1
|
Doneva D, Pál M, Szalai G, Vasileva I, Brankova L, Misheva S, Janda T, Peeva V. Manipulating the light spectrum to increase the biomass production, physiological plasticity and nutritional quality of Eruca sativa L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109218. [PMID: 39461053 DOI: 10.1016/j.plaphy.2024.109218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/26/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024]
Abstract
The extensive development in light-emitting diodes (LEDs) in recent years provides an opportunity to positively influence plant growth and biomass accumulation and to optimize biochemical composition and nutritional quality. This study aimed to assess how different light spectra affect the growth, photosynthesis and biochemical properties of Eruca sativa. Therefore two LED lighting modes - red:blue (RB, 1:1) and red:green:blue (RGB, 2:1:2) were compared to the conventional white light fluorescent tubes (WL). Plant biomass, photosynthetic performance, several antioxidants, polyamines and nitrates contents were analyzed across different treatments. The plant growth was affected by the light quality - the presence of green light in the spectrum resulted in smaller plants and leaves, and correspondingly less biomass. RB spectral mode enhanced the total antioxidant and guaiacol peroxidase activity, pigments, flavonoids, polyphenols, ascorbate and polyamines contents. This effect under RB was combined with better leaf development compared to RGB and less nitrate in the leaves among all treatments. The RB light generated modifications in polyamines, which are interrelated with the nitrate content, further induce important metabolite and antioxidant changes. Both RB and RGB enhanced photosynthesis. The afterglow thermoluminescence band varied according to leaves development, being higher in RB and WL as a consequence of their faster growth. The RB light spectrum was found to be the most efficient for promoting the growth, biochemical composition, and overall quality of Eruca sativa compared to RGB and WL. These findings suggest that RB LEDs can be an effective tool for improving crop production in controlled environments.
Collapse
Affiliation(s)
- Dilyana Doneva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, "G. Bonchev" Str., Bl. 21, Sofia, 1113, Bulgaria
| | - Magda Pál
- Agricultural Institute, Centre of Agricultural Research, HUN REN, Brunszvik Str. 2, Martonvásár, 2462, Hungary
| | - Gabriella Szalai
- Agricultural Institute, Centre of Agricultural Research, HUN REN, Brunszvik Str. 2, Martonvásár, 2462, Hungary
| | - Ivanina Vasileva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, "G. Bonchev" Str., Bl. 21, Sofia, 1113, Bulgaria
| | - Liliana Brankova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, "G. Bonchev" Str., Bl. 21, Sofia, 1113, Bulgaria
| | - Svetlana Misheva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, "G. Bonchev" Str., Bl. 21, Sofia, 1113, Bulgaria
| | - Tibor Janda
- Agricultural Institute, Centre of Agricultural Research, HUN REN, Brunszvik Str. 2, Martonvásár, 2462, Hungary
| | - Violeta Peeva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, "G. Bonchev" Str., Bl. 21, Sofia, 1113, Bulgaria.
| |
Collapse
|
2
|
Popova AV, Mihailova G, Geneva M, Peeva V, Kirova E, Sichanova M, Dobrikova A, Georgieva K. Different Responses to Water Deficit of Two Common Winter Wheat Varieties: Physiological and Biochemical Characteristics. PLANTS (BASEL, SWITZERLAND) 2023; 12:2239. [PMID: 37375865 DOI: 10.3390/plants12122239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
Since water scarcity is one of the main risks for the future of agriculture, studying the ability of different wheat genotypes to tolerate a water deficit is fundamental. This study examined the responses of two hybrid wheat varieties (Gizda and Fermer) with different drought resistance to moderate (3 days) and severe (7 days) drought stress, as well as their post-stress recovery to understand their underlying defense strategies and adaptive mechanisms in more detail. To this end, the dehydration-induced alterations in the electrolyte leakage, photosynthetic pigment content, membrane fluidity, energy interaction between pigment-protein complexes, primary photosynthetic reactions, photosynthetic and stress-induced proteins, and antioxidant responses were analyzed in order to unravel the different physiological and biochemical strategies of both wheat varieties. The results demonstrated that Gizda plants are more tolerant to severe dehydration compared to Fermer, as evidenced by the lower decrease in leaf water and pigment content, lower inhibition of photosystem II (PSII) photochemistry and dissipation of thermal energy, as well as lower dehydrins' content. Some of defense mechanisms by which Gizda variety can tolerate drought stress involve the maintenance of decreased chlorophyll content in leaves, increased fluidity of the thylakoid membranes causing structural alterations in the photosynthetic apparatus, as well as dehydration-induced accumulation of early light-induced proteins (ELIPs), an increased capacity for PSI cyclic electron transport and enhanced antioxidant enzyme activity (SOD and APX), thus alleviating oxidative damage. Furthermore, the leaf content of total phenols, flavonoids, and lipid-soluble antioxidant metabolites was higher in Gizda than in Fermer.
