1
|
Li Y, Yuan W, Peng J, Ju J, Ling P, Guo X, Yang J, Ma Q, Lin H, Li J, Wang C, Su J. GhGASA14 regulates the flowering time of upland cotton in response to GA 3. PLANT CELL REPORTS 2024; 43:170. [PMID: 38869848 DOI: 10.1007/s00299-024-03252-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
KEY MESSAGE The silencing of GhGASA14 and the identification of superior allelic variation in its coding region indicate that GhGASA14 may positively regulate flowering and the response to GA3. Gibberellic acid-stimulated Arabidopsis (GASA), a member of the gibberellin-regulated short amino acid family, has been extensively investigated in several plant species and found to be critical for plant growth and development. However, research on this topic in cotton has been limited. In this study, we identified 38 GhGASAs that were dispersed across 18 chromosomes in upland cotton, and all of these genes had a GASA core domain. Transcriptome expression patterns and qRT-PCR results revealed that GhGASA9 and GhGASA14 exhibited upregulated expression not only in the floral organs but also in the leaves of early-maturing cultivars. The two genes were functionally characterized by virus-induced gene silencing (VIGS), and the budding and flowering times after silencing the target genes were later than those of the control (TRV:00). Compared with that in the water-treated group (MOCK), the flowering period of the different fruiting branches in the GA3-treated group was more concentrated. Interestingly, allelic variation was detected in the coding sequence of GhGASA14 between early-maturing and late-maturing accessions, and the frequency of this favorable allele was greater in high-latitude cotton cultivars than in low-latitude ones. Additionally, a significant linear relationship was observed between the expression level of GhGASA14 and flowering time among the 12 upland cotton accessions. Taken together, these results indicated that GhGASA14 may positively regulate flowering time and respond to GA3. These findings could lead to the use of valuable genetic resources for breeding early-maturing cotton cultivars in the future.
Collapse
Affiliation(s)
- Ying Li
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wenmin Yuan
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jialuo Peng
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jisheng Ju
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Pingjie Ling
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xuefeng Guo
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Junning Yang
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Qi Ma
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, China
| | - Hai Lin
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, China
| | - Jilian Li
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, China
| | - Caixiang Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Junji Su
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
2
|
Nazir MF, Wang J, Chen B, Umer MJ, He S, Pan Z, Hu D, Song M, Du X. Multistage temporal transcriptomic atlas unveils major contributor to reproductive phase in upland cotton. PHYSIOLOGIA PLANTARUM 2024; 176:e14382. [PMID: 38859666 DOI: 10.1111/ppl.14382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/11/2024] [Indexed: 06/12/2024]
Abstract
Flowering is a major developmental transition in plants, but asynchronous flowering hinders the utilization of wild cotton relatives in breeding programs. We performed comparative transcriptomic profiling of early- and late-flowering Gossypium hirsutum genotypes to elucidate genetic factors influencing reproductive timing. Shoot apices were sampled from the photoperiod-sensitive landrace G. hirsutum purpurascens (GhP) and early-maturing variety ZhongMianSuo (ZMS) at five time points following the emergence of sympodial nodes. RNA-sequencing revealed extensive transcriptional differences during floral transition. Numerous flowering-associated genes exhibited genotype-specific expression, including FLOWERING LOCUS T (FT) homologs upregulated in ZMS. FT-interacting factors like SOC1 and CO-like also showed higher expression in ZMS, implicating florigen pathways in early flowering. Additionally, circadian clock and light signalling components were misregulated between varieties, suggesting altered photoperiod responses in GhP. Weighted co-expression network analysis specifically linked a module enriched for circadian-related genes to GhP's late flowering. Through an integrated transcriptome analysis, we defined a regulatory landscape of reproductive phase change in cotton. Differentially expressed genes related to photoperiod, circadian clock, and light signalling likely contribute to delayed flowering in wild cottons. Characterization of upstream flowering regulators will enable modifying photoperiod sensitivity and expand germplasm use for cotton improvement. This study provides candidate targets for elucidating interactive mechanisms that control cotton flowering time across diverse genotypes.
