR2B2 compartments participate in the transcytosis of maternal IgG across the human placental endothelium and that RAB3D plays a role in regulating the intracellular dynamics of FCGR2B2 compartments.
Collapse
Affiliation(s)
- Tomoko Ishikawa
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo 113-8602, Japan
| | - Takami Takizawa
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo 113-8602, Japan
| | - Jun Iwaki
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo 113-8602, Japan
| | - Takuya Mishima
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo 113-8602, Japan
| | - Kumiko Ui-Tei
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Toshiyuki Takeshita
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Shigeki Matsubara
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Toshihiro Takizawa
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo 113-8602, Japan
| |
Collapse
|
8
|
RNA-seq analysis of equine conceptus transcripts during embryo fixation and capsule disappearance. PLoS One 2014; 9:e114414. [PMID: 25514169 PMCID: PMC4267804 DOI: 10.1371/journal.pone.0114414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 11/10/2014] [Indexed: 11/19/2022] Open
Abstract
Extensive studies have been conducted to characterize the unique phenomena of equine pregnancy. Most studies have focused on embryo transmigration when the embryo is covered with a mucin-like glycoprotein capsule and on the characterization of the chorionic girdle and chorionic gonadotropin (CG) secretion. However, the events preceding and following capsule disappearance have not been well studied. In this study, the mRNA expression in conceptus membranes at days 19, 21, and 25 (day 0 = day of ovulation) was analyzed by RNA-seq (SOLiD3), and transcript levels on these three days and day 13 were confirmed by real-time PCR. Of the 26,416 equine genes registered, 20,436 transcripts were aligned to sequences in the Ensembl database, from which 4,625 transcripts were registered in both Ensembl and the KEGG pathway. Each of the 4,625 transcripts was examined through KEGG pathway analysis, and 12 transcripts of integrins (ITGs) and collagens (COLs) were confirmed through real-time PCR. Our data indicated that extracellular matrix (ECM)-related mRNAs were highly expressed in day 19, 21, and 25 conceptus membranes. In combination with previous results, which confirmed a lack of laminin and fibronectin transcript expression in the endometrium, these observations suggest that in contrast to attachment through focal adhesion, conceptus chorionic membrane ECMs function as a scaffold-like structure to possibly maintain the shape of the conceptus and a separation between chorionic membranes and the uterine luminal epithelium.
Collapse
|
9
|
Rodríguez I, González M. Physiological mechanisms of vascular response induced by shear stress and effect of exercise in systemic and placental circulation. Front Pharmacol 2014; 5:209. [PMID: 25278895 PMCID: PMC4165280 DOI: 10.3389/fphar.2014.00209] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 08/26/2014] [Indexed: 12/19/2022] Open
Abstract
Physiological vascular function regulation is essential for cardiovascular health and depends on adequate control of molecular mechanisms triggered by endothelial cells in response to mechanical and chemical stimuli induced by blood flow. Endothelial dysfunction is one of the main risk factors of cardiovascular pathology, where the imbalance between the synthesis of vasodilator and vasoconstrictor molecules is common in the development of vascular disorders in systemic and placental circulation. In the placenta, an organ without autonomic innervations, the local control of vascular tone is critical for maintenance of fetal growth and mechanisms that underlie shear stress response induced by blood flow are essential during pregnancy. In this field, shear stress induced by moderate exercise is one of the most important mechanisms to improve vascular function through nitric oxide synthesis and stimulation of mechanical response of endothelial cells triggered by ion channels, caveolae, endothelial NO synthase, and vascular endothelial growth factor, among others. The demand for oxygen and nutrients by tissues and organs, especially in placentation and pregnancy, determines blood flow parameters, and physiological adaptations of vascular beds for covering metabolic requirements. In this regard, moderate exercise versus sedentarism shows potential benefits for improving vascular function associated with the enhancement of molecular mechanisms induced by shear stress. In this review, we collect evidence about molecular bases of physiological response to shear stress in order to highlight the relevance of moderate exercise-training for vascular health in adult and fetal life.