Collapse
Affiliation(s)
- Antoaneta V Popova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Gergana Mihailova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Maria Geneva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Violeta Peeva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Elisaveta Kirova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Mariyana Sichanova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Anelia Dobrikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Katya Georgieva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| |
Collapse
|
3
|
Leverne L, Krieger-Liszkay A. Moderate drought stress stabilizes the primary quinone acceptor Q A and the secondary quinone acceptor Q B in photosystem II. PHYSIOLOGIA PLANTARUM 2021; 171:260-267. [PMID: 33215720 DOI: 10.1111/ppl.13286] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/26/2020] [Accepted: 11/16/2020] [Indexed: 05/02/2023]
Abstract
Drought induces stomata closure and lowers the CO2 concentration in the mesophyll, limiting CO2 assimilation and favoring photorespiration. The photosynthetic apparatus is protected under drought conditions by a number of downregulation mechanisms like photosynthetic control and activation of cyclic electron transport leading to the generation of a high proton gradient across the thylakoid membrane. Here, we studied photosynthetic electron transport by chlorophyll fluorescence, thermoluminescence (TL), and P700 absorption measurements in spinach exposed to moderate drought stress. Chlorophyll fluorescence induction and decay kinetics were slowed down. Under drought conditions, an increase of the TL AG-band and a downshift of the maximum temperatures of both, the B-band and the AG-band, were observed when leaves were illuminated under conditions that maintained the proton gradient. When leaves were frozen prior to the TL measurements, the maximum temperature of the B-band was upshifted in drought-stressed leaves. This shows a stabilization of the QB /QB •- redox couple in accordance with the slower fluorescence decay kinetics. We propose that during drought stress, photorespiration exerts a feedback control on photosystem II via the binding of a photorespiratory metabolite at the non-heme iron at the acceptor side of photosystem II. According to our hypothesis, an exchange of bicarbonate at the non-heme iron by a photorespiratory metabolite such as glycolate would not only affect the midpoint potential of the QA /QA •- couple, as shown previously, but also that of the QB /QB •- couple.
Collapse
Affiliation(s)
- Lucas Leverne
- Université Paris-Saclay, Institute for Integrative Cell Biology (I2BC), CEA, CNRS, Gif-sur-Yvette, France
| | - Anja Krieger-Liszkay
- Université Paris-Saclay, Institute for Integrative Cell Biology (I2BC), CEA, CNRS, Gif-sur-Yvette, France
| |
Collapse
|
4
|
Doneva D, Pál M, Brankova L, Szalai G, Tajti J, Khalil R, Ivanovska B, Velikova V, Misheva S, Janda T, Peeva V. The effects of putrescine pre-treatment on osmotic stress responses in drought-tolerant and drought-sensitive wheat seedlings. PHYSIOLOGIA PLANTARUM 2021; 171:200-216. [PMID: 32548914 DOI: 10.1111/ppl.13150] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/24/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Recent studies have demonstrated that exogenous polyamines have protective effects under various stress condition. A broader understanding of the role of the polyamine pool fine regulation and the alterations of polyamine-related physiological processes could be obtained by comparing the stress effects in different genotypes. In this study, the impact of pre-treatment with putrescine in response to osmotic stress was investigated in the drought-tolerant Katya and drought-sensitive Zora wheat (Triticum aestivum) cultivars. Photosynthetic performance, in vivo thermoluminescence emission from leaves, leaf temperature, polyamine and salicylic acid levels, contents of osmoprotectants, and activities of antioxidant enzymes in the leaves were investigated not only to reveal differences in the physiological processes associated to drought tolerance, but to highlight the modulating strategies of polyamine metabolism between a drought-tolerant and a drought-sensitive wheat genotype. Results showed that the tolerance of Katya under osmotic stress conditions was characterized by higher photosynthetic ability, stable charge separation across the thylakoid membrane in photosystem II, higher proline accumulation and antioxidant activity. Thermoluminescence also revealed differences between the two varieties - a downshift of the B band and an increase of the afterglow band under osmotic stress in Zora, providing original complementary information to leaf photosynthesis. Katya variety exhibited higher constitutive levels of the signaling molecules putrescine and salicylic acid compared to the sensitive Zora. However, responses to exogenous putrescine were more advantageous for the sensitive variety under PEG treatment, which may be in relation with the decreased catabolism of polyamines, suggesting the increased need for polyamine under stress conditions.
