1
|
Qin XY, Ha SY, Chen L, Zhang T, Li MQ. Recent Advances in Folates and Autoantibodies against Folate Receptors in Early Pregnancy and Miscarriage. Nutrients 2023; 15:4882. [PMID: 38068740 PMCID: PMC10708193 DOI: 10.3390/nu15234882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Though firstly identified in cerebral folate deficiency, autoantibodies against folate receptors (FRAbs) have been implicated in pregnancy complications such as miscarriage; however, the underlying mechanism needs to be further elaborated. FRAbs can be produced via sensitization mediated by folate-binding protein as well as gene mutation, aberrant modulation, or degradation of folate receptors (FRs). FRAbs may interfere with folate internalization and metabolism through blocking or binding with FRs. Interestingly, different types of FRs are expressed on trophoblast cells, decidual epithelium or stroma, and macrophages at the maternal-fetal interface, implying FRAbs may be involved in the critical events necessary for a successful pregnancy. Thus, we propose that FRAbs may disturb pregnancy establishment and maintenance by modulating trophoblastic biofunctions, placental development, decidualization, and decidua homeostasis as well as the functions of FOLR2+ macrophages. In light of these findings, FRAbs may be a critical factor in pathological pregnancy, and deserve careful consideration in therapies involving folic acid supplementation for pregnancy complications.
Collapse
Affiliation(s)
- Xue-Yun Qin
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China; (X.-Y.Q.); (S.-Y.H.)
| | - Si-Yao Ha
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China; (X.-Y.Q.); (S.-Y.H.)
| | - Lu Chen
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Tao Zhang
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China; (X.-Y.Q.); (S.-Y.H.)
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China
| |
Collapse
|
2
|
Steane SE, Cuffe JSM, Moritz KM. The role of maternal choline, folate and one-carbon metabolism in mediating the impact of prenatal alcohol exposure on placental and fetal development. J Physiol 2023; 601:1061-1075. [PMID: 36755527 PMCID: PMC10952912 DOI: 10.1113/jp283556] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
Prenatal alcohol consumption (PAE) may be associated with a broad spectrum of impacts, ranging from no overt effects, to miscarriage, fetal growth restriction and fetal alcohol spectrum disorder. A major mechanism underlying the effects of PAE is considered to be altered DNA methylation and gene expression. Maternal nutritional status may be an important factor in determining the extent to which PAE impacts pregnancy outcomes, particularly the dietary micronutrients folate and choline because they provide methyl groups for DNA methylation via one carbon metabolism. This review summarises the roles of folate and choline in development of the blastocyst, the placenta and the fetal brain, and examines the evidence that maternal intake of these micronutrients can modify the effects of PAE on development. Studies of folate or choline deficiency have found reduced blastocyst development and implantation, reduced placental invasion, vascularisation and nutrient transport capability, impaired fetal brain development, and abnormal neurodevelopmental outcomes. PAE has been shown to reduce absorption and/or metabolism of folate and choline and to produce similar outcomes to maternal choline/folate deficiency. A few studies have demonstrated that the effects of PAE on brain development can be ameliorated by folate or choline supplementation; however, there is very limited evidence on the effects of supplementation in early pregnancy on the blastocyst and placenta. Further studies are required to support these findings and to determine optimal supplementation parameters.
Collapse
Affiliation(s)
- Sarah E. Steane
- School of Biomedical SciencesThe University of QueenslandSt LuciaQLDAustralia
| | - James S. M. Cuffe
- School of Biomedical SciencesThe University of QueenslandSt LuciaQLDAustralia
| | - Karen M. Moritz
- School of Biomedical SciencesThe University of QueenslandSt LuciaQLDAustralia
| |
Collapse
|
3
|
Kaldygulova L, Ukybassova T, Aimagambetova G, Gaiday A, Tussupkaliyev A. Biological Role of Folic Acid in Pregnancy and Possible Therapeutic Application for the Prevention of Preeclampsia. Biomedicines 2023; 11:272. [PMID: 36830809 PMCID: PMC9953465 DOI: 10.3390/biomedicines11020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/20/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
The rationale and importance of folic acid supplementation during pregnancy for fetal congenital defect prevention are accepted worldwide. Moreover, a sufficient plasma concentration of folates can reduce the incidence of spontaneous abortions, and support the normal expansion of placental blood vessels, ensuring physiological placental blood flow, thus promoting appropriate fetal growth and development. Furthermore, there is emerging evidence that long-term supplementation with folic acid can effectively prevent preeclampsia. Preeclampsia is unique to the human species in complications during pregnancy, which contributes to maternal and perinatal mortality worldwide. In the pathogenesis of preeclampsia abnormal placental invasion, the excess of antiangiogenic factors and maternal-placental syndrome play a key role. Increased blood levels of homocysteine during pregnancy are associated with the risk of preeclampsia. Moreover, hyperhomocysteinemia has been proposed to be an independent risk factor for preeclampsia. Folate supplementation helps to decrease elevated levels of homocysteine; thus, the role of folic acid supplementation in pregnancy is even more important. Multiple reports suggest that folate administration decreases the level of serum homocysteine and, therefore, reduce the risk and severity of preeclampsia. However, the association between folic acid supplementation and the decreased risk of preeclampsia has been investigated with controversial conclusions. Currently, the optimal dose of folic acid that is effective for preeclampsia prevention remains uncertain. In this review, we aim to summarize the accumulated knowledge on the role of folic acid in the pathogenesis of preeclampsia, and the possible impact of folate supplementation on the decreased risk of preeclampsia.