Collapse
Affiliation(s)
- Mian Faisal Nazir
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, China
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
| | - Jingjing Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, China
| | - Baojun Chen
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, China
| | - Muhammad Jawad Umer
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, China
| | - Shoupu He
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, China
| | - Zhaoe Pan
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, China
| | - Daowu Hu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Meizhen Song
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, China
| | - Xiongming Du
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| |
Collapse
|
3
|
Wen X, Chen Z, Yang Z, Wang M, Jin S, Wang G, Zhang L, Wang L, Li J, Saeed S, He S, Wang Z, Wang K, Kong Z, Li F, Zhang X, Chen X, Zhu Y. A comprehensive overview of cotton genomics, biotechnology and molecular biological studies. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2214-2256. [PMID: 36899210 DOI: 10.1007/s11427-022-2278-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/09/2023] [Indexed: 03/12/2023]
Abstract
Cotton is an irreplaceable economic crop currently domesticated in the human world for its extremely elongated fiber cells specialized in seed epidermis, which makes it of high research and application value. To date, numerous research on cotton has navigated various aspects, from multi-genome assembly, genome editing, mechanism of fiber development, metabolite biosynthesis, and analysis to genetic breeding. Genomic and 3D genomic studies reveal the origin of cotton species and the spatiotemporal asymmetric chromatin structure in fibers. Mature multiple genome editing systems, such as CRISPR/Cas9, Cas12 (Cpf1) and cytidine base editing (CBE), have been widely used in the study of candidate genes affecting fiber development. Based on this, the cotton fiber cell development network has been preliminarily drawn. Among them, the MYB-bHLH-WDR (MBW) transcription factor complex and IAA and BR signaling pathway regulate the initiation; various plant hormones, including ethylene, mediated regulatory network and membrane protein overlap fine-regulate elongation. Multistage transcription factors targeting CesA 4, 7, and 8 specifically dominate the whole process of secondary cell wall thickening. And fluorescently labeled cytoskeletal proteins can observe real-time dynamic changes in fiber development. Furthermore, research on the synthesis of cotton secondary metabolite gossypol, resistance to diseases and insect pests, plant architecture regulation, and seed oil utilization are all conducive to finding more high-quality breeding-related genes and subsequently facilitating the cultivation of better cotton varieties. This review summarizes the paramount research achievements in cotton molecular biology over the last few decades from the above aspects, thereby enabling us to conduct a status review on the current studies of cotton and provide strong theoretical support for the future direction.
Collapse
Affiliation(s)
- Xingpeng Wen
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhiwen Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Zuoren Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Maojun Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangda Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Zhang
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Lingjian Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jianying Li
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sumbul Saeed
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shoupu He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhi Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Kun Wang
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- Shanxi Agricultural University, Jinzhong, 030801, China.
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Xianlong Zhang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xiaoya Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| | - Yuxian Zhu
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China.
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
4
|
Wang C, Liu J, Xie X, Wang J, Ma Q, Chen P, Yang D, Ma X, Hao F, Su J. GhAP1-D3 positively regulates flowering time and early maturity with no yield and fiber quality penalties in upland cotton. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:985-1002. [PMID: 36398758 DOI: 10.1111/jipb.13409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Flowering time (FTi) is a major factor determining how quickly cotton plants reach maturity. Early maturity greatly affects lint yield and fiber quality and is crucial for mechanical harvesting of cotton in northwestern China. Yet, few quantitative trait loci (QTLs) or genes regulating early maturity have been reported in cotton, and the underlying regulatory mechanisms are largely unknown. In this study, we characterized 152, 68, and 101 loci that were significantly associated with the three key early maturity traits-FTi, flower and boll period (FBP) and whole growth period (WGP), respectively, via four genome-wide association study methods in upland cotton (Gossypium hirsutum). We focused on one major early maturity-related genomic region containing three single nucleotide polymorphisms on chromosome D03, and determined that GhAP1-D3, a gene homologous to Arabidopsis thaliana APETALA1 (AP1), is the causal locus in this region. Transgenic plants overexpressing GhAP1-D3 showed significantly early flowering and early maturity without penalties for yield and fiber quality compared to wild-type (WT) plants. By contrast, the mutant lines of GhAP1-D3 generated by genome editing displayed markedly later flowering than the WT. GhAP1-D3 interacted with GhSOC1 (SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1), a pivotal regulator of FTi, both in vitro and in vivo. Changes in GhAP1-D3 transcript levels clearly affected the expression of multiple key flowering regulatory genes. Additionally, DNA hypomethylation and high levels of H3K9ac affected strong expression of GhAP1-D3 in early-maturing cotton cultivars. We propose that epigenetic modifications modulate GhAP1-D3 expression to positively regulate FTi in cotton through interaction of the encoded GhAP1 with GhSOC1 and affecting the transcription of multiple flowering-related genes. These findings may also lay a foundation for breeding early-maturing cotton varieties in the future.
