1
|
Foteva V, Maiti K, Fisher JJ, Qiao Y, Paterson DJ, Jones MWM, Smith R. Placental Element Content Assessed via Synchrotron-Based X-ray Fluorescence Microscopy Identifies Low Molybdenum Concentrations in Foetal Growth Restriction, Postdate Delivery and Stillbirth. Nutrients 2024; 16:2549. [PMID: 39125428 PMCID: PMC11314477 DOI: 10.3390/nu16152549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Placental health and foetal development are dependent upon element homeostasis. Analytical techniques such as mass spectroscopy can provide quantitative data on element concentrations in placental tissue but do not show spatial distribution or co-localisation of elements that may affect placental function. The present study used synchrotron-based X-ray fluorescence microscopy to elucidate element content and distribution in healthy and pathological placental tissue. The X-ray fluorescence microscopy (XFM) beamline at the Australian Synchrotron was used to image trace metal content of 19 placental sections from healthy term (n = 5, 37-39 weeks), foetal growth-restricted (n = 3, <32 weeks, birth weight <3rd centile), postdate (n = 7, >41 completed weeks), and stillbirth-complicated pregnancies (n = 4, 37-40 weeks). Samples were cryo-sectioned and freeze-dried. The concentration and distribution of fourteen elements were detected in all samples: arsenic, bromine, calcium, chlorine, copper, iron, molybdenum, phosphorous, potassium, rubidium, selenium, strontium, sulphur, and zinc. The elements zinc, calcium, phosphorous, and strontium were significantly increased in stillbirth placental tissue in comparison to healthy-term controls. Strontium, zinc, and calcium were found to co-localise in stillbirth tissue samples, and calcium and strontium concentrations were correlated in all placental groups. Molybdenum was significantly decreased in stillbirth, foetal growth-restricted, and postdate placental tissue in comparison to healthy-term samples (p < 0.0001). Synchrotron-based XFM reveals elemental distribution within biological samples such as the placenta, allowing for the co-localisation of metal deposits that may have a pathological role. Our pilot study further indicates low concentrations of placental molybdenum in pregnancies complicated by foetal growth restriction, postdate delivery, and stillbirth.
Collapse
Affiliation(s)
- Vladimira Foteva
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle 2305, Australia; (K.M.); (J.J.F.); (R.S.)
- School of Medicine and Public Health, University of Newcastle, Newcastle 2308, Australia
| | - Kaushik Maiti
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle 2305, Australia; (K.M.); (J.J.F.); (R.S.)
| | - Joshua J. Fisher
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle 2305, Australia; (K.M.); (J.J.F.); (R.S.)
- School of Medicine and Public Health, University of Newcastle, Newcastle 2308, Australia
| | - Yixue Qiao
- Wisdom Lake Academy of Pharmacy, Xi’an Jiao Tong Liverpool University, Suzhou 215123, China;
| | - David J. Paterson
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation, Clayton 3168, Australia;
| | - Michael W. M. Jones
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia;
- Central Analytical Research Facility, Queensland University of Technology, Brisbane 4000, Australia
| | - Roger Smith
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle 2305, Australia; (K.M.); (J.J.F.); (R.S.)
