1
|
Mendoza M, Ballesteros A, Rendon-Correa E, Tonk R, Warren J, Snow AL, Stowell SR, Blois SM, Dveksler G. Modulation of galectin-9 mediated responses in monocytes and T-cells by pregnancy-specific glycoprotein 1. J Biol Chem 2024; 300:107638. [PMID: 39121996 PMCID: PMC11403483 DOI: 10.1016/j.jbc.2024.107638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Successful pregnancy relies on a coordinated interplay between endocrine, immune, and metabolic processes to sustain fetal growth and development. The orchestration of these processes involves multiple signaling pathways driving cell proliferation, differentiation, angiogenesis, and immune regulation necessary for a healthy pregnancy. Among the molecules supporting placental development and maternal tolerance, the families of pregnancy-specific glycoproteins and galectins are of great interest in reproductive biology. We previously found that PSG1 can bind to galectin-1 (GAL-1). Herein, we characterized the interaction between PSG1 and other members of the galectin family expressed during pregnancy, including galectin-3, -7, -9, and -13 (GAL-3, GAL-7, GAL-9, and GAL-13). We observed that PSG1 binds to GAL-1, -3, and -9, with the highest apparent affinity seen for GAL-9, and that the interaction of PSG1 with GAL-9 is carbohydrate-dependent. We further investigated the ability of PSG1 to regulate GAL-9 responses in human monocytes, a murine macrophage cell line, and T-cells, and determined whether PSG1 binds to both carbohydrate recognition domains of GAL-9. Additionally, we compared the apparent affinity of GAL-9 binding to PSG1 with other known GAL-9 ligands in these cells, Tim-3 and CD44. Lastly, we explored functional conservation between murine and human PSGs by determining that Psg23, a highly expressed member of the murine Psg family, can bind some murine galectins despite differences in amino acid composition and domain structure.
Collapse
Affiliation(s)
- Mirian Mendoza
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Angela Ballesteros
- Section on Sensory Physiology and Biophysics, National Institute on Deafness and other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Elizabeth Rendon-Correa
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Rohan Tonk
- Section on Sensory Physiology and Biophysics, National Institute on Deafness and other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - James Warren
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Andrew L Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Sean R Stowell
- Department of Pathology, Brigham and Women's Hospital, Boston Massachusetts, USA
| | - Sandra M Blois
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Glyco-HAM, a cooperation of Universität Hamburg, Technology Platform Mass Spectrometry and University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gabriela Dveksler
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.
| |
Collapse
|
2
|
Lintao RCV, Richardson LS, Kammala AK, Chapa J, Yunque-Yap DA, Khanipov K, Golovko G, Dalmacio LMM, Menon R. PGRMC2 and HLA-G regulate immune homeostasis in a microphysiological model of human maternal-fetal membrane interface. Commun Biol 2024; 7:1041. [PMID: 39179795 PMCID: PMC11344061 DOI: 10.1038/s42003-024-06740-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024] Open
Abstract
Chorion trophoblasts (CTCs) and immune cell-enriched decidua (DECs) comprise the maternal-fetal membrane interface called the chorio-decidual interface (CDi) which constantly gets exposed to maternal stressors without leading to labor activation. This study explored how CTCs act as a barrier at CDi. The roles of human leukocyte antigen (HLA)-G and progesterone receptor membrane component 2 (PGRMC2) in mediating immune homeostasis were also investigated. The CDi was recreated in a two-chamber microfluidic device (CDi-on-chip) with an outer chamber of primary DECs and immune cell line-derived innate immune cells and an inner chamber of wild-type or PGRMC2 or HLA-G knockout immortalized CTCs. To mimic maternal insults, DECs were treated with lipopolysaccharide, poly(I:C), or oxidative stress inducer cigarette smoke extract. Expression levels of inflammation and immunity genes via targeted RNA sequencing, production of soluble mediators, and immune cell migration into CTCs were determined. In CDi-on-chip, decidua and immune cells became inflammatory in response to insults while CTCs were refractory, highlighting their barrier function. HLA-G and PGRMC2 are found to be vital to immune homeostasis at the CDi, with PGRMC2 serving as an upstream regulator of inflammation, HLA-G expression, and mesenchymal-epithelial transition, and HLA-G serving as a frontline immunomodulatory molecule, thus preventing fetal membrane compromise.
Collapse
Affiliation(s)
- Ryan C V Lintao
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
- Institute of Reproductive Health, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
| | - Lauren S Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Ananth Kumar Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Jenieve Chapa
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Dianne Aster Yunque-Yap
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Microbiome and Bioinformatics Analysis Core, The Institute for Translational Sciences, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- National Aeronautics and Space Administration Johnson Space Center, Houston, TX, USA
- KBR, Houston, TX, USA
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Microbiome and Bioinformatics Analysis Core, The Institute for Translational Sciences, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - George Golovko
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Microbiome and Bioinformatics Analysis Core, The Institute for Translational Sciences, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Leslie Michelle M Dalmacio
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| |
Collapse
|
3
|
Mosebarger A, Vidal MS, Bento GFC, Lintao RCV, Severino MEL, Kumar Kammala A, Menon R. Immune cells at the feto-maternal interface: Comprehensive characterization and insights into term labor. J Reprod Immunol 2024; 163:104239. [PMID: 38493591 DOI: 10.1016/j.jri.2024.104239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/05/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
Immune cells at the feto-maternal interface play an important role in pregnancy; starting at implantation, maintenance of pregnancy, and parturition. The role of decidual immune cells in induction of labor still needs to be understood. Published reports on this topic show heterogeneity in methods of cell isolation, assay, analysis and cellular characterization making it difficult to collate available information in order to understand the contribution of immune cells at term leading to parturition. In the present study, available literature was reviewed to study the differences in immune cells between the decidua basalis and decidua parietalis, as well as between immune cells in term and preterm labor. Additionally, immune cells at the decidua parietalis were isolated from term not in labor (TNL) or term in labor (TL) samples and characterized via flow cytometry using a comprehensive, high-dimensional antibody panel. This allowed a full view of immune cell differences without combining multiple studies, which must include variation in isolation and analysis methods, for more conclusive data. The ratio of cells found in decidua parietalis in this study generally matched those reported in the literature, although we report a lower percentage of natural killer (NK) cells at term. We report that CD4 expression on CD8- NK cells decreased in term labor compared to not in labor samples, suggesting that natural killer cells may be migrating to other sites during labor. Also, we report a decrease in CD38 expression on CD8+ CD57+ T cells in labor, indicative of cytotoxic T cell senescence. Our study provides a comprehensive status of immune cells at the decidua-chorion interface at term.