Collapse
Affiliation(s)
- Lyazzat Kaldygulova
- Department of Obstetrics and Gynecology #2, West-Kazakhstan Marat Ospanov Medical University, Aktobe 030012, Kazakhstan
| | - Talshyn Ukybassova
- Clinical Academic Department of Women’s Health, CF “University Medical Center”, Astana 010000, Kazakhstan
| | - Gulzhanat Aimagambetova
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
| | - Andrey Gaiday
- Department of Obstetrics and Gynecology #2, West-Kazakhstan Marat Ospanov Medical University, Aktobe 030012, Kazakhstan
| | - Akylbek Tussupkaliyev
- Department of Obstetrics and Gynecology #2, West-Kazakhstan Marat Ospanov Medical University, Aktobe 030012, Kazakhstan
| |
Collapse
|
4
|
High Folate, Perturbed One-Carbon Metabolism and Gestational Diabetes Mellitus. Nutrients 2022; 14:nu14193930. [PMID: 36235580 PMCID: PMC9573299 DOI: 10.3390/nu14193930] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Folate is a dietary micronutrient essential to one-carbon metabolism. The World Health Organisation recommends folic acid (FA) supplementation pre-conception and in early pregnancy to reduce the risk of fetal neural tube defects (NTDs). Subsequently, many countries (~92) have mandatory FA fortification policies, as well as recommendations for periconceptional FA supplementation. Mandatory fortification initiatives have been largely successful in reducing the incidence of NTDs. However, humans have limited capacity to incorporate FA into the one-carbon metabolic pathway, resulting in the increasingly ubiquitous presence of circulating unmetabolised folic acid (uFA). Excess FA intake has emerged as a risk factor in gestational diabetes mellitus (GDM). Several other one-carbon metabolism components (vitamin B12, homocysteine and choline-derived betaine) are also closely entwined with GDM risk, suggesting a role for one-carbon metabolism in GDM pathogenesis. There is growing evidence from in vitro and animal studies suggesting a role for excess FA in dysregulation of one-carbon metabolism. Specifically, high levels of FA reduce methylenetetrahydrofolate reductase (MTHFR) activity, dysregulate the balance of thymidylate synthase (TS) and methionine synthase (MTR) activity, and elevate homocysteine. High homocysteine is associated with increased oxidative stress and trophoblast apoptosis and reduced human chorionic gonadotrophin (hCG) secretion and pancreatic β-cell function. While the relationship between high FA, perturbed one-carbon metabolism and GDM pathogenesis is not yet fully understood, here we summarise the current state of knowledge. Given rising rates of GDM, now estimated to be 14% globally, and widespread FA food fortification, further research is urgently needed to elucidate the mechanisms which underpin GDM pathogenesis.
Collapse
|
5
|
Yuan X, Han X, Zhou W, Long W, Wang H, Yu B, Zhang B. Association of folate and vitamin B12 imbalance with adverse pregnancy outcomes among 11,549 pregnant women: An observational cohort study. Front Nutr 2022; 9:947118. [PMID: 35958250 PMCID: PMC9358651 DOI: 10.3389/fnut.2022.947118] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/29/2022] [Indexed: 01/05/2023] Open
Abstract
Objective This study aimed to evaluate maternal serum levels of folate, vitamin B12, and their ratio on admission for labor and determine whether an imbalance between folate and vitamin B12, represented by a higher or lower serum folate to vitamin B12 ratio (SFVB12R), was associated with adverse pregnancy outcomes. Methods A retrospective cohort study of 11,549 pregnant women attending a district specialized hospital and who had serum folate (SF) and serum vitamin B12 (SVB12) levels measured at delivery was performed. The levels of SF, SVB12, and SFVB12R were defined as high (>95th percentile), normal (5–95th percentile), and low (<5th percentile). Information on pregnancy outcomes was retrieved from medical records. Linear regression was performed to examine the association of abnormal SF, SVB12, and SFVB12R levels with fetal growth indicators. Logistic regression was applied to estimate the association between abnormal SF, SVB12, and SFVB12R levels and pregnancy outcomes. Results Lower SF levels were associated with higher risks of intrahepatic cholestasis of pregnancy (ICP, OR 1.58; 95% CI 1.15–2.17), pre-eclampsia (PE, OR 1.89; 95% CI 1.28–2.81), and a lower risk of gestational diabetes mellitus (GDM, OR 0.40; 95% CI 0.23–0.70), whereas higher SVB12 levels were associated with a higher risk of ICP (OR 2.22; 95% CI 1.67–2.96), PE (OR 1.69; 95% CI 1.04-2.74), and GDM (OR 1.62; 95% CI 1.24–2.11). A higher SFVB12R increased birthweight (β 60.99; 95% CI 29.52–92.45) and was associated with a higher risk of large-for-gestational-age (LGA) newborns (OR 3.08; 95% CI 1.63–5.83); a lower SFVB12R decreased birthweight (β −43.81; 95% CI −75.62, −12.00) and was associated with a lower risk of LGA newborns (OR 0.75; 95% CI 0.56–1.00), and with higher risks of ICP (OR 2.03; 95% CI 1.54–2.67) and pregnancy-induced hypertension (PIH, OR 1.81; 95% CI 1.09–3.00). Conclusion An imbalance between folate and vitamin B12, represented by a higher or lower SFVB12R before delivery, was significantly associated with adverse pregnancy outcomes (ICP/PIH/LGA).
Collapse
Affiliation(s)
- Xiaosong Yuan
- Department of Medical Genetics, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Xiaoya Han
- Department of Medical Genetics, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Wenbo Zhou
- Department of Medical Genetics, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Wei Long
- Department of Medical Genetics, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Huiyan Wang
- Department of Obstetrics and Gynecology, Changzhou Medical Center, Changzhou Maternal and Child Health Care Hospital, Nanjing Medical University, Changzhou, China
| | - Bin Yu
- Department of Medical Genetics, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Bin Zhang
- Department of Medical Genetics, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| |
Collapse
|
6
|
Ye F, Zhang S, Qi Q, Zhou J, Du Y, Wang L. Association of MTHFR 677C>T polymorphism with pregnancy outcomes in IVF/ICSI-ET recipients with adequate synthetic folic acid supplementation. Biosci Trends 2022; 16:282-290. [PMID: 35691911 DOI: 10.5582/bst.2021.01306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Methylenetetrahydrofolate reductase (MTHFR) genetic polymorphism rs1801133 (677C>T) will decrease the utilization of folate. Folate deficiency and its resulting homocysteine (HCY) accumulation can impair female fertility. Folic acid (FA) supplementation is necessary in pregnant women who are undergoing in-vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) - embryo transfer (ET), and especially in women with MTHFR rs1801133 C-to-T mutations. At present, affordable and accessible synthetic FA is mainly used. However, some studies have suggested that 5-methylenetetrahydrofolate (5-MTHF), a type of active FA, may be more suitable for women with the MTHFR 677C>T polymorphism, since it is safer and more effective. This retrospective study aimed to evaluate whether the MTHFR rs1801133 gene polymorphism is related to the pregnancy outcomes of IVF/ICSI-ET recipients after sufficient supplementation with FA instead of 5-MTHF. Data on 692 women undergoing IVF/ICSI-ET and taking adequate FA were collected. Participant characteristics were compared using the Kruskal-Wallis test and Pearson chi-square test. Logistic regressions were used to calculate the odds ratio (OR) and 95% confidence interval (95% CI), after adjusting for age, BMI, method of fertilization, method of embryo transfer and number of embryos transferred. An additive model (T/T vs. C/C), dominant model (C/T + T/T vs. C/C), and recessive model (T/T vs. C/T + C/C) were evaluated. Analysis revealed that MTHFR rs1801133 in IVF/ICSI-ET women with adequate FA supplementation was not associated with the pregnancy rate but with age (OR = 0.91, 95% CI = 0.88, 0.94, P < 0.001) and BMI (OR = 0.95, 95% CI = 0.90, 0.997, P = 0.037). In 349 clinically pregnant women, no association of the MTHFR 677C>T with pregnancy outcomes was found in the additive model, dominant model, or recessive model. Of the 273 women with positive pregnancy outcomes, 34 had a preterm delivery. MTHFR 677C>T was not associated with a preterm delivery after adjusting for age and BMI. The current results indicated that MTHFR polymorphism rs1801133 was not related to the pregnancy rate or pregnancy outcomes of women undergoing IVF/ICSI-ET with adequate synthetic FA supplementation, suggesting that simple supplementation with less expensive and readily available FA, rather than expensive 5-MTHF, appeared to be appropriate.
