1
|
Marzo CM, Gambini S, Poletti S, Munari F, Assfalg M, Guzzo F. Inhibition of Human Monoamine Oxidases A and B by Specialized Metabolites Present in Fresh Common Fruits and Vegetables. PLANTS 2022; 11:plants11030346. [PMID: 35161329 PMCID: PMC8838583 DOI: 10.3390/plants11030346] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/26/2022]
Abstract
Diets rich in fruits and vegetables are associated with better psychological wellbeing and cognitive functions, although it is unclear which molecules and mechanisms are involved. One potential explanation is the inhibition of monoamine oxidases (MAOs), which have been linked to several neurological disorders. The present study investigated the ability of kiwifruit to inhibit MAO-A and MAO-B, refining an in vitro assay to avoid confounding effects. Ultra-performance liquid chromatography/mass spectrometry (UPLC-QTOF) and nuclear magnetic resonance spectroscopy (NMR) were used to select individual kiwifruit metabolites for further analysis. Moreover, extracts of other common fruits and vegetables were screened to identify promising candidate inhibitors. Multiple extracts and compounds inhibited both enzymes, and the selective inhibition of MAO-B by the major kiwifruit specialized metabolite D-(−)-quinic acid was observed. These results suggest that fruits and vegetables contain metabolites that inhibit the activity of MAO-A and -B, offering a potential natural option for the treatment of neurological disorders, in which MAOs are involved.
Collapse
|
2
|
Gecchele E, Negri S, Cauzzi A, Cuccurullo A, Commisso M, Patrucco A, Anceschi A, Zaffani G, Avesani L. Optimization of a Sustainable Protocol for the Extraction of Anthocyanins as Textile Dyes from Plant Materials. Molecules 2021; 26:molecules26226775. [PMID: 34833867 PMCID: PMC8625177 DOI: 10.3390/molecules26226775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 11/04/2021] [Indexed: 12/30/2022] Open
Abstract
Anthocyanins are the largest group of polyphenolic pigments in the plant kingdom. These non-toxic, water-soluble compounds are responsible for the pink, red, purple, violet, and blue colors of fruits, vegetables, and flowers. Anthocyanins are widely used in the production of food, cosmetic and textile products, in the latter case to replace synthetic dyes with natural and sustainable alternatives. Here, we describe an environmentally benign method for the extraction of anthocyanins from red chicory and their characterization by HPLC-DAD and UPLC-MS. The protocol does not require hazardous solvents or chemicals and relies on a simple and scalable procedure that can be applied to red chicory waste streams for anthocyanin extraction. The extracted anthocyanins were characterized for stability over time and for their textile dyeing properties, achieving good values for washing fastness and, as expected, a pink-to-green color change that is reversible and can therefore be exploited in the fashion industry.
Collapse
Affiliation(s)
- Elisa Gecchele
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (E.G.); (S.N.); (A.C.); (A.C.); (M.C.)
| | - Stefano Negri
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (E.G.); (S.N.); (A.C.); (A.C.); (M.C.)
| | - Anna Cauzzi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (E.G.); (S.N.); (A.C.); (A.C.); (M.C.)
| | - Anna Cuccurullo
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (E.G.); (S.N.); (A.C.); (A.C.); (M.C.)
| | - Mauro Commisso
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (E.G.); (S.N.); (A.C.); (A.C.); (M.C.)
| | - Alessia Patrucco
- CNR-STIIMA, Italian National Research Council, Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, Corso G. Pella 16, 13900 Biella, Italy; (A.P.); (A.A.)
| | - Anastasia Anceschi
- CNR-STIIMA, Italian National Research Council, Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, Corso G. Pella 16, 13900 Biella, Italy; (A.P.); (A.A.)
| | - Giorgio Zaffani
- Cooperativa Sociale Cercate, Via Bramante 15, 37134 Verona, Italy;
| | - Linda Avesani
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; (E.G.); (S.N.); (A.C.); (A.C.); (M.C.)
