1
|
Kim JS, Chae S, Jo JE, Kim KD, Song SI, Park SH, Choi SB, Jun KM, Shim SH, Jeon JS, Lee GS, Kim YK. OsMYB14, an R2R3-MYB transcription factor, regulates plant height through the control of hormone metabolism in rice. Mol Cells 2024; 47:100093. [PMID: 39004308 PMCID: PMC11342784 DOI: 10.1016/j.mocell.2024.100093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024] Open
Abstract
Plant growth must be regulated throughout the plant life cycle. The myeloblastosis (MYB) transcription factor (TF) family is one of the largest TF families and is involved in metabolism, lignin biosynthesis, and developmental processes. Here, we showed that OsMYB14, a rice R2R3-MYB TF, was expressed in leaves and roots, especially in rice culm and panicles, and that it localized to the nucleus. Overexpression of OsMYB14 (OsMYB14-ox) in rice resulted in a 30% reduction in plant height compared to that of the wild type (WT), while the height of the osmyb14-knockout (osmyb14-ko) mutant generated using the CRISPR/Cas9 system was not significantly different. Microscopic observations of the first internode revealed that the cell size did not differ significantly among the lines. RNA sequencing analysis revealed that genes associated with plant development, regulation, lipid metabolism, carbohydrate metabolism, and gibberellin (GA) and auxin metabolic processes were downregulated in the OsMYB14-ox line. Hormone quantitation revealed that inactive GA19 accumulated in OsMYB14-ox but not in the WT or knockout plants, suggesting that GA20 generation was repressed. Indole-3-acetic acid (IAA) and IAA-aspartate accumulated in OsMYB14-ox and osmyb14-ko, respectively. Indeed, real-time PCR analysis revealed that the expression of OsGA20ox1, encoding GA20 oxidase 1, and OsGH3-2, encoding IAA-amido synthetase, was downregulated in OsMYB14-ox and upregulated in osmyb14-ko. A protein-binding microarray revealed the presence of a consensus DNA-binding sequence, the ACCTACC-like motif, in the promoters of the OsGA20ox1 and GA20ox2 genes. These results suggest that OsMYB14 may act as a negative regulator of biological processes affecting plant height in rice by regulating GA biosynthesis and auxin metabolism.
Collapse
Affiliation(s)
- Joung Sug Kim
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Songhwa Chae
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Jae Eun Jo
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Kyung Do Kim
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Sang-Ik Song
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Su Hyun Park
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Sang-Bong Choi
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Kyong Mi Jun
- Genomics Genetics Institute, GreenGene Biotech Inc, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Su-Hyeon Shim
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, Gyeonggi-do 17104, Republic of Korea
| | - Jong-Seong Jeon
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, Gyeonggi-do 17104, Republic of Korea
| | - Gang-Seob Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju, Jeollabuk-do 54875, Republic of Korea
| | - Yeon-Ki Kim
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea.
| |
Collapse
|
2
|
Du T, Wang Y, Xie H, Liang D, Gao S. Fragmentation Patterns of Phenolic C-Glycosides in Mass Spectrometry Analysis. Molecules 2024; 29:2953. [PMID: 38998905 PMCID: PMC11243344 DOI: 10.3390/molecules29132953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Many phenolic C-glycosides possess nutritional benefits and pharmacological efficacies. However, the MS/MS fragmentation pattern of phenolic C-glycosides analysis is understudied. This paper aims to determine the MS/MS fragmentation patterns of phenolic C-glycosides. METHOD Ten compounds with different sugar moieties, aglycones, and substitutes were analyzed to determine the impact of these structural features on MS/MS fragmentation using UPLC-QTOF-MS analysis. RESULTS The results showed that water loss followed by RDA reaction and alpha cleavage in the C-C bonded sugar moieties are the major fragmentation pathways. Additionally, the sugar cleavage was not affected by the skeleton and the substitute of the aglycones. These results suggested that the fragmentation patterns of phenolic C-glycosides differ from those in the O-glycosides, where the O-C glycosidic bond is the most cleavage-liable bond in MS/MS analysis. CONCLUSIONS These MS/MS fragmentation patterns can be used for the identification of C-glycosides from dietary components and herbal medicine as well as developing robust methods using MRM methods to quantify C-glycosides.
Collapse
Affiliation(s)
- Ting Du
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, USA
| | - Yang Wang
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, USA
| | - Huan Xie
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, USA
| | - Dong Liang
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, USA
| | - Song Gao
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, USA
| |
Collapse
|
3
|
Livadariu O, Maximilian C, Rahmanifar B, Cornea CP. LED Technology Applied to Plant Development for Promoting the Accumulation of Bioactive Compounds: A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:1075. [PMID: 36903934 PMCID: PMC10005426 DOI: 10.3390/plants12051075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/20/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Light is an important environmental factor for plants. The quality of light and the wavelength stimulate enzyme activation, regulate enzyme synthesis pathways and promote bioactive compound accumulation. In this respect, the utilization of LED light under controlled conditions in agriculture and horticulture could be the most suitable choice for increasing the nutritional values of various crops. In recent decades, LED lighting has been increasingly used in horticulture and agriculture for commercial-scale breeding of many species of economic interest. Most studies on the influence of LED lighting on the accumulation of bioactive compounds in any type of plants (horticultural, agricultural species or sprouts) and also biomass production, were carried out in growth chambers under controlled conditions, without natural light. Illumination with LED could be a solution for obtaining an important crop with maximum efficiency, with a high nutritional value and minimum effort. To demonstrate the importance of LED lighting in agriculture and horticulture, we carried out a review based on a large number of results cited in the literature. The results were collected from 95 articles and were obtained using the keyword LED combined with plant growth; flavonoids; phenols; carotenoids; terpenes; glucosinolates; food preservation. We found the subject regarding the LED effect on plant growth and development in 11 of the articles analyzed. The treatment of LED on phenol content was registered in 19 articles, while information regarding flavonoid concentrations was revealed by 11 articles. Two articles we reviewed debate the accumulation of glucosinolates and four articles analyzed the synthesis of terpenes under LED illumination and 14 papers analyzed the variation in content of carotenoids. The effect of LED on food preservation was reported in 18 of the works analyzed. Some of the 95 papers contained references which included more keywords.
Collapse
Affiliation(s)
- Oana Livadariu
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine of Bucharest, 59 Bd. Marasti, 011464 Bucharest, Romania
| | - Carmen Maximilian
- Institute of Biology Bucharest of Romanian Academy, 296 Spl. Independentei, 060031 Bucharest, Romania
| | - Behnaz Rahmanifar
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine of Bucharest, 59 Bd. Marasti, 011464 Bucharest, Romania
| | - Calina Petruta Cornea
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine of Bucharest, 59 Bd. Marasti, 011464 Bucharest, Romania
| |
Collapse
|
4
|
Zhou H, Wang S, Liu W, Chang L, Zhu X, Mu G, Qian F. Probiotic properties of Lactobacillus paraplantarum LS-5 and its effect on antioxidant activity of fermented sauerkraut. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
5
|
Qaderi MM, Martel AB, Strugnell CA. Environmental Factors Regulate Plant Secondary Metabolites. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030447. [PMID: 36771531 PMCID: PMC9920071 DOI: 10.3390/plants12030447] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 05/31/2023]
Abstract
Abiotic environmental stresses can alter plant metabolism, leading to inhibition or promotion of secondary metabolites. Although the crucial roles of these compounds in plant acclimation and defense are well known, their response to climate change is poorly understood. As the effects of climate change have been increasing, their regulatory aspects on plant secondary metabolism becomes increasingly important. Effects of individual climate change components, including high temperature, elevated carbon dioxide, drought stress, enhanced ultraviolet-B radiation, and their interactions on secondary metabolites, such as phenolics, terpenes, and alkaloids, continue to be studied as evidence mounting. It is important to understand those aspects of secondary metabolites that shape the success of certain plants in the future. This review aims to present and synthesize recent advances in the effects of climate change on secondary metabolism, delving from the molecular aspects to the organismal effects of an increased or decreased concentration of these compounds. A thorough analysis of the current knowledge about the effects of climate change components on plant secondary metabolites should provide us with the required information regarding plant performance under climate change conditions. Further studies should provide more insight into the understanding of multiple environmental factors effects on plant secondary metabolites.
Collapse
Affiliation(s)
- Mirwais M. Qaderi
- Department of Biology, Mount Saint Vincent University, 166 Bedford Highway, Halifax, NS B3M 2J6, Canada
- Department of Biology, Saint Mary’s University, 923 Robie Street, Halifax, NS B3H 3C3, Canada
| | - Ashley B. Martel
- Department of Biology, Saint Mary’s University, 923 Robie Street, Halifax, NS B3H 3C3, Canada
| | - Courtney A. Strugnell
- Department of Biology, Mount Saint Vincent University, 166 Bedford Highway, Halifax, NS B3M 2J6, Canada
| |
Collapse
|
6
|
Zheng R, Xiong X, Li X, Wang D, Xu Z, Li X, Yang M, Ren X, Kong Q. Changes in Polyphenolic Compounds of Hutai No. 8 Grapes during Low-Temperature Storage and Their Shelf-Life Prediction by Identifying Biomarkers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15818-15829. [PMID: 36479857 DOI: 10.1021/acs.jafc.2c06573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The aim of this experiment was to assess the effect of different storage temperatures on the texture quality, phenolic profile, and antioxidant capacity of a grape. Fresh grapes were stored at 4 and 25 °C for nine days and sampled on alternate days. The hardness, total phenolics, total flavanones, total flavanols, total anthocyanin content, antioxidant activity, differential metabolite screening, and key gene expression were evaluated. In addition, four phenolic compounds were screened out as differential metabolites in response to storage temperature by OPLS-DA analysis. The results showed that the fruit firmness was better maintained in low-temperature storage and the storage life was longer than that at 25 °C. During the whole storage process, the contents of phenolics, flavanones, flavanols, and anthocyanins all showed an increasing trend first and then decreased regardless of what temperature. Since the antioxidant capacity of a grape was positively correlated with the contents of total phenols and total flavonoids, the same trend was also shown. However, the grape's phenolic compound content and antioxidant activity were higher at 25 °C than at 4 °C. Furthermore, through qualitative and quantitative analysis of 16 monomeric phenols, this study selected catechin, 1-O-vanilloyl-β-d-glucose, p-coumaric acid 4-glucoside, and resveratrol-3-O-glucoside as the main differentially expressed metabolites at the two temperatures. In conclusion, for a short shelf life or immediate consumption, keeping grapes at room temperature is more beneficial to obtain high antioxidants. However, if the goal is to prolong the storage period of the fruit, keeping the fruit at 4 °C is recommended.