- School of Medicine and Public Health, University of Newcastle, Newcastle 2308, Australia
| |
Collapse
|
2
|
Luo Y, Zhang H, Gui F, Fang J, Lin H, Qiu D, Ge L, Wang Q, Xu P, Tang J. Concentrations and influencing factors of 17 elements in placenta, cord blood, and maternal blood of women from an e-waste recycling area. J Trace Elem Med Biol 2024; 84:127449. [PMID: 38640746 DOI: 10.1016/j.jtemb.2024.127449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/16/2024] [Accepted: 04/06/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND The effects of prenatal element exposure on mothers and fetuses have generated concern. Profiles of trace and toxic elements in biological material are urgently desired, especially for women who reside near e-waste recycling facilities. The aim of this study was to investigate elements concentrations in placenta, cord blood, and maternal blood of women and to evaluate the influencing factors. METHODS A group of 48 women from an e-waste recycling site and a group of 31 women from a non-e-waste recycling site were recruited. Basic characteristics were collected by questionnaire and the concentrations of 17 elements in placenta, cord blood, and maternal blood samples were analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Finally, the generalized linear model regression analysis (GLM) was used to test the association between element concentrations and possible factors. RESULTS Compared to the control group, the exposed group had significantly elevated cadmium (Cd), zinc (Zn), nickel (Ni), and antimony (Sb) in placenta, and higher lead (Pb) in maternal blood and cord blood (P<0.05). Sb concentration in maternal blood was significantly lower than in the control group (P<0.05). GLM analysis showed that element concentrations were mainly associated with maternal age [chromium (Cr), iron (Fe), selenium (Se), cobalt (Co), mercury (Hg) in placenta, copper (Cu) in maternal blood], education (Se, Sb in placenta), family income (Cu in maternal blood and Ni in placenta), passive smoking [Cu and Zn in placenta, Pb in maternal blood], and e-waste contact history (Hg in cord blood, Cu, Zn, and Cd in maternal blood). CONCLUSIONS Women in the e-waste recycling area had higher toxic element levels in the placenta and blood samples. More preventive measures were needed to reduce the risk of element exposure for mothers and fetuses in these areas.
Collapse
Affiliation(s)
- Yacui Luo
- Taizhou Municipal Center for Disease Control and Prevention, 608 Donghai Road, Jiaojiang District, Taizhou 318000, China
| | - Haijun Zhang
- Taizhou Municipal Center for Disease Control and Prevention, 608 Donghai Road, Jiaojiang District, Taizhou 318000, China
| | - Fangzhong Gui
- Taizhou Municipal Center for Disease Control and Prevention, 608 Donghai Road, Jiaojiang District, Taizhou 318000, China
| | - Jiayang Fang
- Taizhou Municipal Center for Disease Control and Prevention, 608 Donghai Road, Jiaojiang District, Taizhou 318000, China
| | - Haijiang Lin
- Taizhou Municipal Center for Disease Control and Prevention, 608 Donghai Road, Jiaojiang District, Taizhou 318000, China
| | - Danhong Qiu
- Taizhou Municipal Center for Disease Control and Prevention, 608 Donghai Road, Jiaojiang District, Taizhou 318000, China
| | - Lingfei Ge
- Luqiao School District, Taizhou Hospital, No.1 east of Tongyang Road, Luqiao District, Taizhou 318050, China
| | - Qiong Wang
- Luqiao Hospital of Traditional Chinese Medicine, No. 88 Yingbin Avenue, Luqiao District, Taizhou 318050, China
| | - Peiwei Xu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou 310051, China
| | - Jun Tang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou 310051, China.
| |
Collapse
|
3
|
Grundeken M, Gustin K, Vahter M, Delaval M, Barman M, Sandin A, Sandberg AS, Wold AE, Broberg K, Kippler M. Toxic metals and essential trace elements in placenta and their relation to placental function. ENVIRONMENTAL RESEARCH 2024; 248:118355. [PMID: 38295973 DOI: 10.1016/j.envres.2024.118355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
INTRODUCTION Placental function is essential for fetal development, but it may be susceptible to malnutrition and environmental stressors. OBJECTIVE To assess the impact of toxic and essential trace elements in placenta on placental function. METHODS Toxic metals (cadmium, lead, mercury, cobalt) and essential elements (copper, manganese, zinc, selenium) were measured in placenta of 406 pregnant women in northern Sweden using ICP-MS. Placental weight and birth weight were obtained from hospital records and fetoplacental weight ratio was used to estimate placental efficiency. Placental relative telomere length (TL) and mitochondrial DNA copy number (mtDNAcn) were determined by quantitative PCR (n = 285). Single exposure-outcome associations were evaluated using linear or spline regression, and joint associations and interactions with Bayesian kernel machine regression (BKMR), all adjusted for sex, maternal smoking, and age or BMI. RESULTS Median cadmium, mercury, lead, cobalt, copper, manganese, zinc, and selenium concentrations in placenta were 3.2, 1.8, 4.3, 2.3, 1058, 66, 10626, and 166 μg/kg, respectively. In the adjusted regression, selenium (>147 μg/kg) was inversely associated with placental weight (B: -158; 95 % CI: -246, -71, per doubling), as was lead at low selenium (B: -23.6; 95 % CI: -43.2, -4.0, per doubling). Manganese was positively associated with placental weight (B: 41; 95 % CI: 5.9, 77, per doubling) and inversely associated with placental efficiency (B: -0.01; 95 % CI: -0.019, -0.004, per doubling). Cobalt was inversely associated with mtDNAcn (B: -11; 95 % CI: -20, -0.018, per doubling), whereas all essential elements were positively associated with mtDNAcn, individually and joint. CONCLUSION Among the toxic metals, lead appeared to negatively impact placental weight and cobalt decreased placental mtDNAcn. Joint essential element concentrations increased placental mtDNAcn. Manganese also appeared to increase placental weight, but not birth weight. The inverse association of selenium with placental weight may reflect increased transport of selenium to the fetus in late gestation.