Collapse
Affiliation(s)
- Iván Rodríguez
- Faculty of Health Science, Universidad San Sebastián Concepción, Chile ; PhD Program in Medical Sciences, Faculty of Medicine, Universidad de La Frontera Temuco, Chile
| | - Marcelo González
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile ; Group of Research and Innovation in Vascular Health Chillán, Chile
| |
Collapse
|
10
|
Rattanapinyopituk K, Shimada A, Morita T, Sakurai M, Asano A, Hasegawa T, Inoue K, Takano H. Demonstration of the clathrin- and caveolin-mediated endocytosis at the maternal-fetal barrier in mouse placenta after intravenous administration of gold nanoparticles. J Vet Med Sci 2013; 76:377-87. [PMID: 24257253 PMCID: PMC4013364 DOI: 10.1292/jvms.13-0512] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Exposure to nanoparticles during pregnancy is a public concern, because
nanoparticles may pass from the mother to the fetus across the placenta. The purpose of
this study was to determine the possible translocation pathway of gold nanoparticles
across the maternal–fetal barrier as well as the toxicity of intravenously administered
gold nanoparticles to the placenta and fetus. Pregnant ICR mice were intravenously
injected with 0.01% of 20- and 50-nm gold nanoparticle solutions on the 16th and 17th days
of gestation. There was no sign of toxic damage to the placentas as well as maternal and
fetal organs of the mice treated with 20- and 50-nm gold nanoparticles. ICP-MS analysis
demonstrated significant amounts of gold deposited in the maternal livers and placentas,
but no detectable level of gold in the fetal organs. However, electron microscopy
demonstrated an increase of endocytic vesicles in the cytoplasm of syncytiotrophoblasts
and fetal endothelial cells in the maternal–fetal barrier of mice treated with gold
nanoparticles. Clathrin immunohistochemistry and immunoblotting showed increased
immunoreactivity of clathrin protein in the placental tissues of mice treated with 20- and
50-nm gold nanoparticles; clathrin immunopositivity was observed in syncytiotrophoblasts
and fetal endothelial cells. In contrast, caveolin-1 immunopositivity was observed
exclusively in the fetal endothelium. These findings suggested that intravenous
administration of gold nanoparticles may upregulate clathrin- and caveolin-mediated
endocytosis at the maternal–fetal barrier in mouse placenta.
Collapse
Affiliation(s)
- Kasem Rattanapinyopituk
- Department of Veterinary Pathology, Tottori University, 4-101 Koyama Minami, Tottori 680-8553, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Favaron P, Carter A, Mess A, de Oliveira M, Miglino M. An unusual feature of yolk sac placentation in Necromys lasiurus (Rodentia, Cricetidae, Sigmodontinae). Placenta 2012; 33:578-80. [DOI: 10.1016/j.placenta.2012.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/08/2012] [Accepted: 02/09/2012] [Indexed: 10/28/2022]
|
12
|
Cox B, Sharma P, Evangelou AI, Whiteley K, Ignatchenko V, Ignatchenko A, Baczyk D, Czikk M, Kingdom J, Rossant J, Gramolini AO, Adamson SL, Kislinger T. Translational analysis of mouse and human placental protein and mRNA reveals distinct molecular pathologies in human preeclampsia. Mol Cell Proteomics 2011; 10:M111.012526. [PMID: 21986993 DOI: 10.1074/mcp.m111.012526] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Preeclampsia (PE) adversely impacts ~5% of pregnancies. Despite extensive research, no consistent biomarkers or cures have emerged, suggesting that different molecular mechanisms may cause clinically similar disease. To address this, we undertook a proteomics study with three main goals: (1) to identify a panel of cell surface markers that distinguish the trophoblast and endothelial cells of the placenta in the mouse; (2) to translate this marker set to human via the Human Protein Atlas database; and (3) to utilize the validated human trophoblast markers to identify subgroups of human preeclampsia. To achieve these goals, plasma membrane proteins at the blood tissue interfaces were extracted from placentas using intravascular silica-bead perfusion, and then identified using shotgun proteomics. We identified 1181 plasma membrane proteins, of which 171 were enriched at the maternal blood-trophoblast interface and 192 at the fetal endothelial interface with a 70% conservation of expression in humans. Three distinct molecular subgroups of human preeclampsia were identified in existing human microarray data by using expression patterns of trophoblast-enriched proteins. Analysis of all misexpressed genes revealed divergent dysfunctions including angiogenesis (subgroup 1), MAPK signaling (subgroup 2), and hormone biosynthesis and metabolism (subgroup 3). Subgroup 2 lacked expected changes in known preeclampsia markers (sFLT1, sENG) and uniquely overexpressed GNA12. In an independent set of 40 banked placental specimens, GNA12 was overexpressed during preeclampsia when co-incident with chronic hypertension. In the current study we used a novel translational analysis to integrate mouse and human trophoblast protein expression with human microarray data. This strategy identified distinct molecular pathologies in human preeclampsia. We conclude that clinically similar preeclampsia patients exhibit divergent placental gene expression profiles thus implicating divergent molecular mechanisms in the origins of this disease.