Collapse
Affiliation(s)
- Renyu Zheng
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an710119, Shaanxi, China
| | - Xiaolin Xiong
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an710119, Shaanxi, China
| | - Xingyan Li
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an710119, Shaanxi, China
| | - Di Wang
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an710119, Shaanxi, China
| | - Zhe Xu
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an710119, Shaanxi, China
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an710119, Shaanxi, China
| | - Xue Li
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an710119, Shaanxi, China
| | - Miao Yang
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an710119, Shaanxi, China
| | - Xueyan Ren
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an710119, Shaanxi, China
| | - Qingjun Kong
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an710119, Shaanxi, China
| |
Collapse
|
7
|
Li Y, Wu Q, Men X, Wu F, Zhang Q, Li W, Sun L, Xing S. Transcriptome and metabolome analyses of lignin biosynthesis mechanism of Platycladus orientalis. PeerJ 2022; 10:e14172. [PMID: 36345485 PMCID: PMC9636869 DOI: 10.7717/peerj.14172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 09/12/2022] [Indexed: 01/20/2023] Open
Abstract
Background Platycladus orientalis, as an important plant for ecological protection, is a pioneer tree species for afforestation in arid and barren mountainous areas. Lignin has the functions of water and soil conservation, strengthening plant mechanical strength and resisting adverse environmental effects and plays an important role in the ecological protection benefits of P. orientalis. Methods In this study, annual dynamic observations of the lignin content in roots, stems and leaves of one-year-old seedlings of a P. orientalis half-sib family were carried out, and combined transcriptome and metabolome analyses were carried out during three key stages of P. orientalis stem development. Results The lignin contents in roots, stems and leaves of P. orientalis showed extremely significant spatiotemporal differences. In the stems, lignin was mainly distributed in the cell walls of the pith, xylem, phloem, pericyte, and epidermis, with differences in different periods. A total of 226 metabolites were detected in the stem of P. orientalis, which were divided into seven categories, including 10 synthetic precursor compounds containing lignin. Among them, the content of coniferyl alcohol was the highest, accounting for 12.27% of the total content, and caffeyl alcohol was the lowest, accounting for 7.05% only. By annotating the KEGG functions, a large number of differentially expressed genes and differential metabolites were obtained for the comparison combinations, and seven key enzymes and 24 related genes involved in the process of lignin synthesis in P. orientalis were selected. Conclusions Based on the results of the metabolic mechanism of lignin in P. orientalis by biochemical, anatomical and molecular biological analyzes, the key regulatory pathways of lignin in P. orientalis were identified, which will be of great significance for regulating the lignin content of P. orientalis and improving the adaptability and resistance of this plant.
Collapse
Affiliation(s)
- Ying Li
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Forestry College of Shandong Agricultural University, Taian, Shandong, China
| | - Qikui Wu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Forestry College of Shandong Agricultural University, Taian, Shandong, China
| | - Xiaoyan Men
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Forestry College of Shandong Agricultural University, Taian, Shandong, China
| | - Fusheng Wu
- Shandong Forest and Grass Germplasm Resources Center, Jinan, Shandong, China
| | - Qian Zhang
- Shandong Academy of Forestry Sciences, Jinan, Shandong, China
| | - Weinan Li
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Forestry College of Shandong Agricultural University, Taian, Shandong, China
| | - Limin Sun
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Forestry College of Shandong Agricultural University, Taian, Shandong, China
| | - Shiyan Xing
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Forestry College of Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
8
|
Ahmadi T, Shabani L, Sabzalian MR. Light emitting diodes improved the metabolism of rosmarinic acid and amino acids at the transcriptional level in two genotypes of Melissa officinalis L. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:1055-1069. [PMID: 36043232 DOI: 10.1071/fp21364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
In the present study, we used different LEDs to evaluate their effect on metabolic and transcriptional reprogramming of two genotypes (Ilam and Isfahan) of lemon balm grown under narrow-band LED lighting. Lemon balm plants were grown in four incubators equipped with artificial lighting and subjected to four LED lamps [White, Blue, Red, and mixed RB (Red+Blue) (70%:30%)] and in greenhouse conditions for 7weeks. The results showed significant increases in leaf number, pigment and soluble sugar contents, secondary metabolites, and calcium, magnesium, potassium and amino acid contents achieved in growth under mixed RB LEDs. As observed for the content of total phenolics, rosmarinic acid, and amino acids, the expression of genes involved in their production, including TAT , RAS , and DAHPS were also enhanced due to the mixed RB LED lighting. The best condition for both the plant growth and expression of genes was under the mixture of Red+Blue LED lamps. These observations indicate that the increase in secondary metabolites under mixed Red+Blue lights may be due to the increase in primary metabolites synthesis and the increased expression of genes that play an essential role in the production of secondary metabolites.
Collapse
Affiliation(s)
- Tayebeh Ahmadi
- Department of Plant Science, Faculty of Science, Shahrekord University, Shahrekord, Iran
| | - Leila Shabani
- Department of Plant Science, Faculty of Science, Shahrekord University, Shahrekord, Iran; and Research Institute of Biotechnology, Shahrekord University, Shahrekord, Iran
| | - Mohammad R Sabzalian
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
9
|
Zhang B, Sun D, Zhang X, Sun X, Xu N. Transcriptomics and metabolomics reveal the adaptive mechanisms of Gracilariopsis lemaneiformis in response to blue light. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
10
|
Xiang N, Hu J, Zhang B, Cheng Y, Wang S, Guo X. Effect of Light Qualities on Volatiles Metabolism in Maize (Zea mays L.) Sprouts. Food Res Int 2022; 156:111340. [DOI: 10.1016/j.foodres.2022.111340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/07/2022] [Accepted: 05/03/2022] [Indexed: 11/30/2022]
|
11
|
Jeong YS, Choi H, Kim JK, Baek SA, You MK, Lee D, Lim SH, Ha SH. Overexpression of OsMYBR22/OsRVE1 transcription factor simultaneously enhances chloroplast-dependent metabolites in rice grains. Metab Eng 2022; 70:89-101. [PMID: 35032672 DOI: 10.1016/j.ymben.2021.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/25/2021] [Accepted: 12/30/2021] [Indexed: 11/18/2022]
Abstract
The OsMYBR22 (same to OsRVE1), an R1type-MYB transcription factor belonging to the rice CCA1-like family, was upregulated under blue light condition, which enhanced the chlorophyll and carotenoid accumulation. The overexpression of OsMYBR22 in rice (Oryza sativa, L) led to everlasting green seeds and leaves of a darker green. Transgene expression patterns showed more concordance with chlorophyll than carotenoid profiles. The transcript levels of most genes related to chlorophyll biosynthesis and degradation examined were similarly repressed in the late maturing stages of seeds. It proposed that rice seeds have the feedback regulatory mechanism for chlorophyll biosynthesis and also implied that evergreen seed traits might be caused due to the inhibition of degradation rather than the promotion of biosynthesis for chlorophylls. Metabolomics revealed that OsMYBR22 overexpression largely and simultaneously enhanced the contents of nutritional and functional metabolites such as chlorophylls, carotenoids, amino acids including lysine and threonine, and amino acid derivatives including γ-aminobutyric acid, which are mostly biosynthesized in chloroplasts. Transmission electron microscopy anatomically demonstrated greener phenotypes with an increase in the number and thickness of chloroplasts in leaves and the structurally retentive chloroplasts in tubular and cross cells of the seed inner pericarp region. In conclusion, the molecular actions of OsMYBR22/OsRVE1 provided a new strategy for the biofortified rice variety, an "Evergreen Rice," with high accumulation of chloroplast-localized metabolites in rice grains.
Collapse
Affiliation(s)
- Ye Sol Jeong
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea; Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Heebak Choi
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Jae Kwang Kim
- Division of Life Sciences and Bio-Resource and Environmental Center, Incheon National University, Incheon, 22012, Republic of Korea
| | - Seung-A Baek
- Division of Life Sciences and Bio-Resource and Environmental Center, Incheon National University, Incheon, 22012, Republic of Korea
| | - Min-Kyoung You
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Dongho Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Sun-Hyung Lim
- School of Biotechnology, Division of Horticultural Biotechnology, Hankyong National University, Anseong, 17579, Republic of Korea.
| | - Sun-Hwa Ha
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea.
| |
Collapse
|
12
|
Zhong Y, Wang L, Ma Z, Du X. Physiological responses and transcriptome analysis of Spirodela polyrhiza under red, blue, and white light. PLANTA 2021; 255:11. [PMID: 34855030 DOI: 10.1007/s00425-021-03764-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Red light (RL) accelerated starch accumulation in S. polyrhiza, but higher protein content under blue light (BL) was associated with the upregulation of most DEGs enriched for specific GO terms and KEGG pathways. Red light (RL) and blue light (BL) greatly influence the growth and physiological processes of duckweed. Physiological and molecular mechanisms underlying the response of duckweed to different light qualities remain unclear. This study employed physiological and transcriptomic analyses on duckweed, Spirodela polyrhiza "5510", to elucidate its differential response mechanisms under RL, BL, and white light conditions. Changes in growth indicators, ultrastructure alterations, metabolite accumulations, and differentially expressed genes (DEGs) were measured. The results showed that BL promoted both biomass and protein accumulations, while RL promoted starch accumulation. A total of 633, 518, and 985 DEGs were found in white-vs-red, white-vs-blue, and red-vs-blue comparison groups, respectively. In Gene Ontology (GO) enrichment analysis, the DEGs in all three comparison groups were significantly enriched in two GO terms, carboxylic acid metabolic process and lyase activity. In Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the DEGs were greatly enriched in two pathways, histidine metabolism and isoquinoline alkaloid biosynthesis. Higher protein content under BL was associated with the upregulation of most DEGs enriched with the GO terms and KEGG pathways. Furthermore, the light qualities influenced the gene expression patterns of other metabolic pathways, like carotenoid biosynthesis, and the regulation of these genes may explain the level of photosynthetic pigment content. The results revealed the physiological changes and transcriptome-level responses of duckweed to three light qualities, thereby providing bases for further research studies on the ability of duckweed as a biomass energy source.
Collapse
Affiliation(s)
- Yu Zhong
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, China
| | - Le Wang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, China
| | - ZiMing Ma
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, China
| | - Xinglin Du
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, China.
| |
Collapse
|
13
|
Palma CFF, Castro-Alves V, Rosenqvist E, Ottosen CO, Strid Å, Morales LO. Effects of UV radiation on transcript and metabolite accumulation are dependent on monochromatic light background in cucumber. PHYSIOLOGIA PLANTARUM 2021; 173:750-761. [PMID: 34510478 DOI: 10.1111/ppl.13551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
During recent years, we have advanced our understanding of plant molecular responses to ultraviolet radiation (UV, 280-400 nm); however, how plants respond to UV radiation under different spectral light qualities is poorly understood. In this study, cucumber plants (Cucumis sativus "Lausanna RZ F1") were grown under monochromatic blue, green, red, and broadband white light in combination with UV radiation. The effects of light quality and UV radiation on acclimatory responses were assessed by measuring transcript accumulation of ELONGATED HYPOCOTYL 5 (HY5), CHALCONE SYNTHASE 2 (CHS2), and LIGHT HARVESTING COMPLEX II (LHCII), and the accumulation of flavonoids and hydroxycinnamic acids in the leaves. The growth light backgrounds differentially regulated gene expression and metabolite accumulation. While HY5 and CHS2 transcripts were induced by blue and white light, LHCII was induced by white and red light. Furthermore, UV radiation antagonized the effects of blue, red, green, and white light on transcript accumulation in a gene-dependent manner. Plants grown under blue light with supplementary UV radiation increased phenylalanine, flavonol disaccharide I and caffeic acid contents compared to those exposed only to blue light. UV radiation also induced the accumulation of flavonol disaccharide I and II, ferulic acid hexose and coumaric acid hexose in plants grown under green light. Our findings provide a further understanding of plant responses to UV radiation in combination with different light spectra and contribute to the design of light recipes for horticultural practices that aim to modify plant metabolism and ultimately improve crop quality.