Collapse
Affiliation(s)
- Caixiang Wang
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Juanjuan Liu
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiaoyu Xie
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ji Wang
- State Key Laboratory of Cotton Biology, College of Life Science, Henan University, Kaifeng, 475004, China
| | - Qi Ma
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, China
| | - Pengyun Chen
- State Key Laboratory of Cotton Biology, College of Life Science, Henan University, Kaifeng, 475004, China
| | - Delong Yang
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiongfeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Fushun Hao
- State Key Laboratory of Cotton Biology, College of Life Science, Henan University, Kaifeng, 475004, China
| | - Junji Su
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, China
| |
Collapse
|
5
|
Zhao H, Chen Y, Liu J, Wang Z, Li F, Ge X. Recent advances and future perspectives in early-maturing cotton research. THE NEW PHYTOLOGIST 2023; 237:1100-1114. [PMID: 36352520 DOI: 10.1111/nph.18611] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Cotton's fundamental requirements for long periods of growth and specific seasonal temperatures limit the global arable areas that can be utilized to cultivate cotton. This constraint can be alleviated by breeding for early-maturing varieties. By delaying the sowing dates without impacting the boll-opening time, early-maturing varieties not only mitigate the yield losses brought on by unfavorable weathers in early spring and late autumn but also help reducing the competition between cotton and other crops for arable land, thereby optimizing the cropping system. This review presents studies and breeding efforts for early-maturing cotton, which efficiently pyramid early maturity, high-quality, multiresistance traits, and suitable plant architecture by leveraging pleiotropic genes. Attempts are also made to summarize our current understanding of the molecular mechanisms underlying early maturation, which involves many pathways such as epigenetic, circadian clock, and hormone signaling pathways. Moreover, new avenues and effective measures are proposed for fine-scale breeding of early-maturing crops to ensure the healthy development of the agricultural industry.
Collapse
Affiliation(s)
- Hang Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Yanli Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Ji Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Hainan Yazhou Bay Seed Lab, Sanya, 572000, Hainan, China
| | - Zhi Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Sanya Institute, Zhengzhou University, Sanya, 572000, Hainan, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Hainan Yazhou Bay Seed Lab, Sanya, 572000, Hainan, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| |
Collapse
|
6
|
Zhang X, Ren Z, Hu G, Zhao S, Wei H, Fan S, Ma Q. Functional divergence of GhAP1.1 and GhFUL2 associated with flowering regulation in upland cotton (Gossypium hirsutum L.). JOURNAL OF PLANT PHYSIOLOGY 2022; 275:153757. [PMID: 35777126 DOI: 10.1016/j.jplph.2022.153757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
The AP1/FUL transcription factors are important for floral development, but the underlying molecular mechanisms remain unclear. In this study, we cloned and identified two AP1/FUL-like genes, GhAP1.1 and GhFUL2, in upland cotton, which is a commonly cultivated economically valuable crop. Sequence alignment and phylogenetic analysis indicated that GhAP1.1 and GhFUL2, which are encoded by genes in the AP1/FUL clade, have conserved N-terminal regions but diverse C-terminal domains. Quantitative real-time PCR analysis revealed that GhAP1.1 and GhFUL2 were expressed in the flower and root, and showed opposite expression patterns during shoot apical meristem development. The upregulated expression of GhAP1.1 in Arabidopsis did not result in significant changes to the flowering time or floral organ development, and the transcript levels of the florigen FT increased and those of LFY decreased. Overexpression of GhFUL2 in Arabidopsis delayed flowering and promoted bolting by decreasing FT and LFY transcript levels. Silencing GhFUL2 in cotton dramatically increased the expression of GhFT and GhAP1.3 and promoted flowering. Yeast two-hybrid and bimolecular fluorescence complementation assays indicated that GhAP1.1 could interact with the SVP homolog GhSVP2.2, whereas GhFUL2 formed heterodimers with GhSEP3/GhSEP4 homologs and GhSVP2.2. The present results demonstrated that the functional divergence of GhAP1.1 and GhFUL2, which involved changes in sequences and expression patterns, influenced the regulation of cotton flower development.
