1
|
Ge Z, Qiu C, Zhou J, Yang Z, Jiang T, Yuan W, Yu L, Li J. Proteomic analysis of human Wharton's jelly mesenchymal stem/stromal cells and human amniotic epithelial stem cells: a comparison of therapeutic potential. Sci Rep 2024; 14:28061. [PMID: 39543366 PMCID: PMC11564572 DOI: 10.1038/s41598-024-79063-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Perinatal stem cells have prominent applications in cell therapy and regenerative medicine. Among them, human Wharton's jelly mesenchymal stem/stromal cells (hWJMSCs) and human amniotic epithelial stem cells (hAESCs) have been widely used. However, the distinction in the therapeutic potential of hWJMSCs and hAESCs is poorly understood. In this study, we reported the phenotypic differences between these two distinct cell types and provided the first systematic comparison of their therapeutic potential in terms of immunomodulation, extracellular matrix (ECM) remodelling, angiogenesis and antioxidative stress using proteomics. The results revealed that the two cell types presented different protein expression profiles and were both promising candidates for cell therapy. Both types of cells demonstrated angiogenic and antifibrotic potential, whereas hAESCs presented superior immunological tolerance and antioxidant properties, which were supported by a series of relevant in vitro assays. Our study provides clues for the selection of appropriate cell types for diverse indications in cell therapy, which contributes to the advancement of their clinical translation and application.
Collapse
Affiliation(s)
- Zhen Ge
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310013, Zhejiang, China
| | - Chen Qiu
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, 314400, China
| | - Jiayi Zhou
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, 314400, China
| | - Zhuoheng Yang
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, 314400, China
| | - Tuoying Jiang
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, 314400, China
| | - Weixin Yuan
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, 314400, China
| | - Luyang Yu
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China.
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, 314400, China.
| | - Jinying Li
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China.
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, 314400, China.
| |
Collapse
|
2
|
Eivazi Zadeh Z, Nour S, Kianersi S, Jonidi Shariatzadeh F, Williams RJ, Nisbet DR, Bruggeman KF. Mining human clinical waste as a rich source of stem cells for neural regeneration. iScience 2024; 27:110307. [PMID: 39156636 PMCID: PMC11326931 DOI: 10.1016/j.isci.2024.110307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
Neural diseases are challenging to treat and are regarded as one of the major causes of disability and morbidity in the world. Stem cells can provide a solution, by offering a mechanism to replace damaged circuitry. However, obtaining sufficient cell sources for neural regeneration remains a significant challenge. In recent years, waste-derived stem(-like) cells (WDS-lCs) extracted from both prenatal and adult clinical waste tissues/products, have gained increasing attention for application in neural tissue repair and remodeling. This often-overlooked pool of cells possesses favorable characteristics; including self-renewal, neural differentiation, secretion of neurogenic factors, cost-effectiveness, and low ethical concerns. Here, we offer a perspective regarding the biological properties, extraction protocols, and preclinical and clinical treatments where prenatal and adult WDS-lCs have been utilized for cell replacement therapy in neural applications, and the challenges involved in optimizing these approaches toward patient led therapies.
Collapse
Affiliation(s)
- Zahra Eivazi Zadeh
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Shirin Nour
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
- Polymer Science Group, Department of Chemical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
| | - Sogol Kianersi
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences, University of Galway, Galway, Ireland
| | | | - Richard J. Williams
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
- iMPACT, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - David R. Nisbet
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, ANU College of Health & Medicine, Canberra, ACT, Australia
- Research School of Chemistry, ANU College of Science, Canberra, ACT, Australia
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, VIC, Australia
- Founder and Scientific Advisory of Nano Status, Building 137, Sullivans Creek Rd, ANU, Acton, Canberra, ACT, Australia
| | - Kiara F. Bruggeman
- Laboratory of Advanced Biomaterials Research, School of Engineering, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
3
|