Collapse
Affiliation(s)
| | - Victor Castro-Alves
- School of Science and Technology, Life Science Centre, Örebro University, Örebro, Sweden
| | - Eva Rosenqvist
- Section of Crop Sciences, Institute of Plant and Environmental Sciences, University of Copenhagen, Tåstrup, Denmark
| | | | - Åke Strid
- School of Science and Technology, Life Science Centre, Örebro University, Örebro, Sweden
| | - Luis Orlando Morales
- School of Science and Technology, Life Science Centre, Örebro University, Örebro, Sweden
| |
Collapse
|
14
|
Integrated Metabolomics and Volatolomics for Comparative Evaluation of Fermented Soy Products. Foods 2021; 10:foods10112516. [PMID: 34828797 PMCID: PMC8624193 DOI: 10.3390/foods10112516] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 11/17/2022] Open
Abstract
Though varying metabolomes are believed to influence distinctive characteristics of different soy foods, an in-depth, comprehensive analysis of both soluble and volatile metabolites is largely unreported. The metabolite profiles of different soy products, including cheonggukjang, meju, doenjang, and raw soybean, were characterized using LC-MS (liquid chromatography–mass spectrometry), GC-MS (gas chromatography–mass spectrometry), and headspace solid-phase microextraction (HS-SPME) GC-MS. Principal component analysis (PCA) showed that the datasets for the cheonggukjang, meju, and doenjang extracts were distinguished from the non-fermented soybean across PC1, while those for cheonggukjang and doenjang were separated across PC2. Volatile organic compound (VOC) profiles were clearly distinct among doenjang and soybean, cheonggukjang, and meju samples. Notably, the relative contents of the isoflavone glycosides and DDMP (2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one) conjugated soyasaponins were higher in soybean and cheonggukjang, compared to doenjang, while the isoflavone aglycones, non-DDMP conjugated soyasaponins, and amino acids were significantly higher in doenjang. Most VOCs, including the sulfur containing compounds aldehydes, esters, and furans, were relatively abundant in doenjang. However, pyrazines, 3-methylbutanoic acid, maltol, and methoxyphenol were higher in cheonggukjang, which contributed to the characteristic aroma of soy foods. We believe that this study provides the fundamental insights on soy food metabolomes, which determine their nutritional, functional, organoleptic, and aroma characteristics.
Collapse
|
15
|
Ahmadi T, Shabani L, Sabzalian MR. LED light sources improved the essential oil components and antioxidant activity of two genotypes of lemon balm (Melissa officinalis L.). BOTANICAL STUDIES 2021; 62:9. [PMID: 34091772 PMCID: PMC8179865 DOI: 10.1186/s40529-021-00316-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/17/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Nowadays, light-emitting diodes (LEDs) as a new lighting technology, have been emerged as an alternative source of light for plants due to their wavelength specificity, the narrow width of their bands, small size, solid structure, long lifetime, and low heat generation. Here we investigated the effect of different LED light sources on the essential oil components and antioxidant activity of Melissa officinalis. Two genotypes of lemon balm (Ilam and Isfahan) were subjected to four artificial light treatments, including white, red, blue, red + blue LEDs, and greenhouse light as natural lighting. RESULTS The LED lights significantly increased shoot fresh and dry weights and leaf number in the two genotypes as compared to greenhouse condition. The results showed that the content and composition of essential oil in the two genotypes were variable under different light treatments and the total amount of compounds in the Ilam genotype was higher than the other genotype. The results of analysis of the essential oil by GC/MS indicated that the highest amount of monoterpenes in the genotypes was related to citronellal under red + blue LED lamps (15.3 and 17.2% in Ilam and Isfahan genotypes, respectively) but blue, white, and greenhouse condition had the most effect on sesquiterpenes content in both genotypes. The results showed that the observed variation between the two genotypes in the essentials oil composition was related to the relative percentage of the constituents and not to the appearance or lack of a specific component. Red + blue lighting also provided the highest radical scavenging activity in both genotypes (80.77 and 82.09% for Ilam and Isfahan genotypes, respectively). Based on principal component analyses (PCA), three main groups were identified regarding genotypes and all light treatments. CONCLUSIONS Overall, results indicated that the essentials oil composition of two genotypes of lemon balm was affected both qualitatively and quantitatively by different LED light sources; hence, LED lights might be used to improve monoterpenes, sesquiterpenes, and antioxidant activity in the selected genotypes.
Collapse
Affiliation(s)
- Tayebeh Ahmadi
- Department of Plant Science, Faculty of Science, Shahrekord University, Shahrekord, Iran
| | - Leila Shabani
- Department of Plant Science, Faculty of Science, Shahrekord University, Shahrekord, Iran.
- Research Institute of Biotechnology, Shahrekord University, Shahrekord, Iran.
| | - Mohammad R Sabzalian
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, 84156-83111, Isfahan, Iran
| |
Collapse
|
16
|
Mun HI, Kwon MC, Lee NR, Son SY, Song DH, Lee CH. Comparing Metabolites and Functional Properties of Various Tomatoes Using Mass Spectrometry-Based Metabolomics Approach. Front Nutr 2021; 8:659646. [PMID: 33898504 PMCID: PMC8060453 DOI: 10.3389/fnut.2021.659646] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/08/2021] [Indexed: 12/27/2022] Open
Abstract
Tomato is one of the world's most consumed vegetables, and thus, various cultivars have been developed. Therefore, metabolic differences and nutrient contents of various tomatoes need to be discovered. To do so, we performed metabolite profiling along with evaluation of morphological and physicochemical properties of five representative tomato types. Common tomato cultivars, bigger and heavier than other tomatoes, contained higher levels of amino acids, organic acids, and lipids. On the contrary, cherry tomato cultivars contained a higher proportion of phenylpropanoids, lycopene, β-carotene, and α-carotene than the other tomatoes. Also, the highest antioxidant activity and total phenolic and flavonoid contents were observed in cherry tomato cultivars. Furthermore, to understand metabolic distributions in various tomato cultivars, we constructed a metabolic pathway map. The higher metabolic flux distribution of most primary metabolite synthetic pathways was observed in common tomatoes, while cherry tomato cultivars showed a significantly elevated flux in secondary metabolite synthetic pathways. Accordingly, these results provide valuable information of different characteristics in various tomatoes, which can be considered while purchasing and improving tomato cultivars.
Collapse
Affiliation(s)
- Ha In Mun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea
| | - Min Cheol Kwon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea
| | - Na-Rae Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea
| | - Su Young Son
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea
| | - Da Hye Song
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea.,Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul, South Korea
| |
Collapse
|
17
|
Jung WS, Chung IM, Hwang MH, Kim SH, Yu CY, Ghimire BK. Application of Light-Emitting Diodes for Improving the Nutritional Quality and Bioactive Compound Levels of Some Crops and Medicinal Plants. Molecules 2021; 26:1477. [PMID: 33803168 PMCID: PMC7963184 DOI: 10.3390/molecules26051477] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 11/16/2022] Open
Abstract
Light is a key factor that affects phytochemical synthesis and accumulation in plants. Due to limitations of the environment or cultivated land, there is an urgent need to develop indoor cultivation systems to obtain higher yields with increased phytochemical concentrations using convenient light sources. Light-emitting diodes (LEDs) have several advantages, including consumption of lesser power, longer half-life, higher efficacy, and wider variation in the spectral wavelength than traditional light sources; therefore, these devices are preferred for in vitro culture and indoor plant growth. Moreover, LED irradiation of seedlings enhances plant biomass, nutrient and secondary metabolite levels, and antioxidant properties. Specifically, red and blue LED irradiation exerts strong effects on photosynthesis, stomatal functioning, phototropism, photomorphogenesis, and photosynthetic pigment levels. Additionally, ex vitro plantlet development and acclimatization can be enhanced by regulating the spectral properties of LEDs. Applying an appropriate LED spectral wavelength significantly increases antioxidant enzyme activity in plants, thereby enhancing the cell defense system and providing protection from oxidative damage. Since different plant species respond differently to lighting in the cultivation environment, it is necessary to evaluate specific wavebands before large-scale LED application for controlled in vitro plant growth. This review focuses on the most recent advances and applications of LEDs for in vitro culture organogenesis. The mechanisms underlying the production of different phytochemicals, including phenolics, flavonoids, carotenoids, anthocyanins, and antioxidant enzymes, have also been discussed.
Collapse
Affiliation(s)
- Woo-Suk Jung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea; (W.-S.J.); (I.-M.C.); (S.-H.K.)
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea; (W.-S.J.); (I.-M.C.); (S.-H.K.)
| | - Myeong Ha Hwang
- Interdisciplinary Program in Smart Science, Kangwon National University, Chuncheon 200-701, Korea; (M.H.H.); (C.Y.Y.)
| | - Seung-Hyun Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea; (W.-S.J.); (I.-M.C.); (S.-H.K.)
| | - Chang Yeon Yu
- Interdisciplinary Program in Smart Science, Kangwon National University, Chuncheon 200-701, Korea; (M.H.H.); (C.Y.Y.)
| | - Bimal Kumar Ghimire
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea; (W.-S.J.); (I.-M.C.); (S.-H.K.)
| |
Collapse
|
18
|
Thorat SA, Poojari P, Kaniyassery A, Kiran KR, Satyamoorthy K, Mahato KK, Muthusamy A. Red laser-mediated alterations in seed germination, growth, pigments and withanolide content of Ashwagandha [Withania somnifera (L.) Dunal]. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 216:112144. [PMID: 33556702 DOI: 10.1016/j.jphotobiol.2021.112144] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/14/2020] [Accepted: 01/25/2021] [Indexed: 12/16/2022]
Abstract
Withania somnifera (L.) Dunal, generally well-known as Ashwagandha, is part of Indian traditional medicinal systems like Ayurveda, Siddha, and Unani for over 3000 years for treating an array of disorders. The chief bioactive component of this plant is the withanolides, a group of C28-steroidal lactone triterpenoids. These compounds are present in very low concentrations and hence cell culture methods have been used to enhance their production. Low-level laser irradiation has been reported to have elicited the seed germination, agronomical characters, biosynthesis of bioactive compounds in some plants. Therefore, the objective of the study was to investigate the effect of red (He-Ne) laser irradiation on seed germination, growth characters, pigment contents and withanolide content in W. somnifera. The seeds were inoculated onto two different combinations of Murashige and Skoog (MS) media and incubated for germination. The highest germination percentage was observed in ½ MS with pH 6.5 and GA3 presoaking followed by ½ MS with different pH. Four different doses of Helium-Neon (He-Ne) laser (10, 15, 20 and 25 J/cm2) were used to irradiate the seeds at 632.8 nm and germinated in vitro on ½ MS with pH 6.5. The maximum germination percentage, 63.88% was noted from seeds irradiated with 25 J/cm2 (P = 0.04). The highest total length of 13.33 cm was observed in the seedlings irradiated with 25 J/cm2 groups (P = 0.008). The highest total chlorophyll content of 329.5 μg/g fresh weight (FW) was observed for seedlings irradiated with 15 J/cm2 (P = 0.02) and the highest carotenoid content of 49.6 μg/g FW was observed for 25 J/cm2 treated seedlings. Further, primary root length was measured and found to be highest (11.14 cm) in seedlings irradiated with 10 J/cm2 and the highest number of lateral roots were observed for 15 and 25 J/cm2 groups. The significant amount of Withanolide A (WA) 0.52 μg/g dry weight (DW) and 0.60 μg/g DW was noted in 15 (P = 0.01) and 20 J/cm2 (P = 0.002) groups, respectively than control. The present investigation thus reveals the positive impact of red laser on the germination of seeds, growth characters and withanolide contents under in vitro environment.