Collapse
Affiliation(s)
- Marijke Grundeken
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Klara Gustin
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Marie Vahter
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mathilde Delaval
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Malin Barman
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Anna Sandin
- Department of Clinical Science, Pediatrics, Sunderby Research Unit, Umeå University, Sweden
| | - Ann-Sofie Sandberg
- Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Agnes E Wold
- Institute of Biomedicine, Dept, Of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karin Broberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Álvarez-Silvares E, Fernández-Cruz T, Bermudez-González M, Rubio-Cid P, Almeida A, Pinto E, Seoane-Pillado T, Martínez-Carballo E. Placental levels of essential and non-essential trace element in relation to neonatal weight in Northwestern Spain: application of generalized additive models. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62566-62578. [PMID: 36943567 DOI: 10.1007/s11356-023-26560-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/16/2023] [Indexed: 05/10/2023]
Abstract
Adequate gestational progression depends to a great extent on placental development, which can modify maternal and neonatal outcomes. Any environmental toxicant, including metals, with the capacity to affect the placenta can alter the development of the pregnancy and its outcome. The objective of this study was to correlate the placenta levels of 14 essential and non-essential elements with neonatal weight. We examined relationships between placental concentrations of arsenic, cadmium, cobalt, copper, mercury, lithium, manganese, molybdenum, nickel, lead, rubidium, selenium, strontium, and zinc from 79 low obstetric risk pregnant women in Ourense (Northwestern Spain, 42°20'12.1″N 7°51.844'O) with neonatal weight. We tested associations between placental metal concentrations and neonatal weight by conducting multivariable linear regressions using generalized linear models (GLM) and generalized additive models (GAM). While placental Co (p = 0.03) and Sr (p = 0.048) concentrations were associated with higher neonatal weight, concentrations of Li (p = 0.027), Mo (p = 0.049), and Se (p = 0.02) in the placenta were associated with lower newborn weight. Our findings suggest that the concentration of some metals in the placenta may affect fetal growth.
Collapse
Affiliation(s)
- Esther Álvarez-Silvares
- Obstetrics and Gynaecology Department, Complexo Hospitalario Universitario de Ourense, C/ Ramón Puga 54, 32005, Ourense, Spain.