Stokes SC, Kabagambe SK, Lee CJ, Wang A, Farmer DL, Kumar P. Impact of Gestational Age on Neuroprotective Function of Placenta-Derived Mesenchymal Stromal Cells. J Surg Res 2022; 273:201-210. [PMID: 35093836 PMCID: PMC9396930 DOI: 10.1016/j.jss.2021.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/29/2021] [Accepted: 12/15/2021] [Indexed: 11/26/2022]
Abstract
INTRODUCTION The Management of Myelomeningocele Study demonstrated that in utero repair of myelomeningocele improved motor outcomes compared with postnatal repair. However, even after in utero repair, many children were still unable to walk. We have previously demonstrated that augmentation of in utero repair with early-gestation placental mesenchymal stromal cells (PMSCs) improves motor outcomes in lambs compared with standard in utero repair. The neuroprotective potential of PMSCs of all gestational ages has not been evaluated previously. METHODS PMSCs were isolated from discarded first trimester (n = 3), second trimester (n = 3), and term (n = 3) placentas by explant culture. Cytokine array analysis was performed. Secretion of two neurotrophic factors, brain-derived neurotrophic factor and hepatocyte growth factor, was evaluated by enzyme-linked immunosorbent assay. An in vitro neuroprotective assay demonstrated to be associated with in vivo function was performed. RESULTS All cell lines secreted immunomodulatory and neuroprotective cytokines and secreted the neurotrophic factors evaluated. Increased neuroprotective capabilities relative to no PMSCs were demonstrated in two of the three first trimester cell lines (5.61, 4.96-6.85, P < 0.0001 and 2.67, 1.67-4.12, P = 0.0046), two of the three second trimester cell lines (2.82, 2.45-3.43, P = 0.0004 and 3.25, 2.62-3.93, P < 0.0001), and two of the three term cell lines (2.72, 2.32-2.92, P = 0.0033 and 2.57, 1.41-4.42, P = 0.0055). CONCLUSIONS We demonstrated variation in neuroprotective function between cell lines and found that some cell lines from each trimester had neuroprotective properties. This potentially expands the donor pool of PMSCs for clinical use. Further in-depth studies are needed to understand potential subtle differences in cell function at different gestational ages.
Collapse
|
4
|
Ma H, Jiang S, Du L, Liu J, Xu X, Lu X, Ma L, Zhu H, Wei J, Yu Y. Conditioned medium from primary cytotrophoblasts, primary placenta-derived mesenchymal stem cells, or sub-cultured placental tissue promoted HUVEC angiogenesis in vitro. Stem Cell Res Ther 2021; 12:141. [PMID: 33596987 PMCID: PMC7890636 DOI: 10.1186/s13287-021-02192-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/26/2021] [Indexed: 12/21/2022] Open
Abstract
Background As a large capillary network, the human placenta plays an important role throughout pregnancy. Placental vascular development is complex and delicate and involves many types of placental cells, such as trophoblasts, and mesenchymal stem cells. There has been no systematic, comparative study on the roles of these two groups of placental cells and the whole placental tissue in the placental angiogenesis. In this study, primary cytotrophoblasts (CTBs) from early pregnancy and primary human placenta-derived mesenchymal stem cells (hPDMSCs) from different stages of pregnancy were selected as the cell research objects, and full-term placental tissue was selected as the tissue research object to detect the effects of their conditioned medium (CM) on human umbilical vein endothelial cell (HUVEC) angiogenesis. Methods We successfully isolated primary hPDMSCs and CTBs, collected CM from these placental cells and sub-cultured placental tissue, and then evaluated the effects of the CM on a series of angiogenic processes in HUVECs in vitro. Furthermore, we measured the levels of angiogenic factors in the CM of placental cells or tissue by an angiogenesis antibody array. Results The results showed that not only placental cells but also sub-cultured placental tissue, to some extent, promoted HUVEC angiogenesis in vitro by promoting proliferation, adhesion, migration, invasion, and tube formation. We also found that primary placental cells in early pregnancy, whether CTBs or hPDMSCs, played more significant roles than those in full-term pregnancy. Placental cell-derived CM collected at 24 h or 48 h had the best effect, and sub-cultured placental tissue-derived CM collected at 7 days had the best effect among all the different time points. The semiquantitative angiogenesis antibody array showed that 18 of the 43 angiogenic factors had obvious spots in placental cell-derived CM or sub-cultured placental tissue-derived CM, and the levels of 5 factors (including CXCL-5, GRO, IL-6, IL-8, and MCP-1) were the highest in sub-cultured placental tissue-derived CM. Conclusions CM obtained from placental cells (primary CTBs or hPDMSCs) or sub-cultured placental tissue contained proangiogenic factors and promoted HUVEC angiogenesis in vitro. Therefore, our research is helpful to better understand placental angiogenesis regulation and provides theoretical support for the clinical application of placental components, especially sub-cultured placental tissue-derived CM, in vascular tissue engineering and clinical treatments.