Collapse
Affiliation(s)
- Feijun Ye
- Reproductive Medicine Center, Zhoushan Maternal and Child Health Care Hospital, Zhoushan, Zhejiang, China
| | - Siwei Zhang
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,The Academy of Integrative Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Qing Qi
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,The Academy of Integrative Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Jing Zhou
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,The Academy of Integrative Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Yan Du
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,The Academy of Integrative Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Ling Wang
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,The Academy of Integrative Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| |
Collapse
|
7
|
Abstract
Nutrition in pregnant mothers has long been known to be an important determinant of fetal/maternal outcomes. In general, the typical American diet shows opportunities for improvement. The intake of fruits, vegetables, whole grains, and fiber may be below recommended levels, but the relative proportion of sodium, fats, and carbohydrates seems high. In this review, we present current evidence on how the fetal/neonatal outcomes may be altered by maternal nutrition at the time of conception, fetal nutrition in utero, contribution of maternal dietary factors in fetal outcomes, weight gain during pregnancy, diabetes during pregnancy, fetal growth restriction (FGR), maternal nutritional status during later pregnancy, and pregnancy in adolescent mothers.
Collapse
Affiliation(s)
- Sangeeta Jain
- Division of Maternal-Fetal Medicine, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | | | - Sunil K Jain
- Division of Neonatology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| |
Collapse
|
8
|
Rahat B, Hamid A, Bagga R, Kaur J. Folic Acid Levels During Pregnancy Regulate Trophoblast Invasive Behavior and the Possible Development of Preeclampsia. Front Nutr 2022; 9:847136. [PMID: 35578613 PMCID: PMC9106796 DOI: 10.3389/fnut.2022.847136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundOne of the unique features of placentation is its similarity to tumorigenesis yet being very well regulated. It allows rapid proliferation, migration, and invasion of mononuclear trophoblast cells into the maternal uterus and remodeling the maternal vasculature. This pseudomalignant nature of trophoblastic cells is strictly regulated and its importance becomes evident in abnormal pregnancies that are characterized by aberrant trophoblast proliferation/invasion like preeclampsia. In addition to this, the importance of folic acid supplementation during pregnancy is well documented. We aimed to analyze the molecular and epigenetic regulation of the pseudomalignant nature of placentation via folic acid levels.MethodsPlacental tissue samples were collected from different pregnancies in three different gestational stages. We estimated the impact of folic acid levels on global methylation, LINE1 methylation, and expression of DNMTs in all three gestational stages in pregnant women and preeclampsia pregnancies. We also analyzed the effect of folic acid supplementation on trophoblastic invasion using placental derived cells viz, JEG-3 and HTR-8/SVneo cell line and verified the molecular and epigenetic mechanisms involved in this regulation.ResultsDevelopment of preeclampsia was observed to be associated with lower folate levels in placental tissue, higher global methylation level, and higher expression of DNMT1and DNMT3A. Folic acid supplementation was found to increase the invasive potential of placental trophoblasts by almost two folds which were associated with the decreased expression of tumor suppressor genes and tissue inhibitors of matrix metalloproteinases; and increased expression of oncogenes, telomerase gene, and matrix metalloproteinases. These folic acid-mediated changes were observed to be regulated by CpG methylation in the case of many genes. Folic acid supplementation was also observed to significantly decrease global methylation in placental trophoblasts related to decreasing expression of DNMT1 and DNMT3A.ConclusionLower folic acid levels are associated with preeclampsia development and folic acid supplementation regulates the invasive potential of placental trophoblasts as mediated by various epigenetic changes in the placenta suggesting the protective effect of folic acid against preeclampsia.
Collapse
Affiliation(s)
- Beenish Rahat
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Abid Hamid
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Rashmi Bagga
- Department of Obstetrics and Gynecology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jyotdeep Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
- *Correspondence: Jyotdeep Kaur
| |
Collapse
|
9
|
Bortolus R, Filippini F, Cipriani S, Trevisanuto D, Cavallin F, Zanconato G, Somigliana E, Cesari E, Mastroiacovo P, Parazzini F. Efficacy of 4.0 mg versus 0.4 mg Folic Acid Supplementation on the Reproductive Outcomes: A Randomized Controlled Trial. Nutrients 2021; 13:nu13124422. [PMID: 34959975 PMCID: PMC8704306 DOI: 10.3390/nu13124422] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/04/2021] [Accepted: 12/08/2021] [Indexed: 01/13/2023] Open
Abstract
Folic acid (FA) supplementation prevents neural tube defects (NTDs), but the effects on other reproductive outcomes are unclear. While common recommendation is 0.4 mg/day in addition to regular nutrition, the most appropriate dose of FA is still under debate. We investigated the effects of a higher dose of periconception FA on reducing adverse reproductive outcomes. In this multicenter double-blind randomized controlled trial (RCT), 1060 women (aged 18-44 years and planning a pregnancy) were randomly assigned to receive 4.0 mg or 0.4 mg of FA daily. The primary outcome was the occurrence of congenital malformations (CMs). A composite outcome including one or more adverse pregnancy outcomes was also evaluated. A total of 431 women had a natural conception within 1 year. The primary outcome occurred in 8/227 (3.5%) women receiving 4.0 mg FA and 9/204 (4.4%) women receiving 0.4 mg FA (RR 0.80; 95%CI 0.31 to 2.03). The composite outcome occurred in 43/227 (18.9%) women receiving 4.0 mg FA and 75/204 (36.8%) women receiving 0.4 mg FA (RR 0.51; 95%CI 0.40 to 0.68). FA 4.0 mg supplementation was not associated with different occurrence of CMs, compared to FA 0.4 mg supplementation. However, FA 4.0 mg supplementation was associated with lower occurrence of other adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Renata Bortolus
- Office for Research Promotion, Verona University Hospital, 37134 Verona, Italy; (R.B.); (F.F.)
| | - Francesca Filippini
- Office for Research Promotion, Verona University Hospital, 37134 Verona, Italy; (R.B.); (F.F.)
| | - Sonia Cipriani
- Department of Woman, Newborn and Child, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (S.C.); (E.S.)