Collapse
Affiliation(s)
- Angela Mosebarger
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Manuel S Vidal
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of Philippines Manila, Manila, Philippines
| | | | - Ryan C V Lintao
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of Philippines Manila, Manila, Philippines
| | - Mary Elise L Severino
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of Philippines Manila, Manila, Philippines
| | - Ananth Kumar Kammala
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Ramkumar Menon
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| |
Collapse
|
4
|
Qu M, Lu P, Lifshitz LM, Moore Simas TA, Delpapa E, ZhuGe R. Phenanthroline relaxes uterine contractions induced by diverse contractile agents by decreasing cytosolic calcium concentration. Eur J Pharmacol 2024; 968:176343. [PMID: 38281680 PMCID: PMC10939717 DOI: 10.1016/j.ejphar.2024.176343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/30/2024]
Abstract
Uterine contractions during labor and preterm labor are influenced by a complex interplay of factors, including hormones and inflammatory mediators. This complexity may contribute to the limited efficacy of current tocolytics for preterm labor, a significant challenge in obstetrics with 15 million cases annually and approximately 1 million resulting deaths worldwide. We have previously shown that the myometrium expresses bitter taste receptors (TAS2Rs) and that their activation leads to uterine relaxation. Here, we investigated whether the selective TAS2R5 agonist phenanthroline can induce relaxation across a spectrum of human uterine contractions and whether the underlying mechanism involves changes in intracellular Ca2+ signaling. We performed experiments using samples from pregnant women undergoing scheduled cesarean delivery, assessing responses to various inflammatory mediators and oxytocin with and without phenanthroline. Our results showed that phenanthroline concentration-dependently inhibited contractions induced by PGF2α, U46619, 5-HT, endothelin-1 and oxytocin. Furthermore, in hTERT-infected human myometrial cells exposed to uterotonics, phenanthroline effectively suppressed the increase in intracellular Ca2+ concentration induced by PGF2α, U46619, oxytocin, and endothelin-1. These results suggest that the selective TAS2R5 agonist may not only significantly reduce uterine contractions but also decrease intracellular Ca2+ levels. This study highlights the potential development of TAS2R5 agonists as a new class of uterine relaxants, providing a novel avenue for improving the management of preterm labor.
Collapse
Affiliation(s)
- Mingzi Qu
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, 363 Plantation St., Worcester, MA, USA
| | - Ping Lu
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, 363 Plantation St., Worcester, MA, USA
| | - Lawrence M Lifshitz
- Program in Molecular Medicine, UMass Chan Medical School, 373 Plantation St., Worcester, MA, USA
| | - Tiffany A Moore Simas
- Department of Obstetrics and Gynecology, UMass Chan Medical School/UMass Memorial Health, 119 Belmont St, Worcester, MA, USA
| | - Ellen Delpapa
- Department of Obstetrics and Gynecology, UMass Chan Medical School/UMass Memorial Health, 119 Belmont St, Worcester, MA, USA.
| | - Ronghua ZhuGe
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, 363 Plantation St., Worcester, MA, USA.
| |
Collapse
|
5
|
Megli CJ, Hauspurg A, Venkataramanan R, Caritis SN. A Possible Mechanism of Action of 17α-Hydroxyprogesterone Caproate: Enhanced IL-10 Production. Am J Perinatol 2023; 40:1585-1589. [PMID: 34784615 PMCID: PMC9879021 DOI: 10.1055/s-0041-1739354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE The rate of recurrent spontaneous preterm birth (PTB) was reduced by 33% in the Maternal-Fetal Medicine Unit (MFMU) Network trial of 17α-hydroxyprogesterone caproate (17-OHPC), but the mechanism of action, 17 years later, remains elusive. The robustness of the interleukin-10 (IL-10) response to lipopolysaccharide (LPS) stimulation of leukocytes in pregnant women with a prior PTB correlates with gestational age at delivery. This study sought to determine if there is a relationship between the concentration of 17-OHPC and response to LPS stimulation. STUDY DESIGN We performed a secondary analysis of data from the Omega-3 MFMU trial which evaluated the effectiveness of omega-3 fatty acid supplementation in reducing recurrent PTB. We utilized previously characterized data from a subanalyses of the Omega-3 trial of IL-10 and tumor necrosis factor alpha (TNF-α) levels from peripheral blood mononuclear cells stimulated with LPS. Blood was obtained from enrolled women at 16 to 22 weeks' gestation (baseline) and 25 to 28 weeks' gestation (posttreatment). All women received 17-OHPC and plasma 17-OHPC concentrations were measured at 25 to 28 weeks' gestation. We analyzed these data to determine if there was a relationship between 17-OHPC concentration and cytokine production. We then performed an in vitro study to determine if 17-OHPC could directly alter cytokine production by THP-1-derived macrophages. RESULTS In the clinical samples, we found that 17-OHPC plasma concentrations were correlated with the quantity of the LPS-stimulated production of IL-10. TNF-α production after LPS stimulation was unrelated to 17-OHPC concentration. In the in vitro study, we demonstrate a 17-OHPC concentration dependent increase in IL-10 production. CONCLUSION In women receiving 17-OHPC for PTB prevention, we demonstrate a relationship between plasma 17-OHPC and LPS-stimulated IL-10 production by circulating leukocytes. We also demonstrate that, in vitro, 17-OHPC treatment affects IL-10 production by LPS-stimulated macrophages. Collectively, these findings support an immunomodulatory mechanism of action of 17-OHPC in the prevention of recurrent PTB. KEY POINTS · 17-OHPC plasma concentrations and LPS-stimulated IL-10 levels correlate in clinical samples in women at risk for recurrent preterm birth.. · 17-OHPC can modulate the response of LPS-stimulated macrophages to increase IL-10 production.. · There was no relationship between TNF-α and plasma concentration of 17-OHPC in clinical samples or in vitro..
Collapse
Affiliation(s)
- Christina J. Megli
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, UPMC Magee-Women’s Hospital, Pittsburgh, Pennsylvania
| | - Alisse Hauspurg
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, UPMC Magee-Women’s Hospital, Pittsburgh, Pennsylvania
| | - Raman Venkataramanan
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, UPMC Magee-Women’s Hospital, Pittsburgh, Pennsylvania
| | - Steve N. Caritis
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, UPMC Magee-Women’s Hospital, Pittsburgh, Pennsylvania
| |
Collapse
|
6
|
Anderson CC, Bonney EA, Mueller TF, Corthay A, Havele C, Singh NJ, Øynebråten I, Bretscher PA. On antigen-specific signals, immune class regulation and energetics: Report III from the workshops on foundational concepts of immune regulation. Scand J Immunol 2023; 98:e13311. [PMID: 38112131 DOI: 10.1111/sji.13311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 12/20/2023]
Abstract
This is a report from a one-week workshop held in Athens, Greece in July of 2022. The workshop aimed to identify emerging concepts relevant to the fundamentals of immune regulation and areas for future research. Theories of immune regulation emphasize the role of T cell help or co-stimulation (signal 2). The workshop participants considered how new data on the characteristics of agonist antigens, the role of the antigen receptor signals (signal 1) in driving fate decisions, the effect of energetics on immunity and a better understanding of class-control in the immune response, may impact theories of immune regulation. These ideas were discussed in the context of tumour immunology, autoimmunity, pregnancy and transplantation. Here we present the discussions as a narrative of different viewpoints to allow the reader to join the conversation. These discussions highlight the evolving understanding of the nature of specific antigen recognition and how both antigen-specific and non-specific mechanisms impact immune responses.