Collapse
Affiliation(s)
- Haiying Ma
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, China
| | - Shenglu Jiang
- Department of Pathophysiology, Zhangjiakou University, No.P19, Pingmen Street, Qiaoxi District, Zhangjiakou, 075000, Hebei Province, China
| | - Lili Du
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, China
| | - Jinfang Liu
- Department of Basic Medical Sciences, Basic Medical College, Shan Xi University of Traditional Chinese Medicine, No. 89, Section 1, Jinci Road, Taiyuan, 030024, Shanxi Province, China
| | - Xiaoyan Xu
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, China
| | - Xiaomei Lu
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, China
| | - Ling Ma
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, China
| | - Hua Zhu
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, China
| | - Jun Wei
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China.
| | - Yanqiu Yu
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, China. .,Shenyang Engineering Technology R&D Center of Cell Therapy CO.LTD, No. 400-8, Zhihui 2nd Street, Hunnan District, Shenyang, 110169, Liaoning Province, China.
| |
Collapse
|
5
|
Peng SY, Wu TH, Lin TY, Hii LY, Chan KS, Fu TY, Chang SC, Shen PC, Liu KY, Shaw SW. Application of cattle placental stem cells for treating ovarian follicular cyst. World J Stem Cells 2020; 12:1366-1376. [PMID: 33312404 PMCID: PMC7705470 DOI: 10.4252/wjsc.v12.i11.1366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/02/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND High humidity and temperature in Taiwan have significant effects on the reproductivity of Holstein cattle, resulting in the occurrence of bovine ovarian follicular cyst (OFC). Because of economic loss from OFC, manual rupture and hormone injection have been advocated for the management of OFC. However, these incomplete treatments increase hormone resistance in cattle. Mesenchymal stem cells (MSCs) derived from placental stem cells (PSCs) demonstrate potential properties for the treatment of several diseases via promoting angiogenesis and immune modulation.
AIM To establish the possibility of cattle placental stem cells (CPSCs) as a treatment modality for OFC of cows in Taiwan.
METHODS The cows with OFC were divided into three groups: control (BC1 and BC2), hormone (H1 and H2), and CPSC (PS1 and PS2) treatment groups. In the hormone treatment group, the cows were given gonadotrophin-releasing hormone (GnRH)-prostaglandin-GnRH intramuscular injection with or without drainage of follicular fluid. In the CPSC treatment group, CPSCs were isolated from the placenta after labor. With the identification of surface antigen on stem cells, the cows were administered ovarian injection of 1 × 106 or 6 × 106 CPSCs with drainage. In all groups, OFC was scanned by ultrasound once a week for a total of seven times. The concentrations of estradiol and progesterone in serum were tested in the same period. The estrus cycle was analyzed by food intake and activity. If estrus was detected, artificial insemination was conducted. Then the cow was monitored by ultrasound for confirmation of pregnancy.
RESULTS After 7 d of culture, CPSCs were successfully isolated from placental pieces. CPSCs significantly proliferated every 24 h and had high expression of MSC markers such as cluster of differentiation 44, as determined by flow cytometry. Ultrasound showed lower numbers of OFCs with drainage of follicular fluid. We achieved recovery rates of 0%, 50%, 50%, 75%, 75% and 75% in BC1, BC2, H1, H2, PS1, and PS2, respectively. Higher concentrations of progesterone were detected in the CPSC treatment groups. However, both hormone and CPSC treatment groups had no significant difference in the concentration of estradiol. The estrus rate was 0%, 100%, 25%, 75%, 75% and 75% in BC1, BC2, H1, H2, PS1, and PS2, respectively. The two fetuses were born in H2 and PS1. In brief, cows with CPSC injection achieved higher recovery, estrus, and inseminated conception rates.
CONCLUSION CPSCs have efficacy in treating cows with OFC, and thus, may serve as an alternative treatment for reproductive disorders.