| | - Daniele Trevisanuto
- Department of Woman’s and Child’s Health, University of Padua, 35128 Padova, Italy;
| | | | - Giovanni Zanconato
- Department of Surgery, Odontostomatology and Maternal and Child Health, University of Verona, 37134 Verona, Italy;
| | - Edgardo Somigliana
- Department of Woman, Newborn and Child, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (S.C.); (E.S.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Elena Cesari
- Department of Obstetrics and Gynaecology, Sant’Antonio Abate Hospital, 21013 Gallarate, Italy;
| | | | - Fabio Parazzini
- Department of Woman, Newborn and Child, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (S.C.); (E.S.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
- Correspondence:
| |
Collapse
|
10
|
Interaction between Metformin, Folate and Vitamin B 12 and the Potential Impact on Fetal Growth and Long-Term Metabolic Health in Diabetic Pregnancies. Int J Mol Sci 2021; 22:ijms22115759. [PMID: 34071182 PMCID: PMC8198407 DOI: 10.3390/ijms22115759] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022] Open
Abstract
Metformin is the first-line treatment for many people with type 2 diabetes mellitus (T2DM) and gestational diabetes mellitus (GDM) to maintain glycaemic control. Recent evidence suggests metformin can cross the placenta during pregnancy, thereby exposing the fetus to high concentrations of metformin and potentially restricting placental and fetal growth. Offspring exposed to metformin during gestation are at increased risk of being born small for gestational age (SGA) and show signs of ‘catch up’ growth and obesity during childhood which increases their risk of future cardiometabolic diseases. The mechanisms by which metformin impacts on the fetal growth and long-term health of the offspring remain to be established. Metformin is associated with maternal vitamin B12 deficiency and antifolate like activity. Vitamin B12 and folate balance is vital for one carbon metabolism, which is essential for DNA methylation and purine/pyrimidine synthesis of nucleic acids. Folate:vitamin B12 imbalance induced by metformin may lead to genomic instability and aberrant gene expression, thus promoting fetal programming. Mitochondrial aerobic respiration may also be affected, thereby inhibiting placental and fetal growth, and suppressing mammalian target of rapamycin (mTOR) activity for cellular nutrient transport. Vitamin supplementation, before or during metformin treatment in pregnancy, could be a promising strategy to improve maternal vitamin B12 and folate levels and reduce the incidence of SGA births and childhood obesity. Heterogeneous diagnostic and screening criteria for GDM and the transient nature of nutrient biomarkers have led to inconsistencies in clinical study designs to investigate the effects of metformin on folate:vitamin B12 balance and child development. As rates of diabetes in pregnancy continue to escalate, more women are likely to be prescribed metformin; thus, it is of paramount importance to improve our understanding of metformin’s transgenerational effects to develop prophylactic strategies for the prevention of adverse fetal outcomes.
Collapse
|
11
|
Bala R, Verma R, Verma P, Singh V, Yadav N, Rajender S, Agrawal NR, Singh K. Hyperhomocysteinemia and low vitamin B12 are associated with the risk of early pregnancy loss: A clinical study and meta-analyses. Nutr Res 2021; 91:57-66. [PMID: 34134041 DOI: 10.1016/j.nutres.2021.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/14/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
One-carbon metabolism is crucial for the maintenance of healthy pregnancy and alterations in this pathway have been associated with various pregnancy-related complications. Therefore, the present study was conducted to test the hypothesis that the altered folic acid, vitamin B12 and homocysteine levels are associated with the risk of early pregnancy loss (EPL). Plasma folic acid, vitamin B12 and homocysteine levels were analyzed in 83 females with EPL and 70 healthy pregnant females in their first trimester. Further, meta-analyses of folic acid, vitamin B12 and homocysteine were also performed involving various eligible studies. Results from our case-control study and meta-analysis showed that folic acid deficiency is not associated with the risk of EPL. On the other hand, low vitamin B12 and hyperhomocysteinemia were individually found to be significant risk factors for EPL in the present study (P < .01, P < .05, respectively) and meta-analysis as well (P < .001, P < .05, respectively). Vitamin B12 deficiency in combination with hyperhomocysteinemia was a more serious risk factor for EPL (Odds Ratio = 4.98, P = 0.002). Therefore, we conclude that vitamin B12 deficiency and elevated homocysteine levels are independent risk factors for EPL, and of higher risk when combined. The assessment of vitamin B12 and homocysteine levels may serve as a good screening marker for EPL risk.
Collapse
Affiliation(s)
- Renu Bala
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Rachna Verma
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Priyanka Verma
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Vertika Singh
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Namrata Yadav
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Singh Rajender
- Division of Endocrinology, Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Nisha Rani Agrawal
- Department of Obstetrics and Gynecology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Kiran Singh
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
12
|
Pu Y, Gingrich J, Veiga-Lopez A. A 3-dimensional microfluidic platform for modeling human extravillous trophoblast invasion and toxicological screening. LAB ON A CHIP 2021; 21:546-557. [PMID: 33166377 PMCID: PMC8212566 DOI: 10.1039/d0lc01013h] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Placental trophoblast cells invasion into the maternal uterus is an essential and complex event in the formation of the maternal-fetal interface. Commonly used two-dimensional (2D) cell invasion tools do not accurately represent the in vivo cell invasion microenvironment. Three-dimensional (3D) silicone polymer polydimethylsiloxane (PDMS) microfluidic platforms are an emerging technology in developing organ-on-a-chip models. Here, we present a placenta-on-a-chip platform that enables the evaluation of trophoblast invasion with intraluminal flow within an engineered PDMS 3D microfluidic chip. This platform reproduces key elements of the placental microenvironment, including endothelial and trophoblast cells, layered with an extracellular matrix, and incorporates dynamic medium flow while allowing for real-time monitoring, imaging, evaluation of trophoblast cell invasion, and heterocellular cell-to-cell interactions. Coupled with fluorescent cell tagging and flow cytometry, this platform also allows collection of the invasive cells. This will help our understanding of pathways that regulate trophoblast cell invasion and may prove important for toxicological screening of exposures that interfere with invasiveness in a complex organ such as the placenta.