Collapse
Affiliation(s)
- Colin C Anderson
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes and Transplant Institutes, University of Alberta, Edmonton, Alberta, Canada
| | - Elizabeth A Bonney
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont, Larner College of medicine, Burlington, Vermont, USA
| | - Thomas F Mueller
- Clinic of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Alexandre Corthay
- Tumor Immunology Lab, Department of Pathology, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Calliopi Havele
- Dept of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Nevil J Singh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Inger Øynebråten
- Tumor Immunology Lab, Department of Pathology, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Peter A Bretscher
- Dept of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
7
|
Elevated human placental heat shock protein 5 is associated with spontaneous preterm birth. Pediatr Res 2023:10.1038/s41390-023-02501-9. [PMID: 36788289 PMCID: PMC9926443 DOI: 10.1038/s41390-023-02501-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 12/28/2022] [Accepted: 01/13/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Specific heat shock proteins are associated with pregnancy complications, including spontaneous preterm birth (SPTB). Placental proteomics and whole exome sequencing recently suggested an association between heat shock protein HSPA5 and uncomplicated SPTB. In the present study, we investigated the localization of and possible roles for HSPA5 in SPTB. METHODS Western blot was performed to validate the result from the previously published proteomic analysis. We used qPCR to assess mRNA expression of genes and immunohistochemistry and immunoelectron microscopy to examine localization of HSPA5 in placental tissue. We silenced the HSPA5 gene in the HTR8/SVneo human trophoblast cell line to investigate possible functions of HSPA5. RESULTS HSPA5 was upregulated in placentas from SPTBs compared to spontaneous term births. We did not observe upregulation of HSPA5 mRNA in placental samples. The protein was localized in placental trophoblast in both spontaneous preterm and term placentas. Gene silencing of HSPA5 in human trophoblast cell culture affected the inflammatory response and decreased the expression of several proinflammatory genes. CONCLUSIONS We suggest that upregulation of HSPA5 in the placenta is associated with spontaneous preterm labor. HSPA5 may promote the inflammatory response and alter the anti-inflammatory state of the placenta which could eventually lead to premature labor. IMPACT We validated upregulation of HSPA5 in placentas from spontaneous preterm birth. HSPA5 was not upregulated at transcriptional level which suggests that it may be regulated post-translationally. Silencing HSPA5 in a human trophoblast-derived cell line suggested that HSPA5 promotes expression of proinflammatory cytokines. The emerging inflammation could lead to spontaneous preterm labor. Identifying inflammatory pathways and factors associated with spontaneous preterm birth increases knowledge of the molecular mechanisms of premature labor. This could provide cues to predict imminent premature labor and lead to information about how to safely maintain pregnancies.
Collapse
|
8
|
Fasoulakis Z, Koutras A, Ntounis T, Antsaklis P, Theodora M, Valsamaki A, Daskalakis G, Kontomanolis EN. Inflammatory Molecules Responsible for Length Shortening and Preterm Birth. Cells 2023; 12:cells12020209. [PMID: 36672145 PMCID: PMC9856720 DOI: 10.3390/cells12020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/28/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
It is estimated that inflammation at the placental-maternal interface is directly responsible for or contributes to the development of 50% of all premature deliveries. Chorioamnionitis, also known as the premature rupture of the amniotic membrane in the mother, is the root cause of persistent inflammation that preterm newborns experience. Beyond contributing to the onset of early labor, inflammation is a critical element in advancing several conditions in neonates, including necrotizing enterocolitis, retinopathy of prematurity, bronchopulmonary dysplasia, intraventricular hemorrhage, retinopathy of prematurity and periventricular leukomalacia. Notably, the immune systems of preterm infants are not fully developed; immune defense mechanisms and immunosuppression (tolerance) have a delicate balance that is easily upset in this patient category. As a result, premature infants are exposed to different antigens from elements such as hospital-specific microbes, artificial devices, medications, food antigens and hypoxia/hyperoxia. This has detrimental implications for preterm deliveries of less than 28 weeks because they have not yet evolved the mechanisms to tolerate maternal and self-antigens.
Collapse
Affiliation(s)
- Zacharias Fasoulakis
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, General Hospital Alexandra, 11528 Athens, Greece
- Correspondence:
| | - Antonios Koutras
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, General Hospital Alexandra, 11528 Athens, Greece
| | - Thomas Ntounis
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, General Hospital Alexandra, 11528 Athens, Greece
| | - Panos Antsaklis
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, General Hospital Alexandra, 11528 Athens, Greece
| | - Marianna Theodora
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, General Hospital Alexandra, 11528 Athens, Greece
| | - Asimina Valsamaki
- Department of Internal Medicine, Koutlimbaneio and Triantafylleio General Hospital of Larissa, 41221 Larissa, Greece
| | - George Daskalakis
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, General Hospital Alexandra, 11528 Athens, Greece
| | - Emmanuel N. Kontomanolis
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
9
|
Aoki C, Imai K, Mizutani T, Sugiyama D, Miki R, Koya Y, Kobayashi T, Ushida T, Iitani Y, Nakamura N, Owaki T, Nishikawa H, Toyokuni S, Kajiyama H, Kotani T. Molecular hydrogen has a positive impact on pregnancy maintenance through enhancement of mitochondrial function and immunomodulatory effects on T cells. Life Sci 2022; 308:120955. [PMID: 36115583 DOI: 10.1016/j.lfs.2022.120955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/30/2022] [Accepted: 09/09/2022] [Indexed: 10/31/2022]
Abstract
AIMS Molecular hydrogen (H2) has attracted growing interest because of its implications in various diseases. However, the molecular mechanisms underlying the remarkable effect of a small amount of H2 remain elusive. No knowledge has been available on the role of H2 in the etiology of pregnancy disorders or its direct influence on human immune cells. Since maternal immunity, T cells in particular, plays a critical role in pregnancy maintenance. We investigated the effects of H2 on T cells and its relation to preterm birth (PTB). MAIN METHODS Exhaled H2 concentrations in pregnant women were measured and correlated with cytokine concentrations in maternal and umbilical cord blood. H2 was added to T cells collected from healthy donors, and differentiation and proliferation were examined. Energy metabolism was also examined. H2 was administered to mice and cytokine expression was compared. KEY FINDINGS Our prospective observational study revealed that maternal production of H2 is significantly lower in pregnant women with PTB, suggesting its potential as a biomarker for predicting PTB. We found that H2 has clear associations with several maternal cytokines, and acts as an immunomodulator by exerting mitochondrial function in human T cells. Moreover, in vivo administration of H2 to pregnant mice regulated inflammatory responses and reduced PTB caused by T cell activation, which further supports the notion that H2 may contribute to prolonged gestation through its immunomodulatory effect. SIGNIFICANCE Measuring maternal H2-production could be a potential clinical tool in the management of PTB, and H2 may have positive impact on pregnancy maintenance.