Collapse
Affiliation(s)
- Xiaohong Zhang
- Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, 453003, PR China
| | - Zhongying Ren
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, PR China
| | - Genhai Hu
- Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, 453003, PR China
| | - Shilei Zhao
- Sanmenxia Academy of Agricultural Sciences, Sanmenxia, 472000, PR China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, PR China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, PR China.
| | - Qifeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, PR China.
| |
Collapse
|
7
|
Kou K, Yang H, Li H, Fang C, Chen L, Yue L, Nan H, Kong L, Li X, Wang F, Wang J, Du H, Yang Z, Bi Y, Lai Y, Dong L, Cheng Q, Su T, Wang L, Li S, Hou Z, Lu S, Zhang Y, Che Z, Yu D, Zhao X, Liu B, Kong F. A functionally divergent SOC1 homolog improves soybean yield and latitudinal adaptation. Curr Biol 2022; 32:1728-1742.e6. [PMID: 35263616 DOI: 10.1016/j.cub.2022.02.046] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/22/2021] [Accepted: 02/14/2022] [Indexed: 12/30/2022]
Abstract
Soybean (Glycine max) grows in a wide range of latitudes, but it is extremely sensitive to photoperiod, which reduces its yield and ability to adapt to different environments. Therefore, understanding of the genetic basis of soybean adaptation is of great significance for breeding and improvement. Here, we characterized Tof18 (SOC1a) that conditions early flowering and growth habit under both short-day and long-day conditions. Molecular analysis confirmed that the two SOC1 homologs present in soybeans (SOC1a and SOC1b) underwent evolutionary functional divergence, with SOC1a having stronger effects on flowering time and stem node number than SOC1b due to transcriptional differences. soc1a soc1b double mutants showed stronger functional effects than either of the single mutants, perhaps due to the formation of SOC1a and SOC1b homodimers or heterodimers. Additionally, Tof18/SOC1a improves the latitudinal adaptation of cultivated soybeans, highlighting the functional importance of SOC1a. The Tof18G allele facilitates adaptation to high latitudes, whereas Tof18A facilitates adaptation to low latitudes. We demonstrated that SOC1s contribute to floral induction in both leaves and shoot apex through inter-regulation with FTs. The SOC1a-SOC1b-Dt2 complex plays essential roles in stem growth habit by directly binding to the regulatory sequence of Dt1, making the genes encoding these proteins potential targets for genome editing to improve soybean yield via molecular breeding. Since the natural Tof18A allele increases node number, introgressing this allele into modern cultivars could improve yields, which would help optimize land use for food production in the face of population growth and global warming.
Collapse
Affiliation(s)
- Kun Kou
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Hui Yang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China.
| | - Haiyang Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Fang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Liyu Chen
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Lin Yue
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Haiyang Nan
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Lingping Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Xiaoming Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Fan Wang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Jianhao Wang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Haiping Du
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Zhongyi Yang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingdong Bi
- Institute of Crops Tillage and Cultivation, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Yongcai Lai
- Institute of Crops Tillage and Cultivation, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Lidong Dong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Qun Cheng
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Tong Su
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Lingshuang Wang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Shichen Li
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Zhihong Hou
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163000, China
| | - Sijia Lu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Yuhang Zhang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Zhijun Che
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Deyue Yu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohui Zhao
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China.
| | - Baohui Liu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China; The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China.