Collapse
Affiliation(s)
- Yong Pu
- Department of Pathology, University of Illinois at Chicago, 909 S. Wolcott Ave, Rm 6093, Chicago, IL 60612, USA.
| | - Jeremy Gingrich
- Department of Pharmacology and Toxicology, Michigan State University, USA
| | - Almudena Veiga-Lopez
- Department of Pathology, University of Illinois at Chicago, 909 S. Wolcott Ave, Rm 6093, Chicago, IL 60612, USA.
| |
Collapse
|
13
|
Martín MJ, Azcona P, Lassalle V, Gentili C. Doxorubicin delivery by magnetic nanotheranostics enhances the cell death in chemoresistant colorectal cancer-derived cells. Eur J Pharm Sci 2020; 158:105681. [PMID: 33347979 DOI: 10.1016/j.ejps.2020.105681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/12/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is a major cause of cancer death with a high probability of treatment failure. Doxorubicin (DOXO) is an efficient antitumor drug; however, most CRC cells show resistance to its effects. Magnetic nanoparticles (MNPs) are potential cancer management tools that can serve as diagnostic agents and also can optimize and personalize treatments. This work aims to evaluate the aptitude of magnetic nanotheranostics composed of magnetite (Fe3O4) nanoparticles coated with folic acid intended to the sustained release of DOXO. The administration of DOXO by means of these MNPs resulted in the enhancement of cell death respect to the free drug administration. Chromatin compaction and cytoplasmic protrusions were observed. Mitochondrial transmembrane potential disruption and increased PARP protein cleavage confirmed apoptosis. The nanosystem was also tested as a vectoring tool by exposing it to the stimuli of a static magnetic field in vitro. CRC-related magnetic nanotechnology still remains in pre-clinical trials. In this context, this contribution expands the knowledge of the behavior of MNPs in contact with in vitro models and proposes the nanodevices studied here as potential theranostic agents for the monitoring of the progress of CRC and the evolution of its treatment.
Collapse
Affiliation(s)
- María Julia Martín
- INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, San Juan 671, 8000, Bahía Blanca, Argentina.; INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Av. Alem 1253, 8000 Bahía Blanca, Argentina
| | - Pamela Azcona
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Av. Alem 1253, 8000 Bahía Blanca, Argentina
| | - Verónica Lassalle
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Av. Alem 1253, 8000 Bahía Blanca, Argentina
| | - Claudia Gentili
- INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, San Juan 671, 8000, Bahía Blanca, Argentina..
| |
Collapse
|
14
|
Bendahan ZC, Escobar LM, Castellanos JE, González-Carrera MC. Effect of folic acid on animal models, cell cultures, and human oral clefts: a literature review. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00108-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Folate is a naturally occurring, water-soluble B vitamin. The synthetic form of this compound is folic acid (FA), the deficiency of which is linked to neural tube disorders (NTD), which can be prevented by consuming it before, or during the early months of, pregnancy. However, the effect of FA on oral cleft formation remains controversial. The aim of the present study was to review the evidence concerning the effect of FA on the formation of cleft lip and palate (CLP) in both animals and humans, as well as its impact on different cell types. A search was conducted on various databases, including MEDLINE, EMBASE, and Central, for articles published until January 2020.
Main body
Current systematic reviews indicate that FA, alone or in combination with other vitamins, prevents NTD; however, there is no consensus on whether its consumption can prevent CLP formation. Conversely, the protective effect of FA on palatal cleft (CP) induction has been inferred from animal models; additionally, in vitro studies enumerate a cell-type and dose-dependent effect of FA on cell viability, proliferation, and differentiation, hence bolstering evidence from epidemiological studies.
Conclusions
Meta-analysis, animal models, and in vitro studies demonstrated the protective effect of FA against isolated CP; however, the heterogeneity of treatment protocols, doses, and FA administration method, as well as the different cell types used in in vitro studies, does not conclusively establish whether FA prevents CLP formation.
Collapse
|
15
|
Yin X, Gao R, Geng Y, Chen X, Liu X, Mu X, Ding Y, Wang Y, He J. Autophagy regulates abnormal placentation induced by folate deficiency in mice. Mol Hum Reprod 2020; 25:305-319. [PMID: 30976800 DOI: 10.1093/molehr/gaz022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 03/18/2019] [Indexed: 12/14/2022] Open
Abstract
Folate deficiency has been linked to a wide range of pregnancy disorders. Most research about folate-deficiency has focused on the embryo itself, little attention has been paid to possible effects on the placenta. According to our results, the morphology of the placenta, endocrine function, and the expression of genes involved in placental differentiation were all abnormal in folate-deficient mice on days 10, 12, and 14 of pregnancy. Similar results were found in human placenta explants cultured in folate-deficient medium. Autophagy is an inducible catabolic process activated by external nutrients starvation. Here we explored further, whether autophagy was involved in the abnormal placentation caused by folate-deficiency. The aberrant number of autophagosomes measured by transmission electron microscopy and the deviant expression of autophagy-related markers showed a disordered autophagy in placentas under conditions of folate-deficiency in vivo and in vitro dual-fluorescence mRFP-eGFP-LC3 analysis indicated enhanced autophagy was detected in HTR8/SVneo cells incubated in folate-deficient medium. Importantly, the placentation impairment in mice and human placenta explants could be recovered by inhibiting placental autophagy using 3-MA. In addition, the apoptosis and invasive capability of HTR8/SVneo cells were obviously suppressed by folate deficiency but notably elevated by 3-MA. These data suggest that folate deficiency can impair placentation and autophagy is a key factor in this. However, the signal pathway by which folate deficiency causes aberrant autophagy needs to be explored further.
Collapse
Affiliation(s)
- Xin Yin
- Laboratory of Reproductive Biology, School of Public Health and Management and Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Yuzhong District, Chongqing, PR China
| | - Rufei Gao
- Laboratory of Reproductive Biology, School of Public Health and Management and Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Yuzhong District, Chongqing, PR China
| | - Yanqing Geng
- Laboratory of Reproductive Biology, School of Public Health and Management and Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Yuzhong District, Chongqing, PR China
| | - Xuemei Chen
- Laboratory of Reproductive Biology, School of Public Health and Management and Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Yuzhong District, Chongqing, PR China
| | - Xueqing Liu
- Laboratory of Reproductive Biology, School of Public Health and Management and Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Yuzhong District, Chongqing, PR China
| | - Xinyi Mu
- Laboratory of Reproductive Biology, School of Public Health and Management and Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Yuzhong District, Chongqing, PR China
| | - Yubin Ding
- Laboratory of Reproductive Biology, School of Public Health and Management and Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Yuzhong District, Chongqing, PR China
| | - Yingxiong Wang
- Laboratory of Reproductive Biology, School of Public Health and Management and Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Yuzhong District, Chongqing, PR China
| | - Junlin He
- Laboratory of Reproductive Biology, School of Public Health and Management and Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Yuzhong District, Chongqing, PR China
| |
Collapse
|
16
|
Miller CN, Stewart EJ, Snow SJ, Williams WC, Richards JH, Thompson LC, Schladweiler MC, Farraj AK, Kodavanti UP, Dye JA. Ozone Exposure During Implantation Increases Serum Bioactivity in HTR-8/SVneo Trophoblasts. Toxicol Sci 2020; 168:535-550. [PMID: 30649513 DOI: 10.1093/toxsci/kfz003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Implantation is a sensitive window in reproductive development during which disruptions may increase the risk of adverse pregnancy outcomes including intrauterine growth restriction. Ozone exposure during implantation in rats reduces fetal weight near the end of gestation, potentially though impaired trophoblast migration and invasion and altered implantation. The current study characterized changes in ventilation, pulmonary injury, and circulating factors including hormonal, inflammatory, and metabolic markers related to exposure to ozone (0.4-1.2 ppm) for 4-h on gestation days 5 and 6 (window of implantation) in Long-Evans dams. To determine the effects of this exposure on trophoblast function, placental-derived, first trimester, HTR-8/SVneo cells were exposed to serum from air- or ozone (0.8 ppm×4 h)-exposed dams and examined for impacts on metabolic capacity, wound-closure, and invasion. Peri-implantation exposure to ozone induced ventilatory dysfunction and lung vascular leakage in pregnant rats, with little effect on most of the circulating markers measured. However, ozone inhalation induced a significant reduction in several serum cytokines (interferon-γ, interleukin-6, and interleukin-13). Treatment of HTR-8/SVneo trophoblasts with serum from ozone-exposed dams for 16-h downregulated metabolic capacity, wound-closure, and invasion through a Matrigel membrane compared with both air-serum and fetal bovine serum-treated cells. Ozone-serum treated cells increased the release of a critical inhibitor of invasion and angiogenesis (soluble fms-like receptor 1; sFlt1) compared with air-serum treatment. Together, our data suggest that circulating factors in the serum of pregnant rats exposed to ozone during implantation receptivity can hinder critical processes of implantation (eg, invasion and migration) and impair trophoblast metabolic capacity.