- Correspondence: ; Tel.: +39-045-802-7839
| |
Collapse
|
3
|
Bianconi M, Ceriotti L, Cuzzocrea S, Esposito E, Pressi G, Sgaravatti E, Bertaiola O, Guarnerio C, Barbieri E, Semenzato A, Negri S, Commisso M, Avesani L, Guzzo F. Red Carrot Cells Cultured in vitro Are Effective, Stable, and Safe Ingredients for Skin Care, Nutraceutical, and Food Applications. Front Bioeng Biotechnol 2020; 8:575079. [PMID: 33195137 PMCID: PMC7609948 DOI: 10.3389/fbioe.2020.575079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022] Open
Abstract
Plant biomasses growing in bioreactor could be developed as production systems for cosmetic ingredients, nutraceuticals and food additives. We previously reported that the red carrot cell line R4G accumulates high levels of anthocyanins, which are potent antioxidants with multiple health-promoting properties. To investigate the industrial potential of this cell line in detail, we tested extract for antioxidant and anti-inflammatory activity in the mouse monocyte/macrophage cell-line J774A.1 and in reconstructed skin tissue models. We also compared the R4G extract to commercial carrot extracts in terms of stability and metabolomic profiles. We found that the R4G extract have potent antioxidant and anti-inflammatory activities, protecting mammalian cells from the oxidative stress triggered by exposure to bacterial lipopolysaccharides and H2O2. The extract also inhibited the nuclear translocation of NF-κB in an epidermal skin model, and induced the expression of VEGF-A to promote the microcirculation in a dermal microtissue model. The anthocyanins extracted from R4G cells were significantly more stable than those found in natural red carrot extracts. Finally, we showed that R4G extract has similar metabolomic profile of natural extracts by using a combination of targeted and untargeted metabolomics analysis, demonstrating the safety of R4G carrot cells for applications in the nutraceutical and food/feed industries.
Collapse
Affiliation(s)
| | | | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | | | | | | | | | | | - Alessandra Semenzato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Stefano Negri
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Mauro Commisso
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Linda Avesani
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Flavia Guzzo
- Department of Biotechnology, University of Verona, Verona, Italy
| |
Collapse
|
4
|
Accumulation of Phenolic Acids during Storage over Differently Handled Fresh Carrots. Foods 2020; 9:foods9101515. [PMID: 33096865 PMCID: PMC7589261 DOI: 10.3390/foods9101515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/09/2020] [Accepted: 10/18/2020] [Indexed: 12/14/2022] Open
Abstract
Carrots contain a significant content of phenolic compounds, mainly phenolic acids. Technological processing of carrots inflicts wounding stress and induces accumulation of these compounds, especially caffeic acid derivatives, in the periderm tissue. In this study, the effect of minimal processing (polishing, washing, peeling, and grating) on the retention of soluble phenolic acids in carrots was monitored during cold storage. Storage for up to 4 weeks and 24 h was used for whole and grated carrot samples, respectively. Total phenolic acid levels found in differently processed carrots varied greatly at the beginning of the storage period and on dry weight basis they ranged from 228 ± 67.9 mg/kg (grated carrot) to 996 ± 177 mg/kg (machine washed). In each case, processing followed by storage induced phenolic acid accumulation in the carrots. At the end of the experiment (4 weeks at +8 °C), untreated and machine-washed carrots contained ca. 4-fold more phenolic acids than at day 0. Similarly, polished carrots contained 9-fold and peeled carrots 31-fold more phenolic acids than at day 0. The phenolic acid content in grated carrot doubled after 24 h storage at +4 °C. Individual phenolic acids were characterized by high resolution mass spectrometry. MS data strongly suggest the presence of daucic acid conjugates of phenolic acids in carrot. Storage time did not have statistically similar effect on all compounds and generally in a way that dicaffeoyldaucic acid had the highest increase. This research provides important information for primary production, packaging, catering, the fresh-cut industry and consumers regarding the selection of healthier minimally processed carrots.