Collapse
Affiliation(s)
- Chieko Aoki
- Department of Obstetrics and Gynecology, Japan
| | - Kenji Imai
- Department of Obstetrics and Gynecology, Japan.
| | - Teruyuki Mizutani
- Department of Obstetrics and Gynecology, Japan; Department of Immunology, Japan
| | | | - Rika Miki
- Laboratory of Bell Research Centre-Department of Obstetrics and Gynecology Collaborative Research, Bell Research Centre for Reproductive Health and Cancer, Department of Reproduction, Japan
| | - Yoshihiro Koya
- Laboratory of Bell Research Centre-Department of Obstetrics and Gynecology Collaborative Research, Bell Research Centre for Reproductive Health and Cancer, Department of Reproduction, Japan
| | | | | | | | | | - Taro Owaki
- Department of Obstetrics and Gynecology, Japan
| | - Hiroyoshi Nishikawa
- Department of Immunology, Japan; Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | |
Collapse
|
10
|
Zha Y, Liu H, Lin X, Yu L, Gao P, Li Y, Wu M, Gong X, Bian X, Kang Q, Zhi P, Dang X, Wang J, Feng L, Qiao F, Huang Y, Zeng W. Immune Deviation in the Decidua During Term and Preterm Labor. Front Immunol 2022; 13:877314. [PMID: 35757768 PMCID: PMC9226582 DOI: 10.3389/fimmu.2022.877314] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
The maternal-fetal immune disorder is considered to be an important factor of preterm birth (PTB); however, the underlying mechanism is still not fully understood. This study was designed to explore the innate and adaptive immune features in the decidua during term and preterm labor. Women delivered at term or preterm were classified into four groups: term not in labor (TNL, N=19), term in labor (TL, N=17), preterm not in labor (PNL, N=10), and preterm in labor (PIL, N=10). Decidua basalis and parietalis were collected and analyzed for macrophage subtypes (M1 and M2) as well as T helper 1 (Th1), Th2, Th17 and regulatory T (Treg) cells by flow cytometry and immunohistochemistry. Our results demonstrated significantly decreased frequencies of M2 cells and elevated M1/M2 ratio in the PIL group compared to that in the PNL group in both decidua basalis and parietalis, whereas no significant differences were found between the above two groups in both sites in terms of the polarization status of Th cells. On the contrary, macrophage subsets were comparable in the TL and TNL groups, whereas elevated Th1 percentages and Th1/Th2 ratio were observed in TL women compared to that in TNL women in the decidua. Interestingly, although the frequencies and ratios of Th17 and Treg were comparable among the four groups, the Th17/Treg ratios of these groups were significantly increased in decidua basalis than that in decidua parietalis. Collectively, the M1/M2 imbalance is associated with the breakdown of maternal-fetal immune tolerance during PTB, whereas the aberrant Th1/Th2 profile plays an important role in immune disorder during term labor. Moreover, Th17/Treg deviation is more remarkable in decidua basalis than in decidua parietalis.
Collapse
Affiliation(s)
- Ying Zha
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haiyi Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingguang Lin
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Long Yu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Gao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqi Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xun Gong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyi Bian
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Kang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Zhi
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohe Dang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyu Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuyuan Qiao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yafei Huang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanjiang Zeng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Abstract
Inflammatory mechanisms have a critical role in parturition, which results from a gathering of different stimuli that collectively initiate labour. In fact, a sophisticated interaction occurs between contractile and immuno-inflammatory pathways, whereby proinflammatory amplification is intensified by collaborative connections between cells, ligands, and tissues. Preterm birth (PTB) is one of the major challenges of modern obstetrics and still lacks an efficient treatment. Therefore, the scientific research of modern therapies is warranted. This systematic review aims to provide an overview of recent research into inflammation and PTB. The main inclusion criterion was articles concerning birth and inflammation, and searches were performed in the electronic databases MEDLINE, Embase, Scopus, Web of Science and Cochrane Library, from 2017 to 2021. A literature search from all databases yielded 1989 results which, applying the specified eligibility criteria, resulted in the 16 articles included in this review. Delivery is the consequence of an inequity between maternal inflammation and hormonal-driven uterine quiescence. Studies show that the distinction between term and preterm labour could consist of a pre-existing disproportion of decidual inflammatory signalling, or an unusual stimulus eliciting inflammatory pathways, comparable to both. Thus, controlling inflammation could be hopeful for detaining PTB.
Collapse
|
12
|
Sarkesh A, Sorkhabi AD, Ahmadi H, Abdolmohammadi-Vahid S, Parhizkar F, Yousefi M, Aghebati-Maleki L. Allogeneic lymphocytes immunotherapy in female infertility: Lessons learned and the road ahead. Life Sci 2022; 299:120503. [PMID: 35381221 DOI: 10.1016/j.lfs.2022.120503] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/12/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
The endometrium is an essential tissue in the normal immunologic dialogue between the mother and the conceptus, which is necessary for the proper establishment and maintenance of a successful pregnancy. It's become evident that the maternal immune system plays a key role in the normal pregnancy's initiation, maintenance, and termination. In this perspective, the immune system contributes to regulating all stages of pregnancy, thus immunological dysregulation is thought to be one of the major etiologies of implantation failures. Many researchers believe that immune therapies are useful tactics for improving the live births rate in certain situations. Lymphocyte immunotherapy (LIT) is an active form of immunotherapy that, when used on the relevant subgroups of patients, has been shown in multiple trials to dramatically enhance maternal immunological balance and pregnancy outcome. The primary goal of LIT is to regulate the immune system in order to create a favorable tolerogenic immune milieu and tolerance for embryo implantation. However, there are a plethora of influential factors influencing its therapeutic benefits that merit to be addressed. The objective of our study is to discuss the mechanisms and challenges of allogeneic LIT.
Collapse
Affiliation(s)
- Aila Sarkesh
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Daei Sorkhabi
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Ahmadi
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, Pécs University, Pécs, Hungary
| | | | - Forough Parhizkar
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
13
|
Gershater M, Romero R, Arenas-Hernandez M, Galaz J, Motomura K, Tao L, Xu Y, Miller D, Pique-Regi R, Martinez G, Liu Y, Jung E, Para R, Gomez-Lopez N. IL-22 Plays a Dual Role in the Amniotic Cavity: Tissue Injury and Host Defense against Microbes in Preterm Labor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1595-1615. [PMID: 35304419 PMCID: PMC8976826 DOI: 10.4049/jimmunol.2100439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 01/18/2022] [Indexed: 12/11/2022]
Abstract
IL-22 is a multifaceted cytokine with both pro- and anti-inflammatory functions that is implicated in multiple pathologies. However, the role of IL-22 in maternal-fetal immunity in late gestation is poorly understood. In this study, we first showed that IL-22+ T cells coexpressing retinoic acid-related orphan receptor γt (ROR-γt) are enriched at the human maternal-fetal interface of women with preterm labor and birth, which was confirmed by in silico analysis of single-cell RNA sequencing data. T cell activation leading to preterm birth in mice was preceded by a surge in IL-22 in the maternal circulation and amniotic cavity; however, systemic administration of IL-22 in mice did not induce adverse perinatal outcomes. Next, using an ex vivo human system, we showed that IL-22 can cross from the choriodecidua to the intra-amniotic space, where its receptors (Il22ra1, Il10rb, and Il22ra2) are highly expressed by murine gestational and fetal tissues in late pregnancy. Importantly, amniotic fluid concentrations of IL-22 were elevated in women with sterile or microbial intra-amniotic inflammation, suggesting a dual role for this cytokine. The intra-amniotic administration of IL-22 alone shortened gestation and caused neonatal death in mice, with the latter outcome involving lung maturation and inflammation. IL-22 plays a role in host response by participating in the intra-amniotic inflammatory milieu preceding Ureaplasma parvum-induced preterm birth in mice, which was rescued by the deficiency of IL-22. Collectively, these data show that IL-22 alone is capable of causing fetal injury leading to neonatal death and can participate in host defense against microbial invasion of the amniotic cavity leading to preterm labor and birth.