Collapse
Affiliation(s)
- Shao-Yu Peng
- Department of Animal Science, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Tsung-Hsin Wu
- Department of Animal Science, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Tzu-Yi Lin
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Ling-Yien Hii
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 105, Taiwan
| | - Kok-Seong Chan
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 105, Taiwan
| | - Tzu-Yen Fu
- Department of Animal Science, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Shen-Chang Chang
- Kaohsiung Animal Propagation Station, Livestock Research Institute, Council of Agriculture, Executive Yuan, Pingtung 912, Taiwan
| | - Perng-Chih Shen
- Department of Animal Science, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Kang-You Liu
- Department of Animal Science, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Steven W. Shaw
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 105, Taiwan
- Prenatal Cell and Gene Therapy Group, Institute for Women's Health, University College London, London WC1E 6HU, United Kingdom
| |
Collapse
|
6
|
Therapeutic Potential of “Exosomes Derived Multiple Allogeneic Proteins Paracrine Signaling: Exosomes d-MAPPS” is Based on the Effects of Exosomes, Immunosuppressive and Trophic Factors. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2019. [DOI: 10.2478/sjecr-2018-0032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
Due to their differentiation capacity and potent immunosuppressive and pro-angiogenic properties, mesenchymal stem cells (MSCs) have been considered as new therapeutic agents in regenerative medicine. Since most of MSC-mediated beneficent effects are a consequence of their paracrine action, we designed MSC-based product “Exosomes Derived Multiple Allogeneic Proteins Paracrine Signaling (Exosomes d-MAPPS), which activity is based on MSCs-derived growth factors and immunomodulatory cytokines capable to attenuate inflammation and to promote regeneration of injured tissues. Interleukin 1 receptor antagonist (IL-1Ra) and IL-27 were found in high concentrations in Exosomes d-MAPPS samples indicating strong anti-inflammatory and immunosuppressive potential of Exosomes d-MAPPS. Additionally, high concentrations of vascular endothelial growth factor receptor (VEGFR1) and chemokines (CXCL16, CCL21, CXCL14) were noticed at Exosomes d-MAPPS samples suggesting their potential to promote generation of new blood vessels and migration of CXCR6, CCR7 and CXCR4 expressing cells. Since all proteins which were found in high concentration in Exosomes d-MAPPS samples (IL-1Ra, CXCL16, CXCL14, CCL21, IL-27 and VEGFR1) are involved in modulation of lung, eye, and synovial inflammation, Exosomes d-MAPPS samples were prepared as inhalation and ophthalmic solutions in addition to injection formulations; their application in several patients suffering from chronic obstructive pulmonary disease, osteoarthritis, and dry eye syndrome resulted with significant improvement of biochemical and functional parameters. In conclusion, Exosomes d-MAPPS, due to the presence of important anti-inflammatory, immunomodulatory, and pro-angiogenic factors, represents potentially new therapeutic agent in regenerative medicine that should be further tested in large clinical studies.
Collapse
|
7
|
Korzeniewski SJ, Allred EN, Joseph RM, Heeren T, Kuban KC, O’Shea TM, Leviton A. Neurodevelopment at Age 10 Years of Children Born <28 Weeks With Fetal Growth Restriction. Pediatrics 2017; 140:peds.2017-0697. [PMID: 29030525 PMCID: PMC5654396 DOI: 10.1542/peds.2017-0697] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/21/2017] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES We sought to evaluate the relationships between fetal growth restriction (FGR) (both severe and less severe) and assessments of cognitive, academic, and adaptive behavior brain function at age 10 years. METHODS At age 10 years, the Extremely Low Gestational Age Newborns Cohort Study assessed the cognitive function, academic achievement, social-communicative function, psychiatric symptoms, and overall quality of life of 889 children born before 28 weeks' gestation. A pediatric epileptologist also interviewed parents as part of a seizure evaluation. The 52 children whose birth weight z scores were <-2 were classified as having severe FGR, and the 113 whose birth weight z scores were between -2 and -1 were considered to have less severe FGR. RESULTS The more severe the growth restriction in utero, the lower the level of function on multiple cognitive and academic achievement assessments performed at age 10 years. Growth-restricted children were also more likely than their extremely preterm peers to have social awareness impairments, autistic mannerisms, autism spectrum diagnoses, difficulty with semantics and speech coherence, and diminished social and psychosocial functioning. They also more frequently had phobias, obsessions, and compulsions (according to teacher, but not parent, report). CONCLUSIONS Among children born extremely preterm, those with severe FGR appear to be at increased risk of multiple cognitive and behavioral dysfunctions at age 10 years, raising the possibility that whatever adversely affected their intrauterine growth also adversely affected multiple domains of cognitive and neurobehavioral development.