Collapse
Affiliation(s)
- Sachin Ashok Thorat
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Poornima Poojari
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Arya Kaniyassery
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Kodsara Ramachandra Kiran
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Planetarium Complex, Manipal 576104, Karnataka, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Annamalai Muthusamy
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
19
|
Environment-coupled models of leaf metabolism. Biochem Soc Trans 2021; 49:119-129. [PMID: 33492365 PMCID: PMC7925006 DOI: 10.1042/bst20200059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/30/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022]
Abstract
The plant leaf is the main site of photosynthesis. This process converts light energy and inorganic nutrients into chemical energy and organic building blocks for the biosynthesis and maintenance of cellular components and to support the growth of the rest of the plant. The leaf is also the site of gas–water exchange and due to its large surface, it is particularly vulnerable to pathogen attacks. Therefore, the leaf's performance and metabolic modes are inherently determined by its interaction with the environment. Mathematical models of plant metabolism have been successfully applied to study various aspects of photosynthesis, carbon and nitrogen assimilation and metabolism, aided suggesting metabolic intervention strategies for optimized leaf performance, and gave us insights into evolutionary drivers of plant metabolism in various environments. With the increasing pressure to improve agricultural performance in current and future climates, these models have become important tools to improve our understanding of plant–environment interactions and to propel plant breeders efforts. This overview article reviews applications of large-scale metabolic models of leaf metabolism to study plant–environment interactions by means of flux-balance analysis. The presented studies are organized in two ways — by the way the environment interactions are modelled — via external constraints or data-integration and by the studied environmental interactions — abiotic or biotic.
Collapse
|
20
|
Suh DH, Kim YX, Jung ES, Lee S, Park J, Lee CH, Sung J. Characterization of Metabolic Changes under Low Mineral Supply (N, K, or Mg) and Supplemental LED Lighting (Red, Blue, or Red-Blue Combination) in Perilla frutescens Using a Metabolomics Approach. Molecules 2020; 25:E4714. [PMID: 33066640 PMCID: PMC7587346 DOI: 10.3390/molecules25204714] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 01/01/2023] Open
Abstract
In order to achieve premium quality with crop production, techniques involving the adjustment of nutrient supply and/or supplemental lighting with specific light quality have been applied. To examine the effects of low mineral supply and supplemental lighting, we performed non-targeted metabolite profiling of leaves and stems of the medicinal herb Perilla frutescens, grown under a lower (0.75×) and lowest (0.1×) supply of different minerals (N, K, or Mg) and under supplemental light-emitting diode (LED) lighting (red, blue, or red-blue combination). The lowest N supply increased flavonoids, and the lowest K or Mg slightly increased rosmarinic acid and some flavonoids in the leaves and stems. Supplemental LED lighting conditions (red, blue, or red-blue combination) significantly increased the contents of chlorophyll, most cinnamic acid derivatives, and rosmarinic acid in the leaves. LED lighting with either blue or the red-blue combination increased antioxidant activity compared with the control group without LED supplementation. The present study demonstrates that the cultivation of P. frutescens under low mineral supply and supplemental LED lighting conditions affected metabolic compositions, and we carefully suggest that an adjustment of minerals and light sources could be applied to enhance the levels of targeted metabolites in perilla.
Collapse
Affiliation(s)
- Dong Ho Suh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (D.H.S.); (J.P.)
| | - Yangmin X. Kim
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea; (Y.X.K.); (S.L.)
| | - Eun Sung Jung
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea;
| | - Seulbi Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea; (Y.X.K.); (S.L.)
| | - Jinyong Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (D.H.S.); (J.P.)
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (D.H.S.); (J.P.)
- Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Korea
| | - Jwakyung Sung
- Department of Crop Science, College of Agriculture, Life and Environment Sciences, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
21
|
Kim YX, Kwon MC, Lee S, Jung ES, Lee CH, Sung J. Effects of Nutrient and Water Supply During Fruit Development on Metabolite Composition in Tomato Fruits ( Solanum lycopersicum L.) Grown in Magnesium Excess Soils. FRONTIERS IN PLANT SCIENCE 2020; 11:562399. [PMID: 33101331 PMCID: PMC7545823 DOI: 10.3389/fpls.2020.562399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
Tomato cultivation in the greenhouse or field may experience high surplus salts, including magnesium (Mg2+), which may result in differences in the growth and metabolite composition of fruits. This study hypothesized that decreasing the supply of nutrients and/or water would enhance tomato fruit quality in soils with excess Mg2+ that are frequently encountered in the field and aimed to find better supply conditions. For tomato plants cultivated in plastic pots using a plastic film house soil, the fertilizer supply varied in either the nitrogen (N) or potassium (K) concentration, which were either 0.1 (lowest) or 0.75 times (lower) than the standard fertilizer concentrations. Water was supplied either at 30 (sufficient) or 80 kPa (limited) of the soil water potential. Lycopene content on a dry-weight basis (mg/kg) was enhanced by the combination of lowest N supply and sufficient water supply. However, this enhancement was not occurred by the combination of the lowest N supply and limited water supply. Sugars and organic acids were decreased by limiting the water supply. Therefore, we carefully suggest that an adjustment of nitrogen with sufficient watering could be one of strategies to enhance fruit quality in excess Mg2+ soils.
Collapse
Affiliation(s)
- Yangmin X. Kim
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Min Cheol Kwon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea
| | - Seulbi Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Eun Sung Jung
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
- Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul, South Korea
| | - Jwakyung Sung
- Department of Crop Science, College of Agriculture, Life and Environment Sciences, Chungbuk National University, Cheongju, South Korea
| |
Collapse
|
22
|
Mun HI, Kim YX, Suh DH, Lee S, Singh D, Jung ES, Lee CH, Sung J. Metabolomic response of Perilla frutescens leaves, an edible-medicinal herb, to acclimatize magnesium oversupply. PLoS One 2020; 15:e0236813. [PMID: 32726342 PMCID: PMC7390343 DOI: 10.1371/journal.pone.0236813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/14/2020] [Indexed: 01/26/2023] Open
Abstract
High salt accumulation, resulting from the rampant use of chemical fertilizers in greenhouse cultivation, has deleterious effects on plant growth and crop yield. Herein, we delineated the effects of magnesium (Mg) oversupply on Perilla frutescens leaves, a traditional edible and medicinal herb used in East-Asian countries. Mg oversupply resulted in significantly higher chlorophyll content coupled with lower antioxidant activities and growth, suggesting a direct effect on subtle metabolomes. The relative abundance of bioactive phytochemicals, such as triterpenoids, flavonoids, and cinnamic acids, was lower in the Mg-oversupplied plants than in the control. Correlation analysis between plant phenotypes (plant height, total fresh weight of the shoot, leaf chlorophyll content, and leaf antioxidant content) and the altered metabolomes in P. frutescens leaves suggested an acclimatization mechanism to Mg oversupply. In conclusion, P. frutescens preferentially accumulated compatible solutes, i.e., carbohydrates and amino acids, to cope with higher environmental Mg levels, instead of employing secondary and antioxidative metabolism.
Collapse
Affiliation(s)
- Ha In Mun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Yangmin X. Kim
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| | - Dong Ho Suh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Seulbi Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| | - Digar Singh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Eun Sung Jung
- Department of Systems Biotechnology, Konkuk University, Seoul, Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
- Department of Systems Biotechnology, Konkuk University, Seoul, Korea
- Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul, Korea
- * E-mail: (CHL); (JS)
| | - Jwakyung Sung
- Department of Crop Science, College of Agriculture, Life and Environment Sciences, Chungbuk National University, Cheongju, Korea
- * E-mail: (CHL); (JS)
| |
Collapse
|
23
|
Filho FO, Silva EDO, Lopes MMDA, Ribeiro PRV, Oster AH, Guedes JAC, Zampieri DDS, Bordallo PDN, Zocolo GJ. Effect of pulsed light on postharvest disease control-related metabolomic variation in melon (Cucumis melo) artificially inoculated with Fusarium pallidoroseum. PLoS One 2020; 15:e0220097. [PMID: 32310943 PMCID: PMC7170254 DOI: 10.1371/journal.pone.0220097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 03/17/2020] [Indexed: 01/03/2023] Open
Abstract
Pulsed light, as a postharvest technology, is an alternative to traditional fungicides, and can be used on a wide variety of fruit and vegetables for sanitization or pathogen control. In addition to these applications, other effects also are detected in vegetal cells, including changes in metabolism and secondary metabolite production, which directly affect disease control response mechanisms. This study aimed to evaluate pulsed ultraviolet light in controlling postharvest rot, caused by Fusarium pallidoroseum in 'Spanish' melon, in natura, and its implications in disease control as a function of metabolomic variation to fungicidal or fungistatic effects. The dose of pulsed light (PL) that inhibited F. pallidoroseum growth in melons (Cucumis melo var. Spanish) was 9 KJ m-2. Ultra-performance liquid chromatography (UPLC) coupled to a quadrupole-time-of-flight (QTOF) mass analyzer identified 12 compounds based on tandem mass spectrometry (MS/MS) fragmentation patterns. Chemometric analysis by Principal Components Analysis (PCA) and Orthogonal Partial Least Squared Discriminant Analysis (OPLS-DA) and corresponding S-Plot were used to evaluate the changes in fruit metabolism. PL technology provided protection against postharvest disease in melons, directly inhibiting the growth of F. pallidoroseum through the upregulation of specific fruit biomarkers such as pipecolic acid (11), saponarin (7), and orientin (3), which acted as major markers for the defense system against pathogens. PL can thus be proposed as a postharvest technology to prevent chemical fungicides and may be applied to reduce the decay of melon quality during its export and storage.
Collapse
Affiliation(s)
- Francisco Oiram Filho
- Department of Chemical Engineering, Science Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Ebenézer de Oliveira Silva
- Multiuser Laboratory of Natural Products Chemistry, EMBRAPA Agroindústria Tropical, Fortaleza, Ceará, Brazil
| | - Mônica Maria de Almeida Lopes
- Department of Biochemistry and Molecular Biology, Science Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Andréia Hansen Oster
- Post Harvest Laboratory, EMBRAPA Uva e Vinho, Bento Gonçalves, Rio Grande do Sul, Brazil
| | - Jhonyson Arruda Carvalho Guedes
- Department of Analytical and Physical-Chemical Chemistry, Science Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Dávila de Souza Zampieri
- Department of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Guilherme Julião Zocolo
- Multiuser Laboratory of Natural Products Chemistry, EMBRAPA Agroindústria Tropical, Fortaleza, Ceará, Brazil
| |
Collapse
|
24
|
Lee JH, Kwon MC, Jung ES, Lee CH, Oh MM. Physiological and Metabolomic Responses of Kale to Combined Chilling and UV-A Treatment. Int J Mol Sci 2019; 20:E4950. [PMID: 31597250 PMCID: PMC6801958 DOI: 10.3390/ijms20194950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/29/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023] Open
Abstract
Short-term abiotic stress treatment before harvest can enhance the quality of horticultural crops cultivated in controlled environments. Here, we investigated the effects of combined chilling and UV-A treatment on the accumulation of phenolic compounds in kale (Brassica oleracea var. acephala). Five-week-old plants were subjected to combined treatments (10 °C plus UV-A LED radiation at 30.3 W/m2) for 3-days, as well as single treatments (4 °C, 10 °C, or UV-A LED radiation). The growth parameters and photosynthetic rates of plants under the combined treatment were similar to those of the control, whereas UV-A treatment alone significantly increased these parameters. Maximum quantum yield (Fv/Fm) decreased and H2O2 increased in response to UV-A and combined treatments, implying that these treatments induced stress in kale. The total phenolic contents after 2- and 3-days of combined treatment and 1-day of recovery were 40%, 60%, and 50% higher than those of the control, respectively, and the phenylalanine ammonia-lyase activity also increased. Principal component analysis suggested that stress type and period determine the changes in secondary metabolites. Three days of combined stress treatment followed by 2-days of recovery increased the contents of quercetin derivatives. Therefore, combined chilling and UV-A treatment could improve the phenolic contents of leafy vegetables such as kale, without growth inhibition.
Collapse
Affiliation(s)
- Jin-Hui Lee
- Division of Animal, Horticultural and Food Science, Chungbuk National University, Cheongju 28644, Korea.
- Brain Korea 21 Center for Bio-Resource Development, Chungbuk National University, Cheongju 28644, Korea.
| | - Min Cheol Kwon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Eun Sung Jung
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea.
- Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Korea.
| | - Myung-Min Oh
- Division of Animal, Horticultural and Food Science, Chungbuk National University, Cheongju 28644, Korea.
- Brain Korea 21 Center for Bio-Resource Development, Chungbuk National University, Cheongju 28644, Korea.
| |
Collapse
|
25
|
Comparative Evaluation of Six Traditional Fermented Soybean Products in East Asia: A Metabolomics Approach. Metabolites 2019; 9:metabo9090183. [PMID: 31540263 PMCID: PMC6780719 DOI: 10.3390/metabo9090183] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 01/12/2023] Open
Abstract
Many ethnic fermented soybean products (FSPs) have long been consumed as seasoning and protein sources in East Asia. To evaluate the quality of various FSPs in East Asia, non-targeted metabolite profiling with multivariate analysis of six traditional FSPs (Natto; NT, Cheonggukjang; CG, Doenjang; DJ, Miso; MS, Doubanjiang; DB, Tianmianjiang; TM) was performed. Six FSPs could be clearly distinguished by principle component analysis (PCA) and partial least square-discriminant analysis (PLS-DA). Amino acid contents were relatively higher in NT and CG, sugar and sugar alcohol contents were relatively higher in MS and TM, isoflavone glycoside contents were relatively highest in CG, isoflavone aglycon contents were the highest in DJ, and soyasaponin contents were the highest in CG. Antioxidant activity and physicochemical properties were determined to examine the relationships between the FSPs and their antioxidant activities. We observed a negative correlation between isoflavone aglycon contents and 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) activity. Furthermore, the order of ABTS activity of FSPs has a positive correlation with the order of soybean content in the six FSPs. Herein it was found that primary metabolites were affected by the main ingredients and secondary metabolites were most influenced by the fermentation time, and that soybean content contributed more to antioxidant activity than fermentation time.
Collapse
|
26
|
Boonsnongcheep P, Sae-Foo W, Banpakoat K, Channarong S, Chitsaithan S, Uafua P, Putha W, Kerdsiri K, Putalun W. Artificial color light sources and precursor feeding enhance plumbagin production of the carnivorous plants Drosera burmannii and Drosera indica. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 199:111628. [PMID: 31610432 DOI: 10.1016/j.jphotobiol.2019.111628] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/22/2019] [Accepted: 09/11/2019] [Indexed: 01/10/2023]
Abstract
Plumbagin is the main pharmacologically active compound of carnivorous plants in the genera Drosera. It possesses various pharmacological activities, including anticancer and antimalarial activities, and is used in traditional medicine. In this study, we reported a sustainable production system of plumbagin by adding sodium acetate and L-alanine as precursors to in vitro cultures of Drosera burmannii Vahl and Drosera indica L. In addition, plumbagin production was reported in the cultures subjected to different color LED lights. The highest plumbagin level (aerial part 14.625 ± 1.007 mg·g-1 DW and root part 1.806 ± 0.258 mg·g-1 DW) was observed in D. indica cultured under blue LED light for 14 days, and further culturing did not increase plumbagin production. In addition, plumbagin enhancement by precursor feeding (9.850 ± 0.250 mg·g-1 DW, 1.2-fold) was observed in the aerial part of D. indica treated with 50 mg·L-1 sodium acetate for 3 days. Comparing both plants, up to 700-fold higher plumbagin was observed in D. indica than in D. burmannii. Moreover, in both plants, the aerial part accumulated higher plumbagin (up to 10-fold) than the roots. This is the first report on the effect of artificial LED lights on the plumbagin level of Dorsera plants. The culturing of D. indica under blue LED light showed enhanced plumbagin levels and suggests a fast and simple system for the in vitro production of plumbagin.
Collapse
Affiliation(s)
- Panitch Boonsnongcheep
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; Research Group for Pharmaceutical Activities of Natural Products using Pharmaceutical Biotechnology (PANPB), National Research University, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Worapol Sae-Foo
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kanpawee Banpakoat
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Suwaphat Channarong
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sukanda Chitsaithan
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pornpimon Uafua
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wattika Putha
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kanchanok Kerdsiri
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Waraporn Putalun
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; Research Group for Pharmaceutical Activities of Natural Products using Pharmaceutical Biotechnology (PANPB), National Research University, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
27
|
LED irradiation delays the postharvest senescence of garland chrysanthemum (Chrysanthemum carinatum Schousb.). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00221-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
28
|
Hamdani S, Khan N, Perveen S, Qu M, Jiang J, Zhu XG. Changes in the photosynthesis properties and photoprotection capacity in rice (Oryza sativa) grown under red, blue, or white light. PHOTOSYNTHESIS RESEARCH 2019; 139:107-121. [PMID: 30456488 DOI: 10.1007/s11120-018-0589-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/24/2018] [Indexed: 05/25/2023]
Abstract
Non-photochemical quenching (NPQ) of the excited state of chlorophyll a is a major photoprotective mechanism plants utilize to survive under high light. Here, we report the impact of long-term light quality treatment on photosynthetic properties, especially NPQ in rice. We used three LED-based light regimes, i.e., red (648-672 nm), blue (438-460 nm), and "warm" white light (529-624 nm), with the incident photon flux density of 300 µmol photons m-2 s-1, the difference in the absorbed photon flux densities by leaves grown under different light quality being less than 7%. Our results show that blue light, as compared to white light, induced a significant decrease in Fv/Fm, a decreased rate of reduction of P700+ after P700 was completely oxidized; furthermore, blue light also induced higher NPQ with an increased initial speed of NPQ induction, which corresponds to the qE component of NPQ, and a lower maximum quantum yield of PSII, i.e., Y(II). In contrast, rice grown under long-term red light showed decreased Y(II) and increased NPQ, but with no change in Fv/Fm. Furthermore, we found that rice grown under either blue or red light showed decreased transcript abundance of both catalase and ascorbate peroxidase, together with an increased H2O2 content, as compared to rice grown under white light. All these data suggest that even under a moderate incident light level, rice grown under blue or red light led to compromised antioxidant system, which contributed to decreased quantum yield of photosystem II and increased NPQ.
Collapse
Affiliation(s)
- Saber Hamdani
- National Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Naveed Khan
- Max-Planck Partner Institute of Computational Biology, Shanghai Institute of Biological Sciences, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Shahnaz Perveen
- National Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Mingnan Qu
- National Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Jianjun Jiang
- National Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Xin-Guang Zhu
- National Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
29
|
Martel AB, Qaderi MM. Unravelling the effects of blue light on aerobic methane emissions from canola. JOURNAL OF PLANT PHYSIOLOGY 2019; 233:12-19. [PMID: 30576928 DOI: 10.1016/j.jplph.2018.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 11/24/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
It is now well documented that plants produce methane (CH4) under aerobic conditions. However, the nature of methane production in plants and all the potential precursors and environmental factors that can be involved in the process are not fully understood. Earlier studies have suggested several chemical compounds, including the amino acid methionine, as precursors of aerobic methane in plants, but none have explored other amino acids as potential precursors or blue light as a driving force of methane emission. We examined the effects of blue light, and the promoter or inhibitor of endogenous ethylene on methane and ethylene emissions, amino acids, and some plant physiological parameters in canola (Brassica napus). Plants were grown under four light conditions: no supplemental blue light, and low, medium, or high blue light, and exposed to three chemical treatments: no chemical application, ethylene promoter (kinetin), or ethylene inhibitor (silver nitrate). Regardless of chemical treatment, blue light significantly increased methane emission, which was accompanied by decreased plant biomass, gas exchange, and flavonoids, but by increased wax, and most amino acids. This study revealed that blue light drives aerobic methane emission from plants by releasing of methyl group from a number of amino acids, and that the methane production in plants may have several pathways.
Collapse
Affiliation(s)
- Ashley B Martel
- Department of Biology, Saint Mary's University, 923 Robie Street, Halifax, Nova Scotia B3H 3C3, Canada
| | - Mirwais M Qaderi
- Department of Biology, Saint Mary's University, 923 Robie Street, Halifax, Nova Scotia B3H 3C3, Canada; Department of Biology, Mount Saint Vincent University, 166 Bedford Highway, Halifax, Nova Scotia B3M 2J6, Canada.
| |
Collapse
|
30
|
Research on Differential Metabolites in Distinction of Rice ( Oryza sativa L .) Origin Based on GC-MS. J CHEM-NY 2019. [DOI: 10.1155/2019/1614504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The analytical method for the metabolomics of the 60 rice seeds from two main rice origins in Heilongjiang Province was developed based on gas chromatography coupled with mass spectrum. The specific differential metabolites between two rice origins were identified, and the distinguish of the two main origins was illustrated by using the R software platform with XCMS software package for gas chromatography coupled with mass spectrum data processing, combined with multivariate statistical analysis software. The result indicated that the 173 peaks were detected, and 54 of which were structurally identified, covering amino acids, aliphatic acid, sugar, polyols, and so on. By comparing the data of Wuchang and Jiansanjiang origins, it was found that there were 9 special metabolites in Wuchang origin and 8 special metabolites in Jiansanjiang origin. The 10 differential metabolites with significant changes (P<0.05, VIP ≥ 1) were filtrated. It is indicated that the differential metabolites of rice carry information of their origin and there are the differences in the metabolites of rice in two main origins. The proposed method is expected to be useful for the metabolomic researches of rice.
Collapse
|
31
|
Sobhani Najafabadi A, Khanahmadi M, Ebrahimi M, Moradi K, Behroozi P, Noormohammadi N. Effect of different quality of light on growth and production of secondary metabolites in adventitious root cultivation of Hypericum perforatum. PLANT SIGNALING & BEHAVIOR 2019; 14:1640561. [PMID: 31291819 PMCID: PMC6768260 DOI: 10.1080/15592324.2019.1640561] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 05/22/2023]
Abstract
Naphthodianthrone derivatives that produced in Hypericum perforatum (St. John's Wort) are valuable secondary metabolites for depression treatment and photodynamic therapy. However, the traditional cultivation of this plant does not meet both quantitatively and qualitatively the high demand of the pharmaceutical industry. So, the adventitious root culture along with elicitation has been introduced as an alternative for production of such valuable bioactive compounds. The aim of this study was to evaluate the effect of darkness and red, blue and fluorescent light on growth and production of secondary metabolites in the adventitious root cultivation of H. perforatum. Our results showed that biomass production was significantly higher in the cultures grown under dark and red light, but in terms of hypericins production, red light was the best. Despite the inhibitory effect of five weeks blue light treatment on both biomass and secondary metabolite production of adventitious roots, one-week blue light treatment of four-weeks grown roots is an effective stimulator for increasing total phenolic compounds and hypericins. Interestingly, the roots were regenerated under red light and stems and leaves were formed.