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China; The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China.
| |
Collapse
|
8
|
Ma L, Yan Y. GhSOC1s Evolve to Respond Differently to the Environmental Cues and Promote Flowering in Partially Independent Ways. FRONTIERS IN PLANT SCIENCE 2022; 13:882946. [PMID: 35519808 PMCID: PMC9067242 DOI: 10.3389/fpls.2022.882946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Gossypium hirsutum is most broadly cultivated in the world due to its broader adaptation to the environment and successful breeding of early maturity varieties. However, how cotton responds to environmental cues to adjust flowering time to achieve reproductive success is largely unknown. SOC1 functions as an essential integrator for the endogenous and exogenous signals to maximize reproduction. Thus we identified six SOC1-like genes in Gossypium that clustered into two groups. GhSOC1-1 contained a large intron and clustered with monocot SOC1s, while GhSOC1-2/3 were close to dicot SOC1s. GhSOC1s expression gradually increased during seedling development suggesting their conserved function in promoting flowering, which was supported by the early flowering phenotype of 35S:GhSOC1-1 Arabidopsis lines and the delayed flowering of cotton silencing lines. Furthermore, GhSOC1-1 responded to short-day and high temperature conditions, while GhSOC1-2 responded to long-day conditions. GhSOC1-3 might function to promote flowering in response to low temperature and cold. Taken together, our results demonstrate that GhSOC1s respond differently to light and temperature and act cooperatively to activate GhLFY expression to promote floral transition and enlighten us in cotton adaptation to environment that is helpful in improvement of cotton maturity.
Collapse
|
9
|
Zhou Y, Myat AA, Liang C, Meng Z, Guo S, Wei Y, Sun G, Wang Y, Zhang R. Insights Into MicroRNA-Mediated Regulation of Flowering Time in Cotton Through Small RNA Sequencing. FRONTIERS IN PLANT SCIENCE 2022; 13:761244. [PMID: 35432420 PMCID: PMC9010036 DOI: 10.3389/fpls.2022.761244] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/01/2022] [Indexed: 05/06/2023]
Abstract
The timing of flowering is a key determinant for plant reproductive. It has been demonstrated that microRNAs (miRNAs) play an important role in transition from the vegetative to reproductive stage in cotton; however, knowledge remains limited about the regulatory role of miRNAs involved in flowering time regulation in cotton. To elucidate the molecular basis of miRNAs in response to flowering time in cotton, we performed high-throughput small RNA sequencing at the fifth true leaf stage. We identified 56 and 43 miRNAs that were significantly up- and downregulated in two elite early flowering cultivars (EFC) compared with two late flowering cultivars (LFC), respectively. The miRNA targets by RNA sequencing analysis showed that GhSPL4 in SBP transcription factor family targeted by GhmiR156 was significantly upregulated in EFCs. Co-expression regulatory network analysis (WGCNA) revealed that GhSOC1, GhAP1, GhFD, GhCOL3, and GhAGL16 act as node genes in the auxin- and gibberellin-mediated flowering time regulatory networks in cotton. Therefore, elucidation of miRNA-mediated flowering time regulatory network will contribute to our understanding of molecular mechanisms underlying flowering time in cotton.