Collapse
Affiliation(s)
- Colette N Miller
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Erica J Stewart
- Oak Ridge Institute for Science and Education, Research Triangle Park, North Carolina 27711
| | - Samantha J Snow
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Wanda C Williams
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Judy H Richards
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Leslie C Thompson
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Mette C Schladweiler
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Aimen K Farraj
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Urmila P Kodavanti
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Janice A Dye
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| |
Collapse
|
17
|
Li Z, Wang H, Yin H, Bennett C, Zhang HG, Guo P. Arrowtail RNA for Ligand Display on Ginger Exosome-like Nanovesicles to Systemic Deliver siRNA for Cancer Suppression. Sci Rep 2018; 8:14644. [PMID: 30279553 PMCID: PMC6168523 DOI: 10.1038/s41598-018-32953-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/06/2018] [Indexed: 12/19/2022] Open
Abstract
Exosomes have shown increasing potential as delivery vesicles for therapy, but challenges like cost/yield, drug payload, and targeting specificity still exist. Plant derived exosome-like nanoparticles have been reported as a promising substitution and exhibit biocompatibility through oral, intranasal administration; however, systemic delivery of siRNA by exosome-like nanoparticles directly isolated from plants has not been reported. Recently, we reported the control of RNA orientation to decorate human derived exosome with cell targeting ligands for specific delivery of siRNA to tumors. Here, we expand to the application of arrowtail RNA nanoparticles for displaying ligands on ginger derived exosome-like nanovesicles (GDENs) for siRNA delivery and tumor inhibition through IV administration. Cushion ultracentrifugation coupled with equilibrium density gradient ultracentrifugation were used for purifying GDENs that displayed size, density, and morphology similar to human derived exosomes. Folic acid (FA), as a ligand, was displayed on the surface of GDENs for targeted delivery of survivin siRNA to KB cancer models. In vitro gene knockdown efficacy by FA-3WJ/GDENs/siRNA complex was comparable to transfection. We observed inhibition of tumor growth on a xenograft model by intravenous administration, which reveals the potential of GDENs as an economic delivery system for siRNA.
Collapse
Affiliation(s)
- Zhefeng Li
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute, NCI Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Hongzhi Wang
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute, NCI Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Hongran Yin
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute, NCI Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Chad Bennett
- Medicinal Chemistry Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Huang-Ge Zhang
- James Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute, NCI Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
18
|
Baker BC, Hayes DJ, Jones RL. Effects of micronutrients on placental function: evidence from clinical studies to animal models. Reproduction 2018; 156:R69-R82. [PMID: 29844225 DOI: 10.1530/rep-18-0130] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/29/2018] [Indexed: 12/23/2022]
Abstract
Micronutrient deficiencies are common in pregnant women due to low dietary intake and increased requirements for fetal development. Low maternal micronutrient status is associated with a range of pregnancy pathologies involving placental dysfunction, including fetal growth restriction (FGR), small-for-gestational age (SGA), pre-eclampsia and preterm birth. However, clinical trials commonly fail to convincingly demonstrate beneficial effects of supplementation of individual micronutrients, attributed to heterogeneity and insufficient power, potential interactions and lack of mechanistic knowledge of effects on the placenta. We aimed to provide current evidence of relationships between selected micronutrients (vitamin D, vitamin A, iron, folate, vitamin B12) and adverse pregnancy outcomes, combined with understanding of actions on the placenta. Following a systematic literature search, we reviewed data from clinical, in vitro and in vivo studies of micronutrient deficiency and supplementation. Key findings are potential effects of micronutrient deficiencies on placental development and function, leading to impaired fetal growth. Studies in human trophoblast cells and rodent models provide insights into underpinning mechanisms. Interestingly, there is emerging evidence that deficiencies in all micronutrients examined induce a pro-inflammatory state in the placenta, drawing parallels with the inflammation detected in FGR, pre-eclampsia, stillbirth and preterm birth. Beneficial effects of supplementation are apparent in vitro and in animal models and for combined micronutrients in clinical studies. However, greater understanding of the roles of these micronutrients, and insight into their involvement in placental dysfunction, combined with more robust clinical studies, is needed to fully ascertain the potential benefits of supplementation in pregnancy.
Collapse
Affiliation(s)
- Bernadette C Baker
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Dexter Jl Hayes
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Rebecca L Jones
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
19
|
The effect of oxidative stress induced by tert-butylhydroperoxide under distinct folic acid conditions: An in vitro study using cultured human trophoblast-derived cells. Reprod Toxicol 2018; 77:33-42. [PMID: 29425713 DOI: 10.1016/j.reprotox.2018.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 12/14/2022]
Abstract
Preeclampsia is a pregnancy disorder characterized by high maternal blood pressure, fetal growth restriction and intrauterine hypoxia. Folic acid is a vitamin required during pregnancy. In this work, we investigated the relationship between preeclampsia and the intake of distinct doses of folic acid during pregnancy. Considering that preeclampsia is associated with increased placental oxidative stress levels, we investigated the effect of oxidative stress induced by tert-butylhydroperoxide (TBH) in human trophoblast-derived cells cultured upon deficient/low, physiological and supra-physiological folic acid levels. The negative effect of TBH upon thiobarbituric acid reactive substances (TBARS), total, reduced and oxidized glutathione, cell viability, cell proliferation, culture growth and cell migration was more marked under folic acid excess. This study suggests more attention on the dose administered, and ultimately, on the overall folic acid levels during pregnancy, in the context of preeclampsia risk.