Collapse
Affiliation(s)
- Ahmad Sobhani Najafabadi
- Agricultural Biotechnology Research Institute of Iran - Isfahan Branch, Agricultural Research, Education and Extension Organization (AREEO), Isfahan, Iran
- CONTACT Ahmad Sobhani Najafabadi Agricultural Biotechnology Research Institute of Iran - Isfahan Branch, Agricultural Research, Education and Extension Organization (AREEO), Isfahan, Iran
| | - Morteza Khanahmadi
- Agricultural Biotechnology Research Institute of Iran - Isfahan Branch, Agricultural Research, Education and Extension Organization (AREEO), Isfahan, Iran
| | - Mortaza Ebrahimi
- Agricultural Biotechnology Research Institute of Iran - Isfahan Branch, Agricultural Research, Education and Extension Organization (AREEO), Isfahan, Iran
| | - Kosar Moradi
- Agricultural Biotechnology Research Institute of Iran - Isfahan Branch, Agricultural Research, Education and Extension Organization (AREEO), Isfahan, Iran
| | - Poone Behroozi
- Agricultural Biotechnology Research Institute of Iran - Isfahan Branch, Agricultural Research, Education and Extension Organization (AREEO), Isfahan, Iran
| | - Nafiseh Noormohammadi
- Agricultural Biotechnology Research Institute of Iran - Isfahan Branch, Agricultural Research, Education and Extension Organization (AREEO), Isfahan, Iran
| |
Collapse
|
32
|
Won JY, Son SY, Lee S, Singh D, Lee S, Lee JS, Lee CH. Strategy for Screening of Antioxidant Compounds from Two Ulmaceae Species Based on Liquid Chromatography-Mass Spectrometry. Molecules 2018; 23:molecules23071830. [PMID: 30041442 PMCID: PMC6100396 DOI: 10.3390/molecules23071830] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 11/16/2022] Open
Abstract
Liquid chromatography-mass spectrometry (LC-MS)-based untargeted metabolomics implies that annotated metabolites can serve as potential markers of the associated bioactivities of plant extracts. Firstly, we selected Aphananthe aspera and Zelkova serrata (Family: Ulmaceae) from 16 Korean plant species based on their distinct principal component analysis (PCA) patterns in LC-MS datasets and antioxidant activity assays. Further, we chose 40% solid-phase extraction (SPE) extracts of the two species displaying the highest antioxidant activities coupled with distinct PCA patterns. Examining the metabolite compositions of the 40% SPE extracts, we observed relatively higher abundances of quercetin, kaempferol, and isorhamnetin O-glucosides for A. aspera, whereas quercetin, isorhamnetin O-glucuronides, and procyanidin dimer were relatively higher in Z. serrata. These metabolites were clearly distinguished in pathway map and displayed strong positive correlations with antioxidant activity. Further, we performed preparative high-performance liquid chromatography (prep-HPLC) analysis coupled with the 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) assay to validate their functional correlations. As a result, quercetin O-sophoroside was determined as the main antioxidant in A. aspera, while isorhamnetin O-glucuronide and procyanidin dimer were the primary antioxidants in Z. serrata. The current study suggests that the LC-MS-based untargeted metabolomics strategy can be used to illuminate subtle metabolic disparities as well as compounds associated with bioactivities.
Collapse
Affiliation(s)
- Joong Yeun Won
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Su Young Son
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Sunmin Lee
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Digar Singh
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Sarah Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon 22689, Korea.
| | - Jong Seok Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon 22689, Korea.
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| |
Collapse
|
33
|
Kitazaki K, Fukushima A, Nakabayashi R, Okazaki Y, Kobayashi M, Mori T, Nishizawa T, Reyes-Chin-Wo S, Michelmore RW, Saito K, Shoji K, Kusano M. Metabolic Reprogramming in Leaf Lettuce Grown Under Different Light Quality and Intensity Conditions Using Narrow-Band LEDs. Sci Rep 2018; 8:7914. [PMID: 29784957 PMCID: PMC5962576 DOI: 10.1038/s41598-018-25686-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/25/2018] [Indexed: 12/24/2022] Open
Abstract
Light-emitting diodes (LEDs) are an artificial light source used in closed-type plant factories and provide a promising solution for a year-round supply of green leafy vegetables, such as lettuce (Lactuca sativa L.). Obtaining high-quality seedlings using controlled irradiation from LEDs is critical, as the seedling health affects the growth and yield of leaf lettuce after transplantation. Because key molecular pathways underlying plant responses to a specific light quality and intensity remain poorly characterised, we used a multi-omics-based approach to evaluate the metabolic and transcriptional reprogramming of leaf lettuce seedlings grown under narrow-band LED lighting. Four types of monochromatic LEDs (one blue, two green and one red) and white fluorescent light (control) were used at low and high intensities (100 and 300 μmol·m-2·s-1, respectively). Multi-platform mass spectrometry-based metabolomics and RNA-Seq were used to determine changes in the metabolome and transcriptome of lettuce plants in response to different light qualities and intensities. Metabolic pathway analysis revealed distinct regulatory mechanisms involved in flavonoid and phenylpropanoid biosynthetic pathways under blue and green wavelengths. Taken together, these data suggest that the energy transmitted by green light is effective in creating a balance between biomass production and the production of secondary metabolites involved in plant defence.
Collapse
Affiliation(s)
- Kazuyoshi Kitazaki
- Central Research Institute of Electric Power Industry, Abiko, Chiba, 270-1194, Japan
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan
| | - Atsushi Fukushima
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Ryo Nakabayashi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Yozo Okazaki
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Makoto Kobayashi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Tetsuya Mori
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Tomoko Nishizawa
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | | | | | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, 263-8522, Japan
| | - Kazuhiro Shoji
- Central Research Institute of Electric Power Industry, Abiko, Chiba, 270-1194, Japan.
| | - Miyako Kusano
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan.
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
34
|
Chen Y, Zhou B, Li J, Tang H, Tang J, Yang Z. Formation and Change of Chloroplast-Located Plant Metabolites in Response to Light Conditions. Int J Mol Sci 2018; 19:E654. [PMID: 29495387 PMCID: PMC5877515 DOI: 10.3390/ijms19030654] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 11/16/2022] Open
Abstract
Photosynthesis is the central energy conversion process for plant metabolism and occurs within mature chloroplasts. Chloroplasts are also the site of various metabolic reactions involving amino acids, lipids, starch, and sulfur, as well as where the production of some hormones takes place. Light is one of the most important environmental factors, acting as an essential energy source for plants, but also as an external signal influencing their growth and development. Plants experience large fluctuations in the intensity and spectral quality of light, and many attempts have been made to improve or modify plant metabolites by treating them with different light qualities (artificial lighting) or intensities. In this review, we discuss how changes in light intensity and wavelength affect the formation of chloroplast-located metabolites in plants.
Collapse
Affiliation(s)
- Yiyong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China.
| | - Bo Zhou
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China.
| | - Jianlong Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China.
| | - Hao Tang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China.
| | - Jinchi Tang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China.
| | - Ziyin Yang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
35
|
Suh DH, Jung ES, Lee GM, Lee CH. Distinguishing Six Edible Berries Based on Metabolic Pathway and Bioactivity Correlations by Non-targeted Metabolite Profiling. FRONTIERS IN PLANT SCIENCE 2018; 9:1462. [PMID: 30333849 PMCID: PMC6175979 DOI: 10.3389/fpls.2018.01462] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 09/13/2018] [Indexed: 05/09/2023]
Abstract
Berries have been used as valuable sources of polyphenols for human health; however, injudicious uses of berries are widespread without regard to the specific metabolite constituent of each berry. We classified 6 different edible berries (honeyberry, blueberry, mandarin melonberry, mulberry, chokeberry, and Korean black raspberry) based on their metabolite distributions in biosynthetic pathways by non-targeted metabolite profiling and bioactive correlation analysis. Principal component analysis revealed a distinct clustering pattern of metabolites for each berry. Metabolic pathway analysis revealed different biosynthetic routes of secondary metabolites in each berry. Mandarin melonberry contains a relatively higher proportion of genistein, genistein glycoside, and genistein-derived isoflavonoids and prenylflavonoids than the other berries. Various anthocyanin glycosides, synthesized from dihydroquercetin and cyanidin, were more abundant in chokeberry and honeyberry, whereas high levels of flavonoid-and anthocyanins-rutinoside forms were observed in Korean black raspberry. The levels of anthocyanins derived from dihydromyricetin were high in blueberry. The highest anti-oxidant activity was observed in chokeberry and Korean black raspberry, which is positively related to the proportional concentration of flavonoids, phenolics, and anthocyanins. The lowest sugar contents were observed in Korean black raspberry, highest acidity in honeyberry, and lowest acidity in mandarin melonberry, which were specific characteristics among the berries. Taken together, biosynthetic pathway and physicochemical characteristics analyses revealed that the different synthesized routes of flavonoids and anthocyanins and associated bio-activities may be distinct features in each berry and explain their phenotypic diversity at the molecular level.
Collapse
Affiliation(s)
- Dong Ho Suh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea
| | - Eun Sung Jung
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | - Gyu Min Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
- *Correspondence: Choong Hwan Lee
| |
Collapse
|
36
|
Ning K, Ding C, Zhu W, Zhang W, Dong Y, Shen Y, Su X. Comparative Metabolomic Analysis of the Cambium Tissue of Non-transgenic and Multi-Gene Transgenic Poplar ( Populus × euramericana 'Guariento'). FRONTIERS IN PLANT SCIENCE 2018; 9:1201. [PMID: 30174679 PMCID: PMC6108131 DOI: 10.3389/fpls.2018.01201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 07/26/2018] [Indexed: 05/09/2023]
Abstract
Poplar, a model for woody plant research, is the most widely distributed tree species in the world. Metabolites are the basis of phenotypes, allowing an intuitive and effective understanding of biological processes and their mechanisms. However, metabolites in non-transgenic and multi-gene transgenic poplar remains poorly characterized, especially in regards of the influences on quantity and in the analysis of the relative abundance of metabolites after the introduction of multi stress-related genes. In this study, we investigated the cambium metabolomes of one non-transgenic (D5-0) and two multi-gene (vgb, SacB, ERF36, BtCry3A, and OC-I) transgenic lines (D5-20 and D5-21) of hybrid poplar (Populus × euramericana 'Guariento') using both gas chromatography-mass spectrometry (GC-MS) and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). We aimed to explore the effects of the exogenous genes on metabolite composition and to screen out metabolites with important biological functions. Finally, we identified 239 named metabolites and determined their relative abundance. Among these, 197 metabolites had a different abundance across the three lines. These methabolites spanned nine primary and 44 secondary metabolism pathways. Arginine and glutamate, as substrates and intermediates in nitrogen metabolism, and important in growth and stress-related processes, as well as sucrose, uridine diphosphate glucose, and their derivatives, precursors in cell wall pathways, and catechol, relevant to insect resistance, differed greatly between the genetically modified and non-transgenic poplar. These findings may provide a basis for further study of cambium metabolism, and fully understand metabolites associated with stress response.