Collapse
|
10
|
Feng Z, Li M, Li Y, Yang X, Wei H, Fu X, Ma L, Lu J, Wang H, Yu S. Comprehensive identification and expression analysis of B-Box genes in cotton. BMC Genomics 2021; 22:439. [PMID: 34118883 PMCID: PMC8196430 DOI: 10.1186/s12864-021-07770-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/03/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND B-BOX (BBX) proteins are zinc-finger transcription factors with one or two BBX domains and sometimes a CCT domain. These proteins play an essential role in regulating plant growth and development, as well as in resisting abiotic stress. So far, the BBX gene family has been widely studied in other crops. However, no one has systematically studied the BBX gene in cotton. RESULTS In the present study, 17, 18, 37 and 33 BBX genes were detected in Gossypium arboreum, G. raimondii, G. hirsutum and G. barbadense, respectively, via genome-wide identification. Phylogenetic analysis showed that all BBX genes were divided into 5 main categories. The protein motifs and exon/intron structures showed that each group of BBX genes was highly conserved. Collinearity analysis revealed that the amplification of BBX gene family in Gossypium spp. was mainly through segmental replication. Nonsynonymous (Ka)/ synonymous (Ks) substitution ratios indicated that the BBX gene family had undergone purification selection throughout the long-term natural selection process. Moreover, transcriptomic data showed that some GhBBX genes were highly expressed in floral organs. The qRT-PCR results showed that there were significant differences in GhBBX genes in leaves and shoot apexes between early-maturing materials and late-maturing materials at most periods. Yeast two-hybrid results showed that GhBBX5/GhBBX23 and GhBBX8/GhBBX26 might interact with GhFT. Transcriptome data analysis and qRT-PCR verification showed that different GhBBX genes had different biological functions in abiotic stress and phytohormone response. CONCLUSIONS Our comprehensive analysis of BBX in G. hirsutum provided a basis for further study on the molecular role of GhBBXs in regulating flowering and cotton resistance to abiotic stress.
Collapse
Affiliation(s)
- Zhen Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 China
| | - Mengyu Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Yi Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 China
| | - Xu Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 China
| | - Xiaokang Fu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 China
| | - Liang Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 China
| | - Jianhua Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 China
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 China
| |
Collapse
|
11
|
Cheng S, Chen P, Su Z, Ma L, Hao P, Zhang J, Ma Q, Liu G, Liu J, Wang H, Wei H, Yu S. High-resolution temporal dynamic transcriptome landscape reveals a GhCAL-mediated flowering regulatory pathway in cotton (Gossypium hirsutum L.). PLANT BIOTECHNOLOGY JOURNAL 2021; 19:153-166. [PMID: 32654381 PMCID: PMC7769237 DOI: 10.1111/pbi.13449] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/24/2020] [Accepted: 05/19/2020] [Indexed: 05/04/2023]
Abstract
The transition from vegetative to reproductive growth is very important for early maturity in cotton. However, the genetic control of this highly dynamic and complex developmental process remains unclear. A high-resolution tissue- and stage-specific transcriptome profile was generated from six developmental stages using 72 samples of two early-maturing and two late-maturing cotton varieties. The results of histological analysis of paraffin sections showed that flower bud differentiation occurred at the third true leaf stage (3TLS) in early-maturing varieties, but at the fifth true leaf stage (5TLS) in late-maturing varieties. Using pairwise comparison and weighted gene co-expression network analysis, 5312 differentially expressed genes were obtained, which were divided into 10 gene co-expression modules. In the MElightcyan module, 46 candidate genes regulating cotton flower bud differentiation were identified and expressed at the flower bud differentiation stage. A novel key regulatory gene related to flower bud differentiation, GhCAL, was identified in the MElightcyan module. Anti-GhCAL transgenic cotton plants exhibited late flower bud differentiation and flowering time. GhCAL formed heterodimers with GhAP1-A04/GhAGL6-D09 and regulated the expression of GhAP1-A04 and GhAGL6-D09. GhAP1-A04- and GhAGL6-D09-silenced plants also showed significant late flowering. Finally, we propose a new flowering regulatory pathway mediated by GhCAL. This study elucidated the molecular mechanism of cotton flowering regulation and provides good genetic resources for cotton early-maturing breeding.