Collapse
|
20
|
Solé-Navais P, Salat-Batlle J, Cavallé-Busquets P, Fernandez-Ballart J, Ueland PM, Ballesteros M, Ornosa-Martín G, Inglès-Puig M, Colomina JM, Murphy MM. Early pregnancy folate-cobalamin interactions and their effects on cobalamin status and hematologic variables throughout pregnancy. Am J Clin Nutr 2018; 107:173-182. [PMID: 29529156 DOI: 10.1093/ajcn/nqx041] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 11/20/2017] [Indexed: 12/21/2022] Open
Abstract
Background Periconception folic acid supplementation is widespread, but how it interacts with cobalamin status is rarely considered. Objective The aim of this study was to investigate whether first-trimester folate-cobalamin interactions affect pregnancy cobalamin status, hematologic variables, and pregnancy outcomes. Design In the longitudinal Reus-Tarragona Birth Cohort study from <12 gestational weeks throughout pregnancy, fasting plasma and red blood cell (RBC) folate, plasma cobalamin, holotranscobalamin (holoTC), methylmalonic acid (MMA), total homocysteine (tHcy), hemoglobin, mean cell volume (MCV), postglucose-load serum glucose, gestational hypertension, gestational age at birth, and birth weight were recorded in 563 participants. Results The highest plasma folate concentrations occurred in the first trimester when folic acid supplement use was extensive. Supplementation beyond the first trimester interacted with time of pregnancy on plasma folate, RBC folate, and tHcy throughout pregnancy (P-interaction <0.001). Plasma folate and RBC folate were higher and tHcy was lower in continued supplement users than in nonusers. Elevated plasma folate (≥30 nmol/L) occurred in 78.9% of women who exceeded the recommended 400 µg folic acid/d. First-trimester folate-cobalamin status interactions were associated with MMA (P-interaction <0.001) throughout pregnancy. When plasma cobalamin was suboptimal (≤221 pmol/L; n = 36), participants with elevated plasma folate (n = 11) had higher MMA concentrations than did those with nonelevated plasma folate (n = 23). First-trimester folate-MMA status interactions were associated with MCV throughout pregnancy (P-interaction <0.01) and with cord plasma holoTC (P-interaction <0.05). The mean difference (95% CI) in MCV (fL) between women with elevated and nonelevated plasma folate status was -2.12 (-3.71, -0.52) for top-quartile plasma MMA (≥0.139 µmol/L) and 0.60 (-0.39, 1.60) for plasma MMA <0.139 µmol/L. Cord plasma holoTC was higher in women with elevated compared with nonelevated plasma folate status only for MMA <0.139 µmol/L. Folate-cobalamin interactions were not associated with the other investigated outcomes. Conclusion First-trimester folate-cobalamin status interactions were associated with plasma MMA and MCV throughout pregnancy. This trial was registered at www.clinicaltrials.gov as NCT01778205.
Collapse
Affiliation(s)
- Pol Solé-Navais
- Units of Preventive Medicine and Public Health, Department of Basic Medical Sciences and Obstetrics and Gynecology, Department of Medicine and Surgery, Faculty of Medicine and Health Sciences, Pere Virgili Institute of Health Research, Rovira i Virgili University, Reus, Spain
| | - Judith Salat-Batlle
- Units of Preventive Medicine and Public Health, Department of Basic Medical Sciences and Obstetrics and Gynecology, Department of Medicine and Surgery, Faculty of Medicine and Health Sciences, Pere Virgili Institute of Health Research, Rovira i Virgili University, Reus, Spain
| | - Pere Cavallé-Busquets
- Units of Obstetrics and Gynecology, Department of Medicine and Surgery, Faculty of Medicine and Health Sciences, Pere Virgili Institute of Health Research, Rovira i Virgili University, Reus, Spain.,Units of Obstetrics and Gynecology, University Hospitals Sant Joan, Reus and Joan XXIII, Tarragona, Spain.,Biomedical Research Networking Center for the Pathophysiology of Obesity, Carlos III Institute of Health, Madrid, Spain
| | - Joan Fernandez-Ballart
- Units of Preventive Medicine and Public Health, Department of Basic Medical Sciences and Obstetrics and Gynecology, Department of Medicine and Surgery, Faculty of Medicine and Health Sciences, Pere Virgili Institute of Health Research, Rovira i Virgili University, Reus, Spain.,Biomedical Research Networking Center for the Pathophysiology of Obesity, Carlos III Institute of Health, Madrid, Spain
| | - Per M Ueland
- Section of Pharmacology, Department of Internal Medicine, University of Bergen, Bergen, Norway
| | - Mónica Ballesteros
- Units of Obstetrics and Gynecology, Department of Medicine and Surgery, Faculty of Medicine and Health Sciences, Pere Virgili Institute of Health Research, Rovira i Virgili University, Reus, Spain.,Units of Joan XXIII, Tarragona, Spain
| | - Gemma Ornosa-Martín
- Units of Preventive Medicine and Public Health, Department of Basic Medical Sciences and Obstetrics and Gynecology, Department of Medicine and Surgery, Faculty of Medicine and Health Sciences, Pere Virgili Institute of Health Research, Rovira i Virgili University, Reus, Spain
| | - Montserrat Inglès-Puig
- Units of Obstetrics and Gynecology, Department of Medicine and Surgery, Faculty of Medicine and Health Sciences, Pere Virgili Institute of Health Research, Rovira i Virgili University, Reus, Spain.,Units of Obstetrics and Gynecology, University Hospitals Sant Joan, Reus and Joan XXIII, Tarragona, Spain
| | - Jose M Colomina
- Units of Preventive Medicine and Public Health, Department of Basic Medical Sciences and Obstetrics and Gynecology, Department of Medicine and Surgery, Faculty of Medicine and Health Sciences, Pere Virgili Institute of Health Research, Rovira i Virgili University, Reus, Spain
| | - Michelle M Murphy
- Units of Preventive Medicine and Public Health, Department of Basic Medical Sciences and Obstetrics and Gynecology, Department of Medicine and Surgery, Faculty of Medicine and Health Sciences, Pere Virgili Institute of Health Research, Rovira i Virgili University, Reus, Spain.,Biomedical Research Networking Center for the Pathophysiology of Obesity, Carlos III Institute of Health, Madrid, Spain
| |
Collapse
|
21
|
Taniguchi K, Kawai T, Hata K. Placental Development and Nutritional Environment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1012:63-73. [PMID: 29956195 DOI: 10.1007/978-981-10-5526-3_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The placenta is considered to have developed recently in mammalian evolution. While the fundamental function of the placenta, i.e., providing nutrients and oxygen to the fetus and receiving waste products, is the same in all mammals, the morphology of the placenta varies substantially in a species-dependent manner. Therefore, considerable interest exists in understanding placental development and function in mammals from a molecular biological viewpoint. Numerous recent studies have shown that various environmental factors before and during pregnancy, including nutrition, affect placental formation and function and that alterations in placental formation and function can influence the developing fetus and the offspring after birth. To date, the relationship between nutrition and the placenta has been investigated in several species, various model organisms, and humans. In this chapter, we discuss the current knowledge of the placenta and the epigenome and then highlight the effects of nutrition during pregnancy on the placenta and the fetus and on the offspring after birth.