Collapse
Affiliation(s)
- Meyer Gershater
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI
- Center for Molecular Obstetrics and Genetics, Wayne State University, Detroit, MI
- Detroit Medical Center, Detroit, MI; and
| | - Marcia Arenas-Hernandez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Jose Galaz
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Kenichiro Motomura
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Li Tao
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Yi Xu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Derek Miller
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Roger Pique-Regi
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Center for Molecular Obstetrics and Genetics, Wayne State University, Detroit, MI
| | - Gregorio Martinez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Yesong Liu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Eunjung Jung
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Robert Para
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI;
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI
| |
Collapse
|
14
|
Menon R. Fetal inflammatory response at the fetomaternal interface: A requirement for labor at term and preterm. Immunol Rev 2022; 308:149-167. [PMID: 35285967 DOI: 10.1111/imr.13075] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 12/20/2022]
Abstract
Human parturition at term and preterm is an inflammatory process synchronously executed by both fetomaternal tissues to transition them from a quiescent state t an active state of labor to ensure delivery. The initiators of the inflammatory signaling mechanism can be both maternal and fetal. The placental (fetal)-maternal immune and endocrine mediated homeostatic imbalances and inflammation are well reported. However, the fetal inflammatory response (FIR) theories initiated by the fetal membranes (amniochorion) at the choriodecidual interface are not well established. Although immune cell migration, activation, and production of proparturition cytokines to the fetal membranes are reported, cellular level events that can generate a unique set of inflammation are not well discussed. This review discusses derangements to fetal membrane cells (physiologically and pathologically at term and preterm, respectively) in response to both endogenous and exogenous factors to generate inflammatory signals. In addition, the mechanisms of inflammatory signal propagation (fetal signaling of parturition) and how these signals cause immune imbalances at the choriodecidual interface are discussed. In addition to maternal inflammation, this review projects FIR as an additional mediator of inflammatory overload required to promote parturition.
Collapse
Affiliation(s)
- Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
15
|
Radnaa E, Urrabaz-Garza R, Elrod ND, de Castro Silva M, Pyles R, Han A, Menon R. Generation and characterization of human Fetal membrane and Decidual cell lines for reproductive biology experiments†. Biol Reprod 2021; 106:568-582. [PMID: 34935931 PMCID: PMC8934701 DOI: 10.1093/biolre/ioab231] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/18/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022] Open
Abstract
Human fetal membrane and maternal decidua parietalis form one of the major feto-maternal interfaces during pregnancy. Studies on this feto-maternal interface is limited as several investigators have limited access to the placenta, and experience difficulties to isolate and maintain primary cells. Many cell lines that are currently available do not have the characteristics or properties of their primary cells of origin. Therefore, we created, characterized the immortalized cells from primary isolates from fetal membrane-derived amnion epithelial cells, amnion and chorion mesenchymal cells, chorion trophoblast cells and maternal decidua parietalis cells. Primary cells were isolated from a healthy full-term, not in labor placenta. Primary cells were immortalized using either a HPV16E6E7 retroviral or a SV40T lentiviral system. The immortalized cells were characterized for the morphology, cell type-specific markers, and cell signalling pathway activation. Genomic stability of these cells was tested using RNA seq, karyotyping, and short tandem repeats DNA analysis. Immortalized cells show their characteristic morphology, and express respective epithelial, mesenchymal and decidual markers similar to that of primary cells. Gene expression of immortalized and primary cells were highly correlated (R = 0.798 to R = 0.974). Short tandem repeats DNA analysis showed in the late passage number (>P30) of cell lines matched 84-100% to the early passage number (<P10) of the cell lines revealing there were no genetic drift over the passages. Karyotyping also revealed no chromosomal anomalies. Creation of these cell lines can standardize experimental approaches, eliminate subject to subject variabilities, and benefit the reproductive biological studies on pregnancies by using these cells.
Collapse
Affiliation(s)
- Enkhtuya Radnaa
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynaecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Rheanna Urrabaz-Garza
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynaecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Nathan D Elrod
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-0144, USA
| | - Mariana de Castro Silva
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynaecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Richard Pyles
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-0144, USA
| | - Arum Han
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-3128, USA
| | - Ramkumar Menon
- Correspondence: Department of Basic Science and Translational Research, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| |
Collapse
|
16
|
Gomez-Lopez N, Garcia-Flores V, Chin PY, Groome HM, Bijland MT, Diener KR, Romero R, Robertson SA. Macrophages exert homeostatic actions in pregnancy to protect against preterm birth and fetal inflammatory injury. JCI Insight 2021; 6:146089. [PMID: 34622802 PMCID: PMC8525593 DOI: 10.1172/jci.insight.146089] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 08/20/2021] [Indexed: 01/08/2023] Open
Abstract
Macrophages are commonly thought to contribute to the pathophysiology of preterm labor by amplifying inflammation — but a protective role has not previously been considered to our knowledge. We hypothesized that given their antiinflammatory capability in early pregnancy, macrophages exert essential roles in maintenance of late gestation and that insufficient macrophages may predispose individuals to spontaneous preterm labor and adverse neonatal outcomes. Here, we showed that women with spontaneous preterm birth had reduced CD209+CD206+ expression in alternatively activated CD45+CD14+ICAM3– macrophages and increased TNF expression in proinflammatory CD45+CD14+CD80+HLA-DR+ macrophages in the uterine decidua at the materno-fetal interface. In Cd11bDTR/DTR mice, depletion of maternal CD11b+ myeloid cells caused preterm birth, neonatal death, and postnatal growth impairment, accompanied by uterine cytokine and leukocyte changes indicative of a proinflammatory response, while adoptive transfer of WT macrophages prevented preterm birth and partially rescued neonatal loss. In a model of intra-amniotic inflammation–induced preterm birth, macrophages polarized in vitro to an M2 phenotype showed superior capacity over nonpolarized macrophages to reduce uterine and fetal inflammation, prevent preterm birth, and improve neonatal survival. We conclude that macrophages exert a critical homeostatic regulatory role in late gestation and are implicated as a determinant of susceptibility to spontaneous preterm birth and fetal inflammatory injury.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.,Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, US Department of Health and Human Services; Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and.,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, US Department of Health and Human Services; Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and
| | - Peck Yin Chin
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Holly M Groome
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Melanie T Bijland
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kerrilyn R Diener
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.,University of South Australia Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, US Department of Health and Human Services; Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA.,Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA.,Detroit Medical Center, Detroit, Michigan, USA
| | - Sarah A Robertson
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
17
|
Gregory EJ, Liu J, Miller-Handley H, Kinder JM, Way SS. Epidemiology of Pregnancy Complications Through the Lens of Immunological Memory. Front Immunol 2021; 12:693189. [PMID: 34248991 PMCID: PMC8267465 DOI: 10.3389/fimmu.2021.693189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/11/2021] [Indexed: 12/22/2022] Open
Abstract
In the fifteen minutes it takes to read this short commentary, more than 400 babies will have been born too early, another 300 expecting mothers will develop preeclampsia, and 75 unborn third trimester fetuses will have died in utero (stillbirth). Given the lack of meaningful progress in understanding the physiological changes that occur to allow a healthy, full term pregnancy, it is perhaps not surprising that effective therapies against these great obstetrical syndromes that include prematurity, preeclampsia, and stillbirth remain elusive. Meanwhile, pregnancy complications remain the leading cause of infant and childhood mortality under age five. Does it have to be this way? What more can we collectively, as a biomedical community, or individually, as clinicians who care for women and newborn babies at high risk for pregnancy complications, do to protect individuals in these extremely vulnerable developmental windows? The problem of pregnancy complications and neonatal mortality is extraordinarily complex, with multiple unique, but complementary perspectives from scientific, epidemiological and public health viewpoints. Herein, we discuss the epidemiology of pregnancy complications, focusing on how the outcome of prior pregnancy impacts the risk of complication in the next pregnancy — and how the fundamental immunological principle of memory may promote this adaptive response.