Collapse
Affiliation(s)
- Shuaishuai Cheng
- College of AgronomyNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Cotton BiologyKey Laboratory of Cotton Genetic ImprovementCotton Institute of the Chinese Academy of Agricultural SciencesMinistry of AgricultureAnyangChina
| | - Pengyun Chen
- State Key Laboratory of Cotton BiologyKey Laboratory of Cotton Genetic ImprovementCotton Institute of the Chinese Academy of Agricultural SciencesMinistry of AgricultureAnyangChina
| | - Zhengzheng Su
- State Key Laboratory of Cotton BiologyKey Laboratory of Cotton Genetic ImprovementCotton Institute of the Chinese Academy of Agricultural SciencesMinistry of AgricultureAnyangChina
| | - Liang Ma
- State Key Laboratory of Cotton BiologyKey Laboratory of Cotton Genetic ImprovementCotton Institute of the Chinese Academy of Agricultural SciencesMinistry of AgricultureAnyangChina
| | - Pengbo Hao
- College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Jingjing Zhang
- State Key Laboratory of Cotton BiologyKey Laboratory of Cotton Genetic ImprovementCotton Institute of the Chinese Academy of Agricultural SciencesMinistry of AgricultureAnyangChina
| | - Qiang Ma
- State Key Laboratory of Cotton BiologyKey Laboratory of Cotton Genetic ImprovementCotton Institute of the Chinese Academy of Agricultural SciencesMinistry of AgricultureAnyangChina
| | - Guoyuan Liu
- State Key Laboratory of Cotton BiologyKey Laboratory of Cotton Genetic ImprovementCotton Institute of the Chinese Academy of Agricultural SciencesMinistry of AgricultureAnyangChina
| | - Ji Liu
- State Key Laboratory of Cotton BiologyKey Laboratory of Cotton Genetic ImprovementCotton Institute of the Chinese Academy of Agricultural SciencesMinistry of AgricultureAnyangChina
| | - Hantao Wang
- State Key Laboratory of Cotton BiologyKey Laboratory of Cotton Genetic ImprovementCotton Institute of the Chinese Academy of Agricultural SciencesMinistry of AgricultureAnyangChina
| | - Hengling Wei
- State Key Laboratory of Cotton BiologyKey Laboratory of Cotton Genetic ImprovementCotton Institute of the Chinese Academy of Agricultural SciencesMinistry of AgricultureAnyangChina
| | - Shuxun Yu
- College of AgronomyNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Cotton BiologyKey Laboratory of Cotton Genetic ImprovementCotton Institute of the Chinese Academy of Agricultural SciencesMinistry of AgricultureAnyangChina
| |
Collapse
|
12
|
Zhang X, Zhao J, Wu X, Hu G, Fan S, Ma Q. Evolutionary Relationships and Divergence of KNOTTED1-Like Family Genes Involved in Salt Tolerance and Development in Cotton ( Gossypium hirsutum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:774161. [PMID: 34970288 PMCID: PMC8712452 DOI: 10.3389/fpls.2021.774161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/25/2021] [Indexed: 05/16/2023]
Abstract
The KNOX (KNOTTED1-like homeobox) transcription factors play an important role in leaf, shoot apical meristem and seed development and respond to biotic and abiotic stresses. In this study, we analyzed the diversity and evolutionary history of the KNOX gene family in the genome of tetraploid cotton (Gossypium hirsutum). Forty-four putative KNOX genes were identified. All KNOX genes from seven higher plant species were classified into KNOXI, KNOXII, and KNATM clades based on a phylogenetic analysis. Chromosomal localization and collinearity analysis suggested that whole-genome duplication and a polyploidization event contributed to the expansion of the cotton KNOX gene family. Analyses of expression profiles revealed that the GhKNOX genes likely responded to diverse stresses and were involved in cotton growth developmental processes. Silencing of GhKNOX2 enhanced the salt tolerance of cotton seedlings, whereas silencing of GhKNOX10 and GhKNOX14 reduced seedling tolerance to salt stress. Silencing of GhSTM3 influenced the cotton flowering time and plant development. These findings clarify the evolution of the cotton KNOX gene family and provide a foundation for future functional studies of KNOX proteins in cotton growth and development and response to abiotic stresses.