Collapse
Affiliation(s)
- Kosuke Taniguchi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan.
| | - Tomoko Kawai
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
22
|
Folate deprivation induces cell cycle arrest at G0/G1 phase and apoptosis in hippocampal neuron cells through down-regulation of IGF-1 signaling pathway. Int J Biochem Cell Biol 2016; 79:222-230. [DOI: 10.1016/j.biocel.2016.08.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/26/2016] [Accepted: 08/29/2016] [Indexed: 02/06/2023]
|
23
|
Shah T, Joshi K, Mishra S, Otiv S, Kumbar V. Molecular and cellular effects of vitamin B12 forms on human trophoblast cells in presence of excessive folate. Biomed Pharmacother 2016; 84:526-534. [PMID: 27693961 DOI: 10.1016/j.biopha.2016.09.071] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 09/19/2016] [Accepted: 09/19/2016] [Indexed: 11/19/2022] Open
Abstract
Folic acid (FA) and iron are essential supplements during pregnancy. Similarly effects of vitamin B12 (B12) inadequacy and high folate and low B12 status, on pregnancy outcome are available. However there are no mandatory recommendations for B12. There are many forms of B12 viz. Cyanocobalamin (Cbl), Methylcobalamin (MeCbl), Adenosylcobalamin (AdCbl), and Hydroxycobalamin (HCbl) though there is limited consensus on which form has better efficacy. In the present study we have determined effect of various forms of B12 in the presence of two FA concentrations namely normal physiological (20ng/mL; NPFA) and supra-physiological (2000ng/mL; SPFA) concentration to mimic real time situation where FA is in excess due to supplementation. We assessed trophoblastic proliferation, viability, TNFα and EGFr mRNA expression, homocysteine, β-hCG and MDA levels. Trophoblastic viability was significantly suppressed at SPFA concentration and was restored by B12 treatment with Cbl, AdCbl and combination of MeCbl+AdCbl. The mRNA expressions of TNFα were up-regulated, while EGFr were down-regulated at SPFA concentrations, as validated by RT-PCR. Treatment with MeCbl+AdCbl significantly decreased homocysteine and MDA levels at SPFA concentrations. High levels of FA alone had a detrimental effect on placental health and functions as reflected by decreased viability, EGFr expression and increased TNFα expression, homocysteine and MDA levels. Combination of B12 active forms i.e. MeCbl+AdCbl was found to be most effective in neutralising excess folate effect in-vitro.
Collapse
Affiliation(s)
- Tejas Shah
- Dr. Prabhakar Kore Basic Science Research Centre, KLE University, Nehru Nagar, Belagavi 590010, Karnataka, India
| | - Kalpana Joshi
- Department of Biotechnology, Sinhgad College of Engineering, Vadgaon Budruk, Pune 411041, Maharashtra, India.
| | - Sanjay Mishra
- Dr. Prabhakar Kore Basic Science Research Centre, KLE University, Nehru Nagar, Belagavi 590010, Karnataka, India
| | - Suhas Otiv
- Department of Gynaecology, KEM Hospital, Rasta Peth, Pune 411041, Maharashtra, India
| | - Vijay Kumbar
- Dr. Prabhakar Kore Basic Science Research Centre, KLE University, Nehru Nagar, Belagavi 590010, Karnataka, India
| |
Collapse
|
24
|
Silva C, Nunes C, Correia-Branco A, Araújo JR, Martel F. Insulin Exhibits an Antiproliferative and Hypertrophic Effect in First Trimester Human Extravillous Trophoblasts. Reprod Sci 2016; 24:582-594. [PMID: 27662903 DOI: 10.1177/1933719116667220] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Our aim was to investigate the effect of high levels of glucose, insulin, leptin, and tumor necrosis factor alpha, biomarkers of diabetes in pregnancy, in the process of placentation, using as a cell model a first trimester extravillous human trophoblast cell line (HTR8/SVneo cells). Exposure of HTR8/SVneo cells for 24 hours to either glucose (20 mmol/L) or leptin (25-100 ng/mL) did not cause significant changes in cell proliferation and viability. Tumor necrosis factor alpha (24 hours; 10-100 ng/L) caused a small decrease (10%) in cell proliferation and an increase (9%) in cell viability; however, both effects disappeared when exposure time was increased. Insulin (24 hours; 1-10 nmol/L) caused a concentration- and time-dependent decrease (10%-20%) in cell proliferation; the effect of insulin (10 nmol/L) was more pronounced after a 48 hours exposure (35%). In contrast, exposure to insulin (10 nmol/L; 48 hours) showed no significant effect on cell viability, apoptosis, and migration capacity. Insulin appears to cause hypertrophy of HTR8/SVneo cells as it reduces the cell mitotic index while increasing the culture protein content. The antiproliferative effect of insulin seems to involve activation of mammalian target of rapamycin, phosphoinositide 3-kinase, and p38 mitogen-activated protein kinase. Finally, simvastatin and the polyphenol quercetin potentiated the antiproliferative effect of insulin; on the contrary, the polyphenol resveratrol, the polyunsaturated fatty acids eicosapentaenoic and docosahexaenoic acids, and folic acid were not able to change it. In conclusion, we show that insulin has an antiproliferative and hypertrophic effect on a first trimester extravillous human trophoblast cell line. So insulin might affect the process of placentation.
Collapse
Affiliation(s)
- Cláudia Silva
- 1 Department of Biochemistry, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, Porto, Portugal.,2 Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Catarina Nunes
- 1 Department of Biochemistry, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, Porto, Portugal.,2 Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Ana Correia-Branco
- 1 Department of Biochemistry, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, Porto, Portugal.,2 Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - João R Araújo
- 3 Unité de Pathogénie Microbienne Moléculaire, INSERM U1202, Institut Pasteur, Paris, France
| | - Fátima Martel
- 1 Department of Biochemistry, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, Porto, Portugal.,2 Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| |
Collapse
|