Collapse
Affiliation(s)
- Kun Ning
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing, China
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing, China
| | - Wenxu Zhu
- College of Forestry, Shenyang Agricultural University, Shenyang, China
| | - Weixi Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing, China
| | - Yufeng Dong
- Shandong Provincial Key Laboratory of Forest Tree Genetic Improvement, Shandong Academy of Forestry, Jinan, China
| | - Yingbai Shen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- *Correspondence: Xiaohua Su,
| |
Collapse
|
37
|
Taulavuori E, Taulavuori K, Holopainen JK, Julkunen-Tiitto R, Acar C, Dincer I. Targeted use of LEDs in improvement of production efficiency through phytochemical enrichment. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:5059-5064. [PMID: 28631264 DOI: 10.1002/jsfa.8492] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/15/2017] [Accepted: 06/15/2017] [Indexed: 05/19/2023]
Abstract
Based on available literature, ecology and economy of light emitting diode (LED) lights in plant foods production were assessed and compared to high pressure sodium (HPS) and compact fluorescent light (CFL) lamps. The assessment summarises that LEDs are superior compared to other lamp types. LEDs are ideal in luminous efficiency, life span and electricity usage. Mercury, carbon dioxide and heat emissions are also lowest in comparison to HPS and CFL lamps. This indicates that LEDs are indeed economic and eco-friendly lighting devices. The present review indicates also that LEDs have many practical benefits compared to other lamp types. In addition, they are applicable in many purposes in plant foods production. The main focus of the review is the targeted use of LEDs in order to enrich phytochemicals in plants. This is an expedient to massive improvement in production efficiency, since it diminishes the number of plants per phytochemical unit. Consequently, any other production costs (e.g. growing space, water, nutrient and transport) may be reduced markedly. Finally, 24 research articles published between 2013 and 2017 were reviewed for targeted use of LEDs in the specific, i.e. blue range (400-500 nm) of spectrum. The articles indicate that blue light is efficient in enhancing the accumulation of health beneficial phytochemicals in various species. The finding is important for global food production. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Erja Taulavuori
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Kari Taulavuori
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Jarmo K Holopainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Finland
| | - Riitta Julkunen-Tiitto
- Department of Environmental and Biological Sciences, University of Eastern Finland, Finland
| | - Canan Acar
- Faculty of Engineering and Natural Sciences, Bahcesehir University, Beşiktaş, Istanbul, Turkey
| | - Ibrahim Dincer
- Clean Energy Research Laboratory (CERL), Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Canada
| |
Collapse
|
38
|
Dutta Gupta S, Karmakar A. Machine vision based evaluation of impact of light emitting diodes (LEDs) on shoot regeneration and the effect of spectral quality on phenolic content and antioxidant capacity in Swertia chirata. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 174:162-172. [PMID: 28779689 DOI: 10.1016/j.jphotobiol.2017.07.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 11/25/2022]
Abstract
The present study demonstrates the influence of LED irradiance of various wavelengths on shoot regeneration, biomass accumulation, photosynthetic pigment contents, and antioxidant potentials of Swertia chirata - a critically endangered medicinal plant. Mixed treatment of blue (BL) and red LEDs (RL) in equal proportion (1:1) significantly improved the shoot regeneration response. A machine vision system was developed to assess the shoot regeneration potential under different lighting treatments. Regenerated shoots exposed under BL:RL (1:1) exhibited higher biomass accumulation and canopy development compared to other lighting treatments. Improved canopy growth was evident from the increase in the area, major axis, minor axis, convex area, equivalent diameter and perimeter of regenerated shoot clusters. A higher correlation of dry weight (DW) was noted with the image feature, weighted density (WD) than the fresh weight (FW) in all the LED treated cultures. The significant correlation between DW and WD implies that the image feature WD can be adopted as a non-invasive approach for measuring biomass accumulation as well as detecting hyperhydricity. The developed machine vision approach provides a new direction in the evaluation of shoot organogenesis that displayed features including both shoot multiplication and canopy development. Chlorophyll and carotenoid contents of the regenerated shoots were found to be higher under BL:RL (1:1) than the other treatments. Supplementation of RL led to a reduction in the pigment contents. Spectral quality of lights also significantly influenced the accumulation of total phenolics, flavonoids and flavonols. Cultures exposed under BL exhibited the maximum accumulation of polyphenols. A similar effect of spectral quality was observed with the antioxidant capacity and reducing power potential of leaf extract. The findings demonstrate the ability of LEDs in inducing shoot regeneration as well as accumulation of phenolic antioxidants and suggest that the proportion of blue and red LEDs is an important factor in achieving the optimum response.
Collapse
Affiliation(s)
- S Dutta Gupta
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - A Karmakar
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
39
|
Köhl K, Tohge T, Schöttler MA. Performance of Arabidopsis thaliana under different light qualities: comparison of light-emitting diodes to fluorescent lamp. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:727-738. [PMID: 32480602 DOI: 10.1071/fp17051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 04/13/2017] [Indexed: 06/11/2023]
Abstract
For precise phenotyping, Arabidopsis thaliana (L.) Heynh. is grown under controlled conditions with fluorescent lamps as the predominant light source. Replacement by systems based on light emitting diodes (LED) could improve energy efficiency and stability of light quality and intensity. To determine whether this affects the reproducibility of results obtained under fluorescent lamps, four Arabidopsis accessions and a phytochrome mutant were grown and phenotyped under two different LED types or under fluorescent lamps. All genotypes had significantly higher rosette weight and seed mass and developed faster under LED light than under fluorescent lamps. However, differences between genotypes were reproducible independent of the light source. Chlorophyll content, photosynthetic complex accumulation and light response curves of chlorophyll fluorescence parameters were indistinguishable under LED and fluorescent light. Principal component analysis of leaf metabolite concentrations revealed that the effect of a change from fluorescent light to LED light was small compared with the diurnal effect, which explains 74% of the variance and the age effect during vegetative growth (12%). Altogether, the replacement of fluorescent lamps by LED allowed Arabidopsis cultivation and reproduction of results obtained under fluorescent light.
Collapse
Affiliation(s)
- Karin Köhl
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Takayuki Tohge
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Mark Aurel Schöttler
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
40
|
Martel AB, Qaderi MM. Light quality and quantity regulate aerobic methane emissions from plants. PHYSIOLOGIA PLANTARUM 2017; 159:313-328. [PMID: 27717171 DOI: 10.1111/ppl.12514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 09/04/2016] [Accepted: 09/08/2016] [Indexed: 06/06/2023]
Abstract
Studies have been mounting in support of the finding that plants release aerobic methane (CH4 ), and that these emissions are increased by both short-term and long-term environmental stress. It remains unknown whether or not they are affected by variation in light quantity and quality, whether emissions change over time, and whether they are influenced by physiological parameters. Light is the primary energy source of plants, and therefore an important regulator of plant growth and development. Both shade-intolerant sunflower and shade-tolerant chrysanthemum were investigated for the release of aerobic CH4 emissions, using either low or high light intensity, and varying light quality, including control, low or normal red:far-red ratio (R:FR), and low or high levels of blue, to discern the relationship between light and CH4 emissions. It was found that low levels of light act as an environmental stress, facilitating CH4 release from both species. R:FR and blue lights increased emissions under low light, but the results varied with species, providing evidence that both light quantity and quality regulate CH4 emissions. Emission rates of 6.79-41.13 ng g-1 DW h-1 and 18.53-180.25 ng g-1 DW h-1 were observed for sunflower and chrysanthemum, respectively. Moreover, emissions decreased with age as plants acclimated to environmental conditions. Since effects were similar in both species, there may be a common trend among a number of shade-tolerant and shade-intolerant species. Light quantity and quality are influenced by factors including cloud covering, so it is important to know how plants will be affected in the context of aerobic CH4 emissions.
Collapse
Affiliation(s)
- Ashley B Martel
- Department of Biology, Mount Saint Vincent University, 166 Bedford Highway, Halifax, Nova Scotia, B3M 2J6, Canada
| | - Mirwais M Qaderi
- Department of Biology, Mount Saint Vincent University, 166 Bedford Highway, Halifax, Nova Scotia, B3M 2J6, Canada
| |
Collapse
|
41
|
Miyagi A, Uchimiya H, Kawai-Yamada M. Synergistic effects of light quality, carbon dioxide and nutrients on metabolite compositions of head lettuce under artificial growth conditions mimicking a plant factory. Food Chem 2017; 218:561-568. [PMID: 27719950 DOI: 10.1016/j.foodchem.2016.09.102] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 06/15/2016] [Accepted: 09/16/2016] [Indexed: 01/24/2023]
Abstract
Carbon dioxide (CO2), nutrient supply, and light quality are amongst the major controlling factors to improve the biomass production and nutritional outputs in plant factory. The present study employed CE-MS to investigate the effects of high CO2, nutrient formulation, and LED on the accumulation of primary metabolites in head lettuce. Results suggested that high CO2 (1000ppm) and nutrient supply enhanced both the biomass and some amino acids. Hierarchical clustering analysis was used to evaluate effects of red LED in combination with high CO2 and Hoagland's formulation; distinctive cluster formation contained 14 amino acids (mostly branched-chain and aromatic amino acids, histidine and arginine). Thus, simultaneous treatments of monochromatic LED, high CO2 and nutrient formulation improved the amino acids accumulation, and likely reduced the inorganic nitrogen sources in planta.
Collapse
Affiliation(s)
- Atsuko Miyagi
- Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama-city, Saitama, Japan
| | - Hirofumi Uchimiya
- Institute for Environmental Science and Technology, Saitama University, Sakura-ku, Saitama-city, Saitama, Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama-city, Saitama, Japan.
| |
Collapse
|
42
|
Park SY, Jang HL, Lee JH, Choi Y, Kim H, Hwang J, Seo D, Kim S, Nam JS. Changes in the phenolic compounds and antioxidant activities of mustard leaf ( Brassica juncea) kimchi extracts during different fermentation periods. Food Sci Biotechnol 2017; 26:105-112. [PMID: 30263516 PMCID: PMC6049491 DOI: 10.1007/s10068-017-0014-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/13/2016] [Accepted: 12/13/2016] [Indexed: 10/20/2022] Open
Abstract
This study was conducted to investigate the changes in the total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activities of 80% methanol and water extracts from mustard leaf kimchi during different fermentation periods. The methanol extract exhibited higher TPC and TFC than the water extract. Both extracts from kimchi fermented for two months showed the highest antioxidant effects against the scavenging activities of 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radicals and 2,2-azino-bis diammonium salt (ABTS) radicals. Moreover, the methanol extract from kimchi fermented for two months showed the highest nitrite scavenging activity. The highest metal (Fe2+) chelating effect of the methanol extract and water extract was observed after three months and one month, respectively. Caffeic acid showed the highest increase with fermentation. These findings suggest that the antioxidant activities of kimchi depend on the fermentation period. Accordingly, this study provides basic data for improving the antioxidant activity of mustard leaf kimchi through the establishment of their fermentation period.
Collapse
Affiliation(s)
- Seo-Yeon Park
- Food Analysis Research Center, Suwon Women’s University, Hwaseong, Gyeonggi, 18333 Korea
| | - Hye-Lim Jang
- Food Analysis Research Center, Suwon Women’s University, Hwaseong, Gyeonggi, 18333 Korea
| | - Jong-Hun Lee
- Food Analysis Research Center, Suwon Women’s University, Hwaseong, Gyeonggi, 18333 Korea
| | - Youngmin Choi
- Functional Food & Nutrition Division, National Institute of Agricultural Sciences, RDA, Wanju, Jeonbuk, 55365 Korea
| | - Haengran Kim
- Functional Food & Nutrition Division, National Institute of Agricultural Sciences, RDA, Wanju, Jeonbuk, 55365 Korea
| | - Jinbong Hwang
- Korea Food Research Institute, Seongnam, Gyeonggi, 13539 Korea
| | - Dongwon Seo
- Korea Food Research Institute, Seongnam, Gyeonggi, 13539 Korea
| | - Sanghee Kim
- Korea Food Research Institute, Seongnam, Gyeonggi, 13539 Korea
| | - Jin-Sik Nam
- Food Analysis Research Center, Suwon Women’s University, Hwaseong, Gyeonggi, 18333 Korea
- Department of Food and Nutrition, Suwon Women’s University, Hwaseong, Gyeonggi, 18333 Korea
| |
Collapse
|
43
|
Park YJ, Park SY, Valan Arasu M, Al-Dhabi NA, Ahn HG, Kim JK, Park SU. Accumulation of Carotenoids and Metabolic Profiling in Different Cultivars of Tagetes Flowers. Molecules 2017; 22:E313. [PMID: 28218705 PMCID: PMC6155894 DOI: 10.3390/molecules22020313] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/10/2017] [Accepted: 02/11/2017] [Indexed: 11/17/2022] Open
Abstract
Species of Tagetes, which belong to the family Asteraceae show different characteristics including, bloom size, shape, and color; plant size; and leaf shape. In this study, we determined the differences in primary metabolites and carotenoid yields among six cultivars from two Tagetes species, T. erecta and T. patula. In total, we detected seven carotenoids in the examined cultivars: violaxanthin, lutein, zeaxanthin, α-carotene, β-carotene, 9-cis-β-carotene, and 13-cis-β-carotene. In all the cultivars, lutein was the most abundant carotenoid. Furthermore, the contents of each carotenoid in flowers varied depending on the cultivar. Principal component analysis (PCA) facilitated metabolic discrimination between Tagetes cultivars, with the exception of Inca Yellow and Discovery Orange. Moreover, PCA and orthogonal projection to latent structure-discriminant analysis (OPLS-DA) results provided a clear discrimination between T. erecta and T. patula. Primary metabolites, including xylose, citric acid, valine, glycine, and galactose were the main components facilitating separation of the species. Positive relationships were apparent between carbon-rich metabolites, including those of the TCA cycle and sugar metabolism, and carotenoids.