| | - Tania Fernández-Cruz
- Food and Health Omics, Analytical and Food Chemistry Department, Campus da Auga, Faculty of Sciences, University of Vigo, 32004, Ourense, Spain
| | - Mónica Bermudez-González
- Obstetrics and Gynaecology Department, Complexo Hospitalario Universitario de Ourense, C/ Ramón Puga 54, 32005, Ourense, Spain
| | - Paula Rubio-Cid
- Obstetrics and Gynaecology Department, Complexo Hospitalario Universitario de Ourense, C/ Ramón Puga 54, 32005, Ourense, Spain
| | - Agostinho Almeida
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Edgar Pinto
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- Department of Environmental Health, School of Health, P. Porto, 4200-072, Porto, Portugal
| | | | - Elena Martínez-Carballo
- Food and Health Omics, Analytical and Food Chemistry Department, Campus da Auga, Faculty of Sciences, University of Vigo, 32004, Ourense, Spain
| |
Collapse
|
5
|
Fetal and Neonatal Middle Cerebral Artery Hemodynamic Changes and Significance under Ultrasound Detection in Hypertensive Disorder Complicating Pregnancy Patients with Different Severities. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6110228. [PMID: 35799667 PMCID: PMC9256346 DOI: 10.1155/2022/6110228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022]
Abstract
Colour Doppler ultrasound was applied for monitoring the hemodynamic parameters of fetal uterine artery (UtA), umbilical artery (UA), and middle cerebral artery (MCA) during pregnancy. In hypertension disease complicating pregnancy, these hemodynamic measures and their therapeutic applicability value were reviewed (HDCP). 120 singleton pregnant women were chosen, with 40 cases of mild preeclampsia (mild group), 40 cases of severe preeclampsia (severe group), and 40 normal control pregnant women (control group). The hemodynamic parameters of UtA, MCA, and UA were monitored in the three groups, including pulsatility index (PI), resistance index (RI), and the systolic/diastolic velocity (S/D). The parameters PI, RI, S/D, and venous catheter shunt rate (Qdv/Quv) of UtA and UA in the severe group were higher than those in the normal group and the mild group, showing the differences statistically significant (
). The PI, RI, and S/D of MCA in the severe group were lower than those in the normal group and the mild group (
). The changing trends of PI, RI, and S/D in the severe group were all first increased and then decreased in the early, middle, and later pregnancy (
). The area under the curve (AUC) was 0.98 in the receiver operating characteristic (ROC) curve created using a combination of hemodynamic measures and pregnancy outcomes, and the sensitivity and specificity for predicting bad outcomes were 94.7 percent and 96.4 percent, respectively. Colour Doppler ultrasound may accurately detect changes in the PI, RI, and S/D of UtA, MCA, and UA in pregnant women and serve as a reference for determining the intrauterine state of the fetuses and predicting bad pregnancy outcomes. In particular, the parameters in later pregnancy were higher worthy of diagnostic value for adverse pregnancy outcomes. The combination of various parameters could make an improvement of the diagnostic accuracy and provide a basis for guiding treatment as well as determining the optimal timing of delivery.
Collapse
|
6
|
Hauser S, Andres S, Leopold K. Determination of trace elements in placenta by total reflection X-ray fluorescence spectrometry: effects of sampling and sample preparation. Anal Bioanal Chem 2022; 414:4519-4529. [PMID: 35552471 PMCID: PMC9142463 DOI: 10.1007/s00216-022-04112-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/20/2022] [Accepted: 05/02/2022] [Indexed: 11/25/2022]
Abstract
Placental elemental composition can serve as an indicator for neonatal health. Medical studies aiming at revealing such cause-and-effect relationships or studies monitoring potential environmental influences consist of large sample series to ensure statistically sufficient data. Several analytical techniques have been used to study trace metals in human placenta. However, most techniques require provision of clear liquid sample solutions and therefore time- and reagent-consuming total digestion of biological tissue is necessary. In total reflection X-ray fluorescence spectrometry (TXRF)-a straightforward multielement analytical technique-in contrast suspensions of minute sample amounts can be analyzed directly. Therefore, herein we report on a valid method to prepare homogenous sample suspensions for sustainable and fast TXRF analysis of large sample series. The optimized method requires only 10 mg of powdered placental tissue and 1 mL nitric acid. Suspensions are readily prepared within 30 min and the found mass fractions of major, minor, and trace elements are in good agreement in comparison to analysis of digests. In addition, possible effects on fixation time and the exact sampling location, i.e., maternal vs. fetal side of the placenta, were studied applying this method. Thereby, significant differences for fetal placenta tissue compared to maternal or intermediate tissue were observed revealing accumulation of trace elements in the fetal side of the placenta. Furthermore, considerable depletion of up to 60% mass fraction with longer fixation duration occurred in particular in fetal placenta tissue. These findings help to understand the large ranges of mass fraction of elements in placenta reported in the literature and at the same time indicate the necessity for more systematic investigation of non-homogenous elements distributed in placenta taking sampling and stabilization methods into account.