Collapse
Affiliation(s)
- Emily J Gregory
- Department of Obstetrics and Gynecology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - James Liu
- Department of Obstetrics and Gynecology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Hilary Miller-Handley
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Jeremy M Kinder
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Sing Sing Way
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
18
|
Chu A, Kok SY, Tsui J, Lin MC, Aguirre B, Wadehra M. Epithelial membrane protein 2 (Emp2) modulates innate immune cell population recruitment at the maternal-fetal interface. J Reprod Immunol 2021; 145:103309. [PMID: 33774530 DOI: 10.1016/j.jri.2021.103309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 01/28/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022]
Abstract
Epithelial membrane protein 2 (EMP2) is a tetraspan membrane protein that has been revealed in cancer and placental models to mediate a number of vascular responses. Recently, Emp2 modulation has been shown to have an immunologic effect on uterine NK cell recruitment in the mouse placenta. Given the importance of immune cell populations on both placental vascularization and maternal immune tolerance of the developing fetus, we wanted to better characterize the immunologic effects of Emp2 at the placental-fetal interface. We performed flow cytometry of WT and Emp2 KO C57Bl/6 mouse uterine horns at GD12.5 to characterize immune cell populations localized to the various components of the maternal-fetal interface. We found that Emp2 KO decidua and placenta showed an elevated overall percentage of CD45+ cells compared to WT. Characterization of CD45+ cells in the decidua of Emp2 KO dams revealed an increase in NK cells, whereas in the placenta, Emp2 KO dams showed an increased percentage of M1 macrophages (with an increased ratio of M1/M2 macrophages). Given the differences detected in uNK cell populations in the decidua, we further characterized the interaction between Emp2 genetic KO and NK cell deletion via anti-asialo GM1 antibody injections. While the double knock-out of Emp2 and NK cells did not alter individual pup birthweight, it significantly reduced total litter weight and size by ∼50 %. In conclusion, Emp2 appears to regulate uNK and macrophage cell populations in pregnancy.
Collapse
Affiliation(s)
- Alison Chu
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Avenue, MDCC B2-411, Los Angeles, CA, 90095, USA.
| | - Su-Yin Kok
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, 4525 MacDonald Research Laboratories, Los Angeles, CA, 90095, USA.
| | - Jessica Tsui
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, 4525 MacDonald Research Laboratories, Los Angeles, CA, 90095, USA.
| | - Meng-Chin Lin
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Avenue, MDCC B2-411, Los Angeles, CA, 90095, USA.
| | - Brian Aguirre
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, 4525 MacDonald Research Laboratories, Los Angeles, CA, 90095, USA.
| | - Madhuri Wadehra
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, 4525 MacDonald Research Laboratories, Los Angeles, CA, 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California-Los Angeles, 4525 MacDonald Research Laboratories, Los Angeles, CA, 90095, USA.
| |
Collapse
|
19
|
Mdletshe N, Thobakgale C, Malaba TR, Madlala H, Myer L, Muema DM, Mogeni P, Gray CM, Altfeld M, Newell ML, Ndung'u T. Low immune activation in early pregnancy is associated with preterm but not small-for-gestational age delivery in HIV infected women initiating antiretroviral therapy in pregnancy: a PIMS case-control study in Cape Town, South Africa. Clin Infect Dis 2021; 73:2205-2216. [PMID: 33606024 PMCID: PMC8677566 DOI: 10.1093/cid/ciab151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Indexed: 12/24/2022] Open
Abstract
Background Mechanisms underlying an association between human immunodeficiency virus (HIV) or antiretroviral therapy (ART) during pregnancy with risk of preterm delivery (PTD) and small-for-gestational-age (SGA) remain unclear. We explored the association between cellular immune activation and PTD or SGA in women with HIV initiating ART during or before pregnancy. Methods Women with HIV enrolled at median 15 weeks’ gestation, were analyzed for immune markers, and matched on ART initiation timing (15 women initiated pre- and 15 during pregnancy). There were 30 PTD (delivery <37 weeks), 30 SGA (weight for age ≤10th percentile) cases, and 30 controls (term, weight for gestational age >25th percentile) as outcomes. Lymphocytes, monocytes, and dendritic cell populations and their activation status or functionality were enumerated by flow cytometry. Results PTD cases initiating ART in pregnancy showed decreased CD8+ T cell, monocyte, and dendritic cell activation; increased classical (CD14+CD16–) and intermediate (CD14+CD16+) monocyte frequencies; and decreased inflammatory monocytes (CD14dimCD16+) compared with SGA cases and term controls (all P < .05). Allowing for baseline viral load, the immune markers remained significantly associated with PTD but only in women initiating ART in pregnancy. Lower monocyte activation was predictive of PTD. TLR ligand-induced interferon-α and macrophage inflammatory protein-1β levels in monocytes were significantly lower in PTD women initiating ART in pregnancy. Conclusion Low immune activation, skewing toward anti-inflammatory monocytes, and lower monocyte cytokine production in response to TLR ligand stimulation were associated with PTD but not SGA among women initiating ART in, but not before, pregnancy, suggesting immune anergy to microbial stimulation as a possible underlying mechanism for PTD in women initiating ART in pregnancy.