Collapse
Affiliation(s)
- Dilyana Doneva
- Department of Plant Ecophysiology, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, 1113, Bulgaria
| | - Magda Pál
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Martonvásár, 2462, Hungary
| | - Liliana Brankova
- Department of Plant Ecophysiology, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, 1113, Bulgaria
| | - Gabriella Szalai
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Martonvásár, 2462, Hungary
| | - Judit Tajti
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Martonvásár, 2462, Hungary
| | - Radwan Khalil
- Botany Department, Faculty of Science, Benha University, Benha, 13518, Egypt
| | - Beti Ivanovska
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Martonvásár, 2462, Hungary
| | - Violeta Velikova
- Department of Plant Ecophysiology, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, 1113, Bulgaria
| | - Svetlana Misheva
- Department of Plant Ecophysiology, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, 1113, Bulgaria
| | - Tibor Janda
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Martonvásár, 2462, Hungary
| | - Violeta Peeva
- Department of Plant Ecophysiology, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, 1113, Bulgaria
| |
Collapse
|
5
|
Ortega JM, Roncel M. The afterglow photosynthetic luminescence. PHYSIOLOGIA PLANTARUM 2021; 171:268-276. [PMID: 33231323 DOI: 10.1111/ppl.13288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 06/11/2023]
Abstract
The afterglow (AG) photosynthetic luminescence is a long-lived chlorophyll fluorescence emitted from PSII after the illumination of photosynthetic materials by FR or white light and placed in darkness. The AG emission corresponds to the fraction of PSII centers in the S2/3 QB non-radiative state immediately after pre-illumination, in which the arrival of an electron transferred from stroma along cyclic/chlororespiratory pathway(s) produces the S2/3 QB - radiative state that emits luminescence. This emission can be optimally recorded by a linear temperature gradient as sharp thermoluminescence (TL) band peaking at about 45°C. The AG emission recorded by TL technique has been proposed as a simple non-invasive tool to investigate the chloroplast energetic state and some of its metabolism processes as cyclic transport of electrons around PSI, chlororespiration or photorespiration. On the other hand, this emission has demonstrated to be a useful probe to study the effect of various stress conditions in photosynthetic materials.
Collapse
Affiliation(s)
- José M Ortega
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla-CSIC, Seville, Spain
| | - Mercedes Roncel
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla-CSIC, Seville, Spain
| |
Collapse
|
6
|
García-Calderón M, Betti M, Márquez AJ, Ortega JM, Roncel M. The afterglow thermoluminescence band as an indicator of changes in the photorespiratory metabolism of the model legume Lotus japonicus. PHYSIOLOGIA PLANTARUM 2019; 166:240-250. [PMID: 30628087 DOI: 10.1111/ppl.12916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/12/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
The afterglow (AG) luminescence is a delayed chlorophyll fluorescence emitted by the photosystem II that seems to reflect the level of assimilatory potential (NADPH+ATP) in chloroplast. In this work, the thermoluminescence (TL) emissions corresponding to the AG band were investigated in plants of the WT and the Ljgln2-2 photorespiratory mutant from Lotus japonicus grown under either photorespiratory (air) or non-photorespiratory (high concentration of CO2 ) conditions. TL glow curves obtained after two flashes induced the strongest overall TL emissions, which could be decomposed in two components: B band (tmax = 27-29°C) and AG band (tmax = 44-45°C). Under photorespiratory conditions, WT plants showed a ratio of 1.17 between the intensity of the AG and B bands (IAG /IB ). This ratio increased considerably under non-photorespiratory conditions (2.12). In contrast, mutant Ljgln2-2 plants grown under both conditions showed a high IAG /IB ratio, similar to that of WT plants grown under non-photorespiratory conditions. In addition, high temperature thermoluminescence (HTL) emissions associated to lipid peroxidation were also recorded. WT and Ljgln2-2 mutant plants grown under photorespiratory conditions showed both a significant HTL band, which increased significantly under non-photorespiratory conditions. The results of this work indicate that changes in the amplitude of IAG /IB ratio could be used as an in vivo indicator of alteration in the level of photorespiratory metabolism in L. japonicus chloroplasts. Moreover, the HTL results suggest that photorespiration plays some role in the protection of the chloroplast against lipid peroxidation.