Collapse
Affiliation(s)
- Brian Cox
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Favaron PO, Carter AM, Ambrósio CE, Morini AC, Mess AM, de Oliveira MF, Miglino MA. Placentation in Sigmodontinae: a rodent taxon native to South America. Reprod Biol Endocrinol 2011; 9:55. [PMID: 21518439 PMCID: PMC3094283 DOI: 10.1186/1477-7827-9-55] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 04/25/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sigmodontinae, known as "New World rats and mice," is a large subfamily of Cricetidae for which we herein provide the first comprehensive investigation of the placenta. METHODS Placentas of various gestational ages ranging from early pregnancy to near term were obtained for five genera, i.e. Necromys, Euryoryzomys, Cerradomys, Hylaeamys, and Oligoryzomys. They were investigated by means of histology, immunohistochemistry, a proliferation marker, DBA-lectin staining and transmission electron microscopy. RESULTS The chorioallantoic placenta was organized in a labyrinthine zone, spongy zone and decidua and an inverted yolk sac persisted until term. The chorioallantoic placenta was hemotrichorial. The interhemal barrier comprised fetal capillary endothelium and three layers of trophoblast, an outermost, cellular layer and two syncytial ones, with interspersed trophoblast giant cells (TGC). In addition, accumulations of TGC occurred below Reichert's membrane. The junctional zone contained syncytial trophoblast, proliferative cellular trophoblast, glycogen cells and TGC that were situated near to the maternal blood channels. In three of the genera, TGC were also accumulated in distinct areas at the placental periphery. PAS-positive glycogen cells derived from the junctional zone invaded the decidua. Abundant maternal uNK cells with positive response to PAS, vimentin and DBA-lectin were found in the decidua. The visceral yolk sac was completely inverted and villous. CONCLUSION The general aspect of the fetal membranes in Sigmodontinae resembled that found in other cricetid rodents. Compared to murid rodents there were larger numbers of giant cells and in some genera these were seen to congregate at the periphery of the placental disk. Glycogen cells were found to invade the decidua but we did not identify trophoblast in the walls of the deeper decidual arteries. In contrast these vessels were surrounded by large numbers of uNK cells. This survey of wild-trapped specimens from five genera is a useful starting point for the study of placentation in an important subfamily of South American rodents. We note, however, that some of these rodents can be captive bred and recommend that future studies focus on the study of time dated pregnancies.
Collapse
Affiliation(s)
- Phelipe O Favaron
- Department of Surgery, School of Veterinary Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Anthony M Carter
- Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Carlos E Ambrósio
- Department of Basic Science, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Adriana C Morini
- Department of Surgery, School of Veterinary Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Andrea M Mess
- Department of Surgery, School of Veterinary Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Moacir F de Oliveira
- Department of Animal Science, Universidade Federal Rural do Semi-Árido, Mossoró, Rio Grande do Norte, Brazil
| | - Maria A Miglino
- Department of Surgery, School of Veterinary Medicine, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
14
|
Mohanty S, Kim J, Ganesan LP, Phillips GS, Hua K, Jarjoura D, Hayton WL, Robinson JM, Anderson CL. IgG is transported across the mouse yolk sac independently of FcgammaRIIb. J Reprod Immunol 2009; 84:133-44. [PMID: 20015554 DOI: 10.1016/j.jri.2009.10.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 10/28/2009] [Accepted: 10/30/2009] [Indexed: 11/26/2022]
Abstract
While generally accepted that FcRn of the human syncytiotrophoblast and the mouse yolk sac endoderm is the major IgG transporter, the finding of a different Fc receptor FcgammaRIIb (RIIb) in the human placental endothelium has suggested the existence of an additional IgG transporter. Testing our hypothesis in mouse, we found that while RIIb is expressed in the yolk sac vasculature, IgG concentrations in fetuses of wild-type mice (RIIb(+/+)) and mice with a null mutation in the gene encoding RIIb (RIIb(-/-) mice) are not different, and we thus reject our hypothesis that yolk sac RIIb transports IgG in utero in the mouse. However, the capillary bed in the mouse yolk sac is structurally more complex than in human placenta, consisting of three types of cells: an RIIb-negative endothelium, a unique RIIb-bearing cell that also expresses 2 out of 4 macrophage markers but not endothelial cell or pericyte markers, and pericytes. As in the human placenta the b2 isoform of RIIb predominates in the mouse yolk sac. Remarkably only a single capillary channel rather than 2 channels with a loop is found in each yolk sac villus, which, along with intracapillary erythrocytes, suggests that blood flow is peristaltic, mediated by pericytes. It is not clear whether RIIb in the human placental villus might mediate an IgG transport function in light of the mouse yolk sac equivalent failing to do so.
Collapse
Affiliation(s)
- Sudhasri Mohanty
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|