Collapse
Affiliation(s)
- Nontlantla Mdletshe
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal (UKZN), Durban, South Africa
| | - Christina Thobakgale
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal (UKZN), Durban, South Africa.,School of Pathology, National Institute for Communicable Diseases and the University of the Witwatersrand, Johannesburg, South Africa
| | - Thokozile R Malaba
- Division of Epidemiology and Biostatistics, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Hlengiwe Madlala
- Division of Epidemiology and Biostatistics, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Landon Myer
- Division of Epidemiology and Biostatistics, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | | | - Polycarp Mogeni
- Africa Health Research Institute, Durban, South Africa.,School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa.,KwaZulu-Natal Innovation and Sequencing Platform (KRISP), University of KwaZulu-Natal, Durban, South Africa
| | - Clive M Gray
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Marcus Altfeld
- Department of Viral Immunology, Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Marie-Louise Newell
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal (UKZN), Durban, South Africa.,Africa Health Research Institute, Durban, South Africa.,Max Planck Institute for Infection Biology, Berlin, Germany.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA.,Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
20
|
Huang J, Li Q, Peng Q, Xie Y, Wang W, Pei C, Zhao Y, Liu R, Huang L, Li T, Xie L, Zhang J, Dai L, Chen J, Sun J, Zhang W. Single-cell RNA sequencing reveals heterogeneity and differential expression of decidual tissues during the peripartum period. Cell Prolif 2020; 54:e12967. [PMID: 33300223 PMCID: PMC7848970 DOI: 10.1111/cpr.12967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/10/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
Objectives The decidua is a tissue that contacts both maternal and foetal components and is pivotal to labour onset due to its location. Due to the heterogeneity of decidual tissue, it is challenging to study its role in the peripartum period. Herein, we analysed the transcriptomes of peripartum decidua at single‐cell resolution. Materials and methods Single‐cell RNA sequencing was performed for 29 231 decidual cells before and after delivery to characterize the transcriptomes. Results Eight major cell types (including endothelial cells, fibroblasts) and subtypes of decidual stromal cells, extravillous trophoblasts and T cells were identified and found to have various functions. Compared with before delivery, the activation of decidual stromal cell, extravillous trophoblast and T‐cell subtypes to different degrees was observed after delivery. Furthermore, the activation involved multiple functions, such as cell proliferation, and several pathways, such as the activator protein 1 pathway. The results of pseudotemporal ordering showed differentiation of decidual stromal cell and extravillous trophoblast subtypes, suggesting inhomogeneity of these subgroups in decidualization (decidual stromal cell) and invasion (extravillous trophoblast). Conclusions The peripartum decidual tissue is heterogeneous. This study revealed changes in the decidua and its components at single‐cell resolution; these findings provide a new perspective for the study of peripartum decidua.
Collapse
Affiliation(s)
- Jingrui Huang
- Department of Obstetrics, Xiangya Hospital Central South University, Changsha, China
| | - Qi Li
- Department of Obstetrics and Gynecology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiaozhen Peng
- Department of Obstetrics, Xiangya Hospital Central South University, Changsha, China
| | - Yingming Xie
- Department of Obstetrics, Xiangya Hospital Central South University, Changsha, China
| | - Weinan Wang
- Department of Obstetrics, Xiangya Hospital Central South University, Changsha, China
| | - Chenlin Pei
- Department of Obstetrics, Xiangya Hospital Central South University, Changsha, China
| | - Yanhua Zhao
- Department of Obstetrics, Xiangya Hospital Central South University, Changsha, China
| | - Rong Liu
- Department of Obstetrics, Xiangya Hospital Central South University, Changsha, China
| | - Lihui Huang
- Department of Obstetrics and Gynecology, Changsha Hospital for Maternal and Child Health Care, Changsha, China
| | - Tieping Li
- Department of Obstetrics and Gynecology, Changsha Hospital for Maternal and Child Health Care, Changsha, China
| | - Liangqun Xie
- Department of Obstetrics, Xiangya Hospital Central South University, Changsha, China
| | - Jiejie Zhang
- Department of Obstetrics, Xiangya Hospital Central South University, Changsha, China.,Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha, China
| | - Lei Dai
- Department of Obstetrics, Xiangya Hospital Central South University, Changsha, China
| | - Jingfei Chen
- Department of Obstetrics, Xiangya Hospital Central South University, Changsha, China
| | - Jingchi Sun
- Department of Obstetrics, Xiangya Hospital Central South University, Changsha, China
| | - Weishe Zhang
- Department of Obstetrics, Xiangya Hospital Central South University, Changsha, China.,Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha, China
| |
Collapse
|
21
|
Richardson L, Kim S, Han A, Menon R. Modeling ascending infection with a feto-maternal interface organ-on-chip. LAB ON A CHIP 2020; 20:4486-4501. [PMID: 33112317 PMCID: PMC7815379 DOI: 10.1039/d0lc00875c] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Maternal infection (i.e., ascending infection) and the resulting host inflammatory response are risk factors associated with spontaneous preterm birth (PTB), a major pregnancy complication. However, the path of infection and its propagation from the maternal side to the fetal side have been difficult to study due to the lack of appropriate in vitro models and limitations of animal models. A better understanding of the propagation kinetics of infectious agents and development of the host inflammatory response at the feto-maternal (amniochorion-decidua, respectively) interface (FMi) is critical in curtailing host inflammatory responses that can lead to PTB. To model ascending infection and determine inflammatory responses at the FMi, we developed a microfluidic organ-on-chip (OOC) device containing primary cells from the FMi (decidua, chorion, and amnion [mesenchyme and epithelium]) and collagen matrix harvested from primary tissue. The FMi-OOC is composed of four concentric circular cell/collagen chambers designed to mimic the thickness and cell density of the FMi in vivo. Each layer is connected by arrays of microchannels filled with type IV collagen to recreate the basement membrane of the amniochorion. Cellular characteristics (viability, morphology, production of nascent collagen, cellular transitions, and migration) in the OOC were similar to those seen in utero, validating the physiological relevance and utility of the developed FMi-OOC. The ascending infection model of the FMi-OOC, triggered by exposing the maternal (decidua) side of the OOC to lipopolysaccharide (LPS, 100 ng mL-1), shows that LPS propagated through the chorion, amnion mesenchyme, and reached the fetal amnion within 72 h. LPS induced time-dependent and cell-type-specific pro-inflammatory cytokine production (24 h decidua: IL-6, 48 h chorion: GM-CSF and IL-6, and 72 h amnion mesenchyme and epithelium: GM-CSF and IL-6). Collectively, this OOC model and study successfully modeled ascending infection, its propagation, and distinct inflammatory response at the FMi indicative of pathologic pathways of PTB. This OOC model provides a novel platform to study physiological and pathological cell status at the FMi, and is expected to have broad utility in the field of obstetrics.
Collapse
Affiliation(s)
- Lauren Richardson
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, USA
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Sungjin Kim
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Arum Han
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Ramkumar Menon
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, USA
| |
Collapse
|
22
|
Jacobs SO, Sheller-Miller S, Richardson LS, Urrabaz-Garza R, Radnaa E, Menon R. Characterizing the immune cell population in the human fetal membrane. Am J Reprod Immunol 2020; 85:e13368. [PMID: 33145922 DOI: 10.1111/aji.13368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/23/2020] [Accepted: 10/14/2020] [Indexed: 12/21/2022] Open
Abstract
PROBLEM This study localized CD45+ immune cells and compared changes in their numbers between term, not in labor (TNIL) and term, labor (TL) human fetal membranes. METHOD OF STUDY Fetal membranes (amniochorion) from normal TNIL and TL subjects were analyzed by immunohistochemistry (IHC), immunofluorescence (IF), and flow cytometry for evidence of total (CD45+ ) immune cells as well as innate immune cells (neutrophils, macrophages and NK cells) using specific markers. Fetal origin of immune cells was determined using polymerase chain reaction (PCR) for SRY gene in Y chromosome. RESULTS CD45+ cells were localized in human fetal membranes for both TNIL and TL. A threefold increase in CD45+ cells was seen in TL fetal membranes of (7.73% ± 2.35) compared to TNIL (2.36% ± 0.78). This increase is primarily contributed by neutrophils. Macrophages and NK cells did not change in the membranes between TNIL and TL. Leukocytes of fetal origin are present in the fetal membranes. CONCLUSION The fetal membranes without decidua contain a small proportion of immune cells. Some of these immune cells in the fetal membrane are fetal in origin. There is a moderate increase of immune cells in the fetal membranes at term labor; however, it is unclear whether this is a cause or consequence of labor. Further functional studies are needed to determine their contribution to membrane inflammation associated with parturition.