Collapse
|
5
|
Commisso M, Anesi A, Dal Santo S, Guzzo F. Performance comparison of electrospray ionization and atmospheric pressure chemical ionization in untargeted and targeted liquid chromatography/mass spectrometry based metabolomics analysis of grapeberry metabolites. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:292-300. [PMID: 27935129 DOI: 10.1002/rcm.7789] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE Electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) are both used to generate ions for the analysis of metabolites by liquid chromatography/mass spectrometry (LC/MS). We compared the performance of these methods for the analysis of Corvina grapevine berry methanolic extracts, which are complex mixtures of diverse metabolites. METHODS Corvina berries representing three ripening stages (veraison, early-ripening and full-ripening) were collected during two growing seasons, powdered and extracted with methanol. Untargeted metabolomic analysis was carried out by LC/ESI-MS and LC/APCI-MS. Processed data files were assembled into a data matrix for multivariate statistical analysis. The limits of detection (LODs), limits of quantification (LOQs), linear ranges, and matrix effects were investigated for strongly polar metabolites such as sucrose and tartaric acid and for moderately polar metabolites such as caftaric acid, epicatechin and quercetin 3-O-glucoside. RESULTS Multivariate statistical analysis of the 608 features revealed that APCI was particularly suitable for the ionization of strongly polar metabolites such as sugars and organic acids, whereas ESI was more suitable for moderately polar metabolites such as flavanols, flavones and both glycosylated and acylated anthocyanins. APCI generated more fragment ions whereas ESI generated more adducts. ESI achieved lower LODs and LOQs for sucrose and tartaric acid but featured narrower linear ranges and greater matrix effects. CONCLUSIONS ESI and APCI are not complementary ion sources. Indeed, ESI can be exploited to analyze moderately polar metabolites, whereas APCI can be used to investigate weakly polar/non-polar metabolites and, as demonstrated by our results, also strongly polar metabolites. ESI and APCI can be used in parallel, exploiting their strengths to cover the plant metabolome more broadly than either method alone. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mauro Commisso
- Biotechnology Department, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Andrea Anesi
- Biotechnology Department, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Silvia Dal Santo
- Biotechnology Department, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Flavia Guzzo
- Biotechnology Department, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| |
Collapse
|
6
|
Commisso M, Toffali K, Strazzer P, Stocchero M, Ceoldo S, Baldan B, Levi M, Guzzo F. Impact of Phenylpropanoid Compounds on Heat Stress Tolerance in Carrot Cell Cultures. FRONTIERS IN PLANT SCIENCE 2016; 7:1439. [PMID: 27713760 PMCID: PMC5031593 DOI: 10.3389/fpls.2016.01439] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/08/2016] [Indexed: 05/20/2023]
Abstract
The phenylpropanoid and flavonoid families include thousands of specialized metabolites that influence a wide range of processes in plants, including seed dispersal, auxin transport, photoprotection, mechanical support and protection against insect herbivory. Such metabolites play a key role in the protection of plants against abiotic stress, in many cases through their well-known ability to inhibit the formation of reactive oxygen species (ROS). However, the precise role of specific phenylpropanoid and flavonoid molecules is unclear. We therefore investigated the role of specific anthocyanins (ACs) and other phenylpropanoids that accumulate in carrot cells cultivated in vitro, focusing on their supposed ability to protect cells from heat stress. First we characterized the effects of heat stress to identify quantifiable morphological traits as markers of heat stress susceptibility. We then fed the cultures with precursors to induce the targeted accumulation of specific compounds, and compared the impact of heat stress in these cultures and unfed controls. Data modeling based on projection to latent structures (PLS) regression revealed that metabolites containing coumaric or caffeic acid, including ACs, correlate with less heat damage. Further experiments suggested that one of the cellular targets damaged by heat stress and protected by these metabolites is the actin microfilament cytoskeleton.
Collapse
Affiliation(s)
- Mauro Commisso
- Department of Biotechnology, University of VeronaVerona, Italy
| | - Ketti Toffali
- Department of Biotechnology, University of VeronaVerona, Italy
| | - Pamela Strazzer
- Department of Biotechnology, University of VeronaVerona, Italy
| | | | - Stefania Ceoldo
- Department of Biotechnology, University of VeronaVerona, Italy
| | | | - Marisa Levi
- Department of Biotechnology, University of VeronaVerona, Italy
| | - Flavia Guzzo
- Department of Biotechnology, University of VeronaVerona, Italy
- *Correspondence: Flavia Guzzo,
| |
Collapse
|