Collapse
Affiliation(s)
- Sebastian Hauser
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Sophia Andres
- Universitätsfrauenklinikum Ulm, Prittwitzstrasse 43, 89075, Ulm, Germany
| | - Kerstin Leopold
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
7
|
Rduch T, Tsolaki E, El Baz Y, Leschka S, Born D, Kinkel J, Anthis AHC, Fischer T, Jochum W, Hornung R, Gogos A, Herrmann IK. The Role of Inorganics in Preeclampsia Assessed by Multiscale Multimodal Characterization of Placentae. Front Med (Lausanne) 2022; 9:857529. [PMID: 35433726 PMCID: PMC9009444 DOI: 10.3389/fmed.2022.857529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/07/2022] [Indexed: 12/03/2022] Open
Abstract
Preeclampsia is one of the most dangerous diseases in pregnancy. Because of the hypertensive nature of preeclampsia, placental calcifications are believed to be a predictor for its occurrence, analogous to their role in cardiovascular diseases. However, the prevalence and the relevance of calcifications for the clinical outcome with respect to preeclampsia remains controversial. In addition, the role of other inorganic components present in the placental tissue in the development of preeclampsia has rarely been investigated. In this work, we therefore characterized inorganic constituents in placental tissue in groups of both normotensive and preeclamptic patients (N = 20 each) using a multi-scale and multi-modal approach. Examinations included elemental analysis (metallomics), sonography, computed tomography (CT), histology, scanning electron microscopy, X-ray fluorescence and energy dispersive X-ray spectroscopy. Our data show that tissue contents of several heavy metals (Al, Cd, Ni, Co, Mn, Pb, and As) were elevated whereas the Rb content was decreased in preeclamptic compared to normotensive placentae. However, the median mineral content (Ca, P, Mg, Na, K) was remarkably comparable between the two groups and CT showed lower calcified volumes and fewer crystalline deposits in preeclamptic placentae. Electron microscopy investigations revealed four distinct types of calcifications, all predominantly composed of calcium, phosphorus and oxygen with variable contents of magnesium in tissues of both maternal and fetal origin in both preeclamptic and normotensive placentae. In conclusion our study suggests that heavy metals, combined with other factors, can be associated with the development of preeclampsia, however, with no obvious correlation between calcifications and preeclampsia.
Collapse
Affiliation(s)
- Thomas Rduch
- Laboratory for Particles Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland.,Department of Gynaecology and Obstetrics, Kantonsspital St.Gallen, St. Gallen, Switzerland
| | - Elena Tsolaki
- Laboratory for Particles Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland.,Nanoparticle Systems Engineering Laboratory, Department of Mechanical and Process Engineering, Institute of Process Engineering, ETH Zürich, Zurich, Switzerland
| | - Yassir El Baz
- Department of Radiology, Kantonsspital St.Gallen, St. Gallen, Switzerland
| | - Sebastian Leschka
- Department of Radiology, Kantonsspital St.Gallen, St. Gallen, Switzerland
| | - Diana Born
- Institute of Pathology, Kantonsspital St.Gallen, St. Gallen, Switzerland
| | - Janis Kinkel
- Department of Gynaecology and Obstetrics, Kantonsspital St.Gallen, St. Gallen, Switzerland
| | - Alexandre H C Anthis
- Laboratory for Particles Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland.,Nanoparticle Systems Engineering Laboratory, Department of Mechanical and Process Engineering, Institute of Process Engineering, ETH Zürich, Zurich, Switzerland
| | - Tina Fischer
- Department of Gynaecology and Obstetrics, Kantonsspital St.Gallen, St. Gallen, Switzerland
| | - Wolfram Jochum
- Institute of Pathology, Kantonsspital St.Gallen, St. Gallen, Switzerland
| | - René Hornung
- Department of Gynaecology and Obstetrics, Kantonsspital St.Gallen, St. Gallen, Switzerland
| | - Alexander Gogos
- Laboratory for Particles Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland.,Nanoparticle Systems Engineering Laboratory, Department of Mechanical and Process Engineering, Institute of Process Engineering, ETH Zürich, Zurich, Switzerland
| | - Inge K Herrmann
- Laboratory for Particles Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland.,Nanoparticle Systems Engineering Laboratory, Department of Mechanical and Process Engineering, Institute of Process Engineering, ETH Zürich, Zurich, Switzerland
| |
Collapse
|