Collapse
Affiliation(s)
- Sara O Jacobs
- The Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Samantha Sheller-Miller
- The Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Lauren S Richardson
- The Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Rheanna Urrabaz-Garza
- The Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Enkhtuya Radnaa
- The Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Ramkumar Menon
- The Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
23
|
Gayle P, McGaughey V, Hernandez R, Wylie M, Colletti RC, Nguyen KL, Arons M, Padula L, Strbo N, Schesser K. Maternal- and Fetal-Encoded Perforin-2 Limits Placental Infection by a Bloodborne Pathogen. THE JOURNAL OF IMMUNOLOGY 2020; 205:1878-1885. [PMID: 32839236 DOI: 10.4049/jimmunol.2000615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/24/2020] [Indexed: 12/31/2022]
Abstract
Placental immune responses are highly regulated to strike a balance between protection and tolerance. For relatively mild infections, protection encompasses both the mother and fetus; however, during worsening conditions, protection becomes exclusively reserved for the mother. Previously, we and others have shown that the host factor perforin-2 plays a central role in protecting mice and cells against infection. In this study, we analyzed perforin-2 activity in the mouse placenta to determine whether perforin-2 plays a similarly protective role. We show that perforin-2 is critical for inhibiting Listeria monocytogenes colonization of the placenta and fetus and that this protection is due to both maternal and fetal-encoded perforin-2. Perforin-2 mRNA is readily detectable in individual immune cells of the decidua, and these levels are further enhanced specifically in decidual macrophages during high-dose infections that result in fetal expulsion. Unexpectedly, inductive perforin-2 expression in decidual macrophages did not occur during milder infections in which fetal viability remained intact. This pattern of expression significantly differed from that observed in splenic macrophages in which inductive perforin-2 expression was observed in both high and mild infection conditions. In the placenta, inductive perforin-2 expression in decidual macrophages was coincident with their polarization from a CD206+ MHC class IIlo to CD206- MHC class IIhi phenotype that normally occurs in the placenta during high-burden infections. Our results suggest that perforin-2 is part of a host response that is protective either for both the mother and fetus in milder infections or exclusively for the mother during high-dose infections.
Collapse
Affiliation(s)
- Petoria Gayle
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Vanessa McGaughey
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Rosmely Hernandez
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Marina Wylie
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Rachel C Colletti
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Ka Lam Nguyen
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Marshall Arons
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Laura Padula
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Natasa Strbo
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Kurt Schesser
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| |
Collapse
|
24
|
Abstract
The cervix is the essential gatekeeper for birth. Incomplete cervix remodeling contributes to problems with delivery at or post-term while preterm birth is a major factor in perinatal morbidity and mortality in newborns. Lack of cervix biopsies from women during the period preceding term or preterm birth have led to use of rodent models to advanced understanding of the mechanism for prepartum cervix remodeling. The critical transition from a soft cervix to a compliant prepartum lower uterine segment has only recently been recognized to occur in various mammalian species when progesterone in circulation is at or near the peak of pregnancy in preparation for birth. In rodents, characterization of ripening resembles an inflammatory process with a temporal coincidence of decreased density of cell nuclei, decline in cross-linked extracellular collagen, and increased presence of macrophages in the cervix. Although a role for inflammation in parturition and cervix remodeling is not a new concept, a comprehensive examination of literature in this review reveals that many conclusions are drawn from comparisons before and after ripening has occurred, not during the process. The present review focuses on essential phenotypes and functions of resident myeloid and possibly other immune cells to bridge the gap with evidence that specific biomarkers may assess the progress of ripening both at term and with preterm birth. Moreover, use of endpoints to determine the effectiveness of various therapeutic approaches to forestall remodeling and reduce risks for preterm birth, or facilitate ripening to promote parturition will improve the postpartum well-being of mothers and newborns.
Collapse
Affiliation(s)
- Steven M Yellon
- Department of Basic Sciences, Longo Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| |
Collapse
|
25
|
Shah AA, Wang D, Hirsch E. Nucleic Acid-Based Screening of Maternal Serum to Detect Viruses in Women with Labor or PROM. Reprod Sci 2020; 27:537-544. [PMID: 31925769 DOI: 10.1007/s43032-019-00051-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/12/2019] [Indexed: 01/12/2023]
Abstract
The purpose of this study was to determine whether timing of the initiating event of spontaneous labor (either uterine contractions with intact fetal membranes or rupture of membranes prior to labor (PROM)) is associated with maternal viral infection. It was a prospective case control study of women with either spontaneous labor or PROM occurring < 37 weeks' gestation ("cases") or at term ("controls"). An initial unbiased screen for viruses was performed with next-generation sequencing (NGS) in serum pooled from eight cases delivered by C/S and represents a range of gestational ages, membrane rupture status, and presence or absence of chorioamnionitis. Custom PCR was used to query individual patient samples from the original cohort. The NGS screen generated 15 million reads. Seven unique viral sequences were detected in two cases, all identified as torque teno virus (TTV), an ubiquitous DNA anellovirus of no known pathogenicity. Using nested and semi-nested PCR, sera from 72 patients (47 cases and 25 matched controls, stratified by ROM status) were screened for the 3 subtypes of anelloviruses (TTV, TTMDV, or TTMV). These were found in 43/47 cases (91%) and 16/25 controls (64%) (p = 0.012, OR = 5.9 (95% CI = 1.4-29.9)). In logistic regression, pregnant women with at least one type of anellovirus were more likely to experience preterm labor than those with no anellovirus (p = 0.03, aOR = 4.6, CI = 1.2-18.7). Among women experiencing a spontaneous initiating event of labor, TTV virus was more likely to be present in the serum of preterm than term patients. TTV may have a role in determining the timing of parturition.
Collapse
Affiliation(s)
- Ankit A Shah
- Department of Obstetrics and Gynecology, NorthShore University Health System, 2650 Ridge Ave, Evanston, IL, USA.,Department of Obstetrics and Gynecology, Pritzker School of Medicine, University of Chicago, 5801 S Ellis Ave, Chicago, IL, 60637, USA
| | - David Wang
- Departments of Molecular Microbiology and Pathology & Immunology, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA
| | - Emmet Hirsch
- Department of Obstetrics and Gynecology, NorthShore University Health System, 2650 Ridge Ave, Evanston, IL, USA. .,Department of Obstetrics and Gynecology, Pritzker School of Medicine, University of Chicago, 5801 S Ellis Ave, Chicago, IL, 60637, USA.
| |
Collapse
|