Collapse
Affiliation(s)
- Yun Ji Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Soo-Yun Park
- National Institute of Agricultural Science, Rural Development Administration, Wanju-gun, Jeollabuk-do 565-851, Korea.
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Hyung-Geun Ahn
- Science & Technology Policy Division, Ministry of Agriculture, Food, and Rural Affairs, Sejong-si 30110, Korea.
| | - Jae Kwang Kim
- Division of Life Sciences and Convergence Research Center for Insect Vectors, Incheon National University, Incheon 406-772, Korea.
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| |
Collapse
|
44
|
Yang Z, Nakabayashi R, Mori T, Takamatsu S, Kitanaka S, Saito K. Metabolome Analysis of Oryza sativa (Rice) Using Liquid Chromatography-Mass Spectrometry for Characterizing Organ Specificity of Flavonoids with Anti-inflammatory and Anti-oxidant Activity. Chem Pharm Bull (Tokyo) 2017; 64:952-6. [PMID: 27373652 DOI: 10.1248/cpb.c16-00180] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oryza sativa L. (rice) is an important staple crop across the world. In the previous study, we identified 36 specialized (secondary) metabolites including 28 flavonoids. In the present study, a metabolome analysis using liquid chromatography-mass spectrometry was conducted on the leaf, bran, and brown and polished rice grains to better understand the distribution of these metabolites. Principal component analysis using the metabolome data clearly characterized the accumulation patterns of the metabolites. Flavonoids, e.g., tricin, tricin 7-O-rutinoside, and tricin 7-O-β-D-glucopyranoside, were mainly present in the leaf and bran but not in the polished grain. In addition, anti-inflammatory and anti-oxidant activity of the metabolites were assayed in vitro. Tricin 4'-O-(erythro-β-guaiacylglyceryl)ether and isoscoparin 2″-O-(6‴-(E)-feruloyl)-glucopyranoside showed the strongest activity for inhibiting nitric oxide (NO) production and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging, respectively.
Collapse
|
45
|
Lee GM, Suh DH, Jung ES, Lee CH. Metabolomics Provides Quality Characterization of Commercial Gochujang (Fermented Pepper Paste). Molecules 2016; 21:molecules21070921. [PMID: 27428946 PMCID: PMC6273659 DOI: 10.3390/molecules21070921] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/08/2016] [Accepted: 07/08/2016] [Indexed: 11/16/2022] Open
Abstract
To identify the major factors contributing to the quality of commercial gochujang (fermented red pepper paste), metabolites were profiled by mass spectrometry. In principal component analysis, cereal type (wheat, brown rice, and white rice) and species of hot pepper (Capsicumannuum, C. annuum cv. Chung-yang, and C. frutescens) affected clustering patterns. Relative amino acid and citric acid levels were significantly higher in wheat gochujang than in rice gochujang. Sucrose, linoleic acid, oleic acid, and lysophospholipid levels were high in brown-rice gochujang, whereas glucose, maltose, and γ-aminobutyric acid levels were high in white-rice gochujang. The relative capsaicinoid and luteolin derivative contents in gochujang were affected by the hot pepper species used. Gochujang containing C. annuum cv. Chung-yang and C. frutescens showed high capsaicinoid levels. The luteolin derivative level was high in gochujang containing C. frutescens. These metabolite variations in commercial gochujang may be related to different physicochemical phenotypes and antioxidant activity.
Collapse
Affiliation(s)
- Gyu Min Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Dong Ho Suh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Eun Sung Jung
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
46
|
Regulation of formation of volatile compounds of tea (Camellia sinensis) leaves by single light wavelength. Sci Rep 2015; 5:16858. [PMID: 26567525 PMCID: PMC4645219 DOI: 10.1038/srep16858] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/21/2015] [Indexed: 12/25/2022] Open
Abstract
Regulation of plant growth and development by light wavelength has been extensively studied. Less attention has been paid to effect of light wavelength on formation of plant metabolites. The objective of this study was to investigate whether formation of volatiles in preharvest and postharvest tea (Camellia sinensis) leaves can be regulated by light wavelength. In the present study, in contrast to the natural light or dark treatment, blue light (470 nm) and red light (660 nm) significantly increased most endogenous volatiles including volatile fatty acid derivatives (VFADs), volatile phenylpropanoids/benzenoids (VPBs), and volatile terpenes (VTs) in the preharvest tea leaves. Furthermore, blue and red lights significantly up-regulated the expression levels of 9/13-lipoxygenases involved in VFADs formation, phenylalanine ammonialyase involved in VPBs formation, and terpene synthases involved in VTs formation. Single light wavelength had less remarkable influences on formation of volatiles in the postharvest leaves compared with the preharvest leaves. These results suggest that blue and red lights can be promising technology for remodeling the aroma of preharvest tea leaves. Furthermore, our study provided evidence that light wavelength can activate the expression of key genes involved in formation of plant volatiles for the first time.
Collapse
|
47
|
Jang YK, Jung ES, Lee HA, Choi D, Lee CH. Metabolomic Characterization of Hot Pepper (Capsicum annuum "CM334") during Fruit Development. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9452-60. [PMID: 26465673 DOI: 10.1021/acs.jafc.5b03873] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Non-targeted metabolomic analysis of hot pepper (Capsicum annuum "CM334") was performed at six development stages [16, 25, 36, 38, 43, and 48 days post-anthesis (DPA)] to analyze biochemical changes. Distinct distribution patterns were observed in the changes of metabolites, gene expressions, and antioxidant activities by early (16-25 DPA), breaker (36-38 DPA), and later (43-48 DPA) stages. In the early stages, glycosides of luteolin, apigenin, and quercetin, shikimic acid, γ-aminobutyric acid (GABA), and putrescine were highly distributed but gradually decreased over the breaker stage. At later stages, leucine, isoleucine, proline, phenylalanine, capsaicin, dihydrocapsaicin, and kaempferol glycosides were significantly increased. Pathway analysis revealed metabolite-gene interactions in the biosynthesis of amino acids, capsaicinoids, fatty acid chains, and flavonoids. The changes in antioxidant activity were highly reflective of alterations in metabolites. The present study could provide useful information about nutrient content at each stage of pepper cultivation.
Collapse
Affiliation(s)
- Yu Kyung Jang
- Department of Bioscience and Biotechnology, Konkuk University , 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Eun Sung Jung
- Department of Bioscience and Biotechnology, Konkuk University , 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyun-Ah Lee
- Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 151-921, Korea
| | - Doil Choi
- Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 151-921, Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University , 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
48
|
John KM, Luthria D. Amino Acid, Organic Acid, and Sugar Profiles of 3 Dry Bean (Phaseolus vulgarisL.) Varieties. J Food Sci 2015; 80:C2662-9. [DOI: 10.1111/1750-3841.13115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/21/2015] [Indexed: 12/24/2022]
Affiliation(s)
- K.M. Maria John
- Food Composition Methods Development Lab, Beltsville Human Nutrition Research Center, Agricultural Research Service; U.S. Dept. of Agriculture; Beltsville Md. 20705 U.S.A
| | - Devanand Luthria
- Food Composition Methods Development Lab, Beltsville Human Nutrition Research Center, Agricultural Research Service; U.S. Dept. of Agriculture; Beltsville Md. 20705 U.S.A
| |
Collapse
|
49
|
Kim NK, Park HM, Lee J, Ku KM, Lee CH. Seasonal Variations of Metabolome and Tyrosinase Inhibitory Activity of Lespedeza maximowiczii during Growth Periods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:8631-8639. [PMID: 26345477 DOI: 10.1021/acs.jafc.5b03566] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Lespedeza species are useful for pasture and energy crops as well as medical plants. We determined the metabolites discriminated from the each growth period (3, 4, 6, 8, 15, and 18 months) after germination in leaves and stems of Lespedeza maximowizii by a metabolomics technique. Specifically, levels of sugars and luteolin-dominated derivatives were significantly elevated in samples harvested in November. This may be related to the cold tolerance mechanism against the low temperatures of the winter season. The concentrations of secondary metabolites, isoflavones and flavanones, as well as tyrosinase inhibitory activity were the highest in the 6 month samples, which were harvested in September, during the fall season. The tyrosinase inhibitory activity in leaves was higher than that in stems irrespective of the growth period. This study suggests that mass spectrometry-based metabolite profiling could be used as a tool to examine quantitative or qualitative metabolite changes related to seasonal variations and to understand the correlation between activity and metabolites.
Collapse
Affiliation(s)
- Na kyung Kim
- Department of Bioscience and Biotechnology, Konkuk University , 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hye Min Park
- Department of Bioscience and Biotechnology, Konkuk University , 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Joongku Lee
- Department of Environment and Forest Resources, Chungnam National University , 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Kang-Mo Ku
- Division of Plant and Soil Sciences, West Virginia University , Morgantown, West Virginia 26505, United States
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University , 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
50
|
Kim GR, Jung ES, Lee S, Lim SH, Ha SH, Lee CH. Combined mass spectrometry-based metabolite profiling of different pigmented rice (Oryza sativa L.) seeds and correlation with antioxidant activities. Molecules 2014; 19:15673-86. [PMID: 25268721 PMCID: PMC6271636 DOI: 10.3390/molecules191015673] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/26/2014] [Accepted: 09/27/2014] [Indexed: 11/16/2022] Open
Abstract
Nine varieties of pigmented rice (Oryza sativa L.) seeds that were black, red, or white were used to perform metabolite profiling by using ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and gas chromatography (GC) TOF-MS, to measure antioxidant activities. Clear grouping patterns determined by the color of the rice seeds were identified in principle component analysis (PCA) derived from UPLC-Q-TOF-MS. Cyanidin-3-glucoside, peonidin-3-glucoside, proanthocyanidin dimer, proanthocyanidin trimer, apigenin-6-C-glugosyl-8-C-arabiboside, tricin-O-rhamnoside-O-hexoside, and lipids were identified as significantly different secondary metabolites. In PCA score plots derived from GC-TOF-MS, Jakwangdo (JKD) and Ilpoom (IP) species were discriminated from the other rice seeds by PC1 and PC2. Valine, phenylalanine, adenosine, pyruvate, nicotinic acid, succinic acid, maleic acid, malonic acid, gluconic acid, xylose, fructose, glucose, maltose, and myo-inositol were significantly different primary metabolites in JKD species, while GABA, asparagine, xylitol, and sucrose were significantly distributed in IP species. Analysis of antioxidant activities revealed that black and red rice seeds had higher activity than white rice seeds. Cyanidin-3-glucoside, peonidin-3-glucoside, proanthocyanidin dimers, proanthocyanidin trimers, and catechin were highly correlated with antioxidant activities, and were more plentiful in black and red rice seeds. These results are expected to provide valuable information that could help improve and develop rice-breeding techniques.
Collapse
Affiliation(s)
- Ga Ryun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Eun Sung Jung
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Sarah Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Sun-Hyung Lim
- National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Korea
| | - Sun-Hwa Ha
- Department of Genetic Engineering and Crop Biotech Institute, College of Life Sciences, Kyung Hee University, Suwon 446-701, Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea.
| |
Collapse
|