Collapse
Affiliation(s)
- Steven J. Korzeniewski
- Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, Michigan;,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan
| | - Elizabeth N. Allred
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts;,Department of Neurology, Harvard Medical School, Harvard University, Boston, Massachusetts
| | | | - Tim Heeren
- Department of Biostatistics, School of Public Health
| | - Karl C.K. Kuban
- Boston University, Boston, Massachusetts;,Departments of Pediatrics, Boston Medical Center, Boston, Massachusetts; and
| | - T. Michael O’Shea
- Department of Pediatrics, Wake Forest University, Winston-Salem, North Carolina
| | - Alan Leviton
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts;,Department of Neurology, Harvard Medical School, Harvard University, Boston, Massachusetts
| | | |
Collapse
|
8
|
Mathew SA, Bhonde R. Mesenchymal stromal cells isolated from gestationally diabetic human placenta exhibit insulin resistance, decreased clonogenicity and angiogenesis. Placenta 2017; 59:1-8. [PMID: 29108631 DOI: 10.1016/j.placenta.2017.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 09/02/2017] [Accepted: 09/04/2017] [Indexed: 12/16/2022]
Abstract
Pregnancy is known to be a diabetogenic state. With sedentary lifestyle and wrong dietary choices, gestational diabetes mellitus is on the rise. This raises a concern as placenta is becoming an acceptable choice, as a source of Mesenchymal Stromal Cells (MSCs). In our current study we questioned whether there exists a difference between MSCs isolated from normal and diabetic (Gd-P-MSCs) placenta, as the health of the cells used in therapy is of prime importance. We isolated and verified the Gd-P-MSCs based on their surface markers and differentiation potential. We looked at viability and proliferation and did not see a difference between the two. We analysed the glucose uptake potential of these cells by assessing the remnant glucose in the media, glucose within the cells by 2-NBDG and by glycogen storage. Despite only a slight downregulation of mRNA expression levels of glucose transporters, Gd-P-MSCs exhibited decreased glucose uptake even upon insulin stimulation and decreased glycogen storage, indicative of an insulin resistant state. We then assessed the colony forming ability of the cells and found a decreased clonogenicity in Gd-P-MSCs. We also examined the angiogenic potential of the cells by tube formation. Gd-P-MSCs showed decreased angiogenic potential when compared to normal cells. Thus we show for the first time, the effect of gestational diabetes on cells isolated from the chorionic villi of term placenta. Gd-P-MSCs are indeed insulin resistant, exhibit decreased clonogenicity and angiogenic potential. The present investigation is of relevance to the choice of sample for MSC isolation for therapeutic purposes.
Collapse
Affiliation(s)
- Suja Ann Mathew
- School of Regenerative Medicine, Manipal University, MAHE, GKVK Post, Bellary Road, Allalasandra, Near Royal Orchid, Yelahanka, 560 065 Bangalore, India
| | - Ramesh Bhonde
- School of Regenerative Medicine, Manipal University, MAHE, GKVK Post, Bellary Road, Allalasandra, Near Royal Orchid, Yelahanka, 560 065 Bangalore, India.
| |
Collapse
|
9
|
Clément F, Grockowiak E, Zylbersztejn F, Fossard G, Gobert S, Maguer-Satta V. Stem cell manipulation, gene therapy and the risk of cancer stem cell emergence. Stem Cell Investig 2017; 4:67. [PMID: 28815178 DOI: 10.21037/sci.2017.07.03] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/13/2017] [Indexed: 12/15/2022]
Abstract
Stem cells (SCs) have been extensively studied in the context of regenerative medicine. Human hematopoietic stem cell (HSC)-based therapies have been applied to treat leukemic patients for decades. Handling of mesenchymal stem cells (MSCs) has also raised hopes and concerns in the field of tissue engineering. Lately, discovery of cell reprogramming by Yamanaka's team has profoundly modified research strategies and approaches in this domain. As we gain further insight into cell fate mechanisms and identification of key actors and parameters, this also raises issues as to the manipulation of SCs. These include the engraftment of manipulated cells and the potential predisposition of those cells to develop cancer. As a unique and pioneer model, the use of HSCs to provide new perspectives in the field of regenerative and curative medicine will be reviewed. We will also discuss the potential use of various SCs from embryonic to adult stem cells (ASCs), including induced pluripotent stem cells (iPSCs) as well as MSCs. Furthermore, to sensitize clinicians and researchers to unresolved issues in these new therapeutic approaches, we will highlight the risks associated with the manipulation of human SCs from embryonic or adult origins for each strategy presented.
Collapse
Affiliation(s)
- Flora Clément
- Univ Lyon, Université Claude Bernard Lyon 1, Lyon, F-69008, France.,Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, F-69008, France
| | - Elodie Grockowiak
- Univ Lyon, Université Claude Bernard Lyon 1, Lyon, F-69008, France.,Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, F-69008, France
| | - Florence Zylbersztejn
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, F-69008, France
| | - Gaëlle Fossard
- Univ Lyon, Université Claude Bernard Lyon 1, Lyon, F-69008, France.,Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, F-69008, France.,Centre Hospitalier Lyon Sud, Hematology Department, Tours, France
| | - Stéphanie Gobert
- Univ Lyon, Université Claude Bernard Lyon 1, Lyon, F-69008, France.,Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, F-69008, France
| | - Véronique Maguer-Satta
- Univ Lyon, Université Claude Bernard Lyon 1, Lyon, F-69008, France.,Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, F-69008, France
| |
Collapse
|