Collapse
Affiliation(s)
| | - Marco Betti
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, Sevilla, Spain
| | - Antonio J Márquez
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, Sevilla, Spain
| | - José M Ortega
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, Sevilla, Spain
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla y Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Mercedes Roncel
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, Sevilla, Spain
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla y Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| |
Collapse
|
7
|
Velikova V, Tsonev T, Tattini M, Arena C, Krumova S, Koleva D, Peeva V, Stojchev S, Todinova S, Izzo LG, Brunetti C, Stefanova M, Taneva S, Loreto F. Physiological and structural adjustments of two ecotypes of Platanus orientalis L. from different habitats in response to drought and re-watering. CONSERVATION PHYSIOLOGY 2018; 6:coy073. [PMID: 30591840 PMCID: PMC6301291 DOI: 10.1093/conphys/coy073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/02/2018] [Accepted: 11/27/2018] [Indexed: 05/23/2023]
Abstract
Platanus orientalis covers a very fragmented area in Europe and, at the edge of its natural distribution, is considered a relic endangered species near extinction. In our study, it was hypothesized that individuals from the edge of the habitat, with stronger climate constrains (drier and warmer environment, Italy, IT ecotype), developed different mechanisms of adaptation than those growing under optimal conditions at the center of the habitat (more humid and colder environment, Bulgaria, BG ecotype). Indeed, the two P. orientalis ecotypes displayed physiological, structural and functional differences already under control (unstressed) conditions. Adaptation to a dry environment stimulated constitutive isoprene emission, determined active stomatal behavior, and modified chloroplast ultrastructure, ultimately allowing more effective use of absorbed light energy for photochemistry. When exposed to short-term acute drought stress, IT plants showed active stomatal control that enhanced instantaneous water use efficiency, and stimulation of isoprene emission that sustained photochemistry and reduced oxidative damages to membranes, as compared to BG plants. None of the P. orientalis ecotypes recovered completely from drought stress after re-watering, confirming the sensitivity of this mesophyte to drought. Nevertheless, the IT ecotype showed less damage and better stability at the level of chloroplast membrane parameters when compared to the BG ecotype, which we interpret as possible adaptation to hostile environments and improved capacity to cope with future, likely more recurrent, drought stress.
Collapse
Affiliation(s)
- Violeta Velikova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl. 21, Sofia, Bulgaria
| | - Tsonko Tsonev
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, Bulgaria
| | - Massimiliano Tattini
- Institute for Sustainable Plant Protection, Department of Biology, Agriculture and Food Sciences, The National Research Council of Italy (CNR), Sesto Fiorentino (Florence), Italy
| | - Carmen Arena
- Department of Biology, University of Naples Federico II, Via Cinthia, Naples, Italy
| | - Sashka Krumova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, Bulgaria
| | | | - Violeta Peeva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl. 21, Sofia, Bulgaria
| | - Svetoslav Stojchev
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, Bulgaria
| | - Svetla Todinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, Bulgaria
| | - Luigi Gennaro Izzo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici, Italy
| | - Cecilia Brunetti
- Department of Biology, Agriculture and Food Sciences, Trees and Timber Institute, The National Research Council of Italy (CNR), Sesto Fiorentino (Florence), Italy
| | | | - Stefka Taneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, Bulgaria
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences, The National Research Council of Italy (CNR), Rome, Italy
| |
Collapse
|
8
|
Hoffmann AM, Noga G, Hunsche M. Acclimations to light quality on plant and leaf level affect the vulnerability of pepper (Capsicum annuum L.) to water deficit. JOURNAL OF PLANT RESEARCH 2015; 128:295-306. [PMID: 25626402 DOI: 10.1007/s10265-014-0698-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/31/2014] [Indexed: 06/04/2023]
Abstract
We investigated the influence of light quality on the vulnerability of pepper plants to water deficit. For this purpose plants were cultivated either under compact fluorescence lamps (CFL) or light-emitting diodes (LED) providing similar photon fluence rates (95 µmol m(-2) s(-1)) but distinct light quality. CFL emit a wide-band spectrum with dominant peaks in the green and red spectral region, whereas LEDs offer narrow band spectra with dominant peaks at blue (445 nm) and red (665 nm) regions. After one-week acclimation to light conditions plants were exposed to water deficit by withholding irrigation; this period was followed by a one-week regeneration period and a second water deficit cycle. In general, plants grown under CFL suffered more from water deficit than plants grown under LED modules, as indicated by the impairment of the photosynthetic efficiency of PSII, resulting in less biomass accumulation compared to respective control plants. As affected by water shortage, plants grown under CFL had a stronger decrease in the electron transport rate (ETR) and more pronounced increase in heat dissipation (NPQ). The higher amount of blue light suppressed plant growth and biomass formation, and consequently reduced the water demand of plants grown under LEDs. Moreover, pepper plants exposed to high blue light underwent adjustments at chloroplast level (e.g., higher Chl a/Chl b ratio), increasing the photosynthetic performance under the LED spectrum. Differently than expected, stomatal conductance was comparable for water-deficit and control plants in both light conditions during the stress and recovery phases, indicating only minor adjustments at the stomatal level. Our results highlight the potential of the target-use of light quality to induce structural and functional acclimations improving plant performance under stress situations.
Collapse
Affiliation(s)
- Anna M Hoffmann
- Institute of Crop Science and Resource Conservation - Horticultural Science, University of Bonn, Auf dem Huegel 6, 53121, Bonn, Germany,
| | | | | |
Collapse
|