Collapse
Affiliation(s)
- Xiaohong Zhang
- Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Junjie Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Xiangyuan Wu
- Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Genhai Hu
- Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
- *Correspondence: Shuli Fan,
| | - Qifeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
- Qifeng Ma,
| |
Collapse
|
13
|
Ma Q, Qu Z, Wang X, Qiao K, Mangi N, Fan S. EMBRYONIC FLOWER2B, coming from a stable QTL, represses the floral transition in cotton. Int J Biol Macromol 2020; 163:1087-1096. [DOI: 10.1016/j.ijbiomac.2020.07.116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 11/27/2022]
|
14
|
Cheng X, Wang H, Wei H, Gu L, Hao P, Sun H, Wu A, Cheng S, Yu S. The MADS transcription factor GhAP1.7 coordinates the flowering regulatory pathway in upland cotton (Gossypium hirsutum L.). Gene 2020; 769:145235. [PMID: 33148424 DOI: 10.1016/j.gene.2020.145235] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/26/2020] [Accepted: 10/09/2020] [Indexed: 11/26/2022]
Abstract
MADS-box gene family plays an important role in the molecular regulatory network of flower development. APETALA1 (AP1), a MADS-box gene, plays an important role in the development of flower organs. Although many studies about MADS-box family genes have been reported, the function of AP1 is still not clear in cotton. In this study, GhAP1.7 (Gh_D03G0922), a candidate gene for cotton flower time and plant height obtained from our previous studies, was cloned from CCRI50 cotton variety and functionally characterized. Subcellular localization demonstrated that GhAP1.7 was located in nucleus. Infection test of Arabidopsis revealed that GhAP1.7 could cause precocious flowering and virus-induced gene silence (VIGS) assay demonstrated that GhAP1.7 could lead to delayed flowering of cotton plants. Yeast one-hybrid assays and transient dual-luciferase assays suggested that floral meristem identity control gene LEAFY (LFY) can bind the promoter of GhAP1.7 and negatively regulate it. Our research indicated that GhAP1.7 might work as a positive regulator in plant flowering. Moreover, GhAP1.7 may negatively regulated by GhLFY in the regulatory pathways. This work laid the foundation for subsequent functional studies of GhAP1.7.
Collapse
Affiliation(s)
- Xiaoqian Cheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China; College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China.
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China.
| | - Lijiao Gu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China.
| | - Pengbo Hao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China.
| | - Huiru Sun
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China.
| | - Aimin Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China.
| | - Shuaishuai Cheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China.
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China.
| |
Collapse
|
15
|
de Moura SM, Rossi ML, Artico S, Grossi-de-Sa MF, Martinelli AP, Alves-Ferreira M. Characterization of floral morphoanatomy and identification of marker genes preferentially expressed during specific stages of cotton flower development. PLANTA 2020; 252:71. [PMID: 33001252 DOI: 10.1007/s00425-020-03477-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Characterization of anther and ovule developmental programs and expression analyses of stage-specific floral marker genes in Gossypium hirsutum allowed to build a comprehensive portrait of cotton flower development before fiber initiation. Gossypium hirsutum is the most important cotton species that is cultivated worldwide. Although cotton reproductive development is important for fiber production, since fiber is formed on the epidermis of mature ovules, cotton floral development remains poorly understood. Therefore, this work aims to characterize the cotton floral morphoanatomy by performing a detailed description of anther and ovule developmental programs and identifying stage-specific floral marker genes in G. hirsutum. Using light microscopy and scanning electron microscopy, we analyzed anther and ovule development during 11 stages of flower development. To better characterize the ovule development in cotton, we performed histochemical analyses to evaluate the accumulation of phenolic compounds, pectin, and sugar in ovule tissues. After identification of major hallmarks of floral development, three key stages were established in G. hirsutum floral development: in stage 1 (early-EF), sepal, petal, and stamen primordia were observed; in stage 2 (intermediate-IF), primordial ovules and anthers are present, and the differentiating archesporial cells were observed, marking the beginning of microsporogenesis; and in stage 6 (late-LF), flower buds presented initial anther tapetum degeneration and microspore were released from the tetrad, and nucellus and both inner and outer integuments are developing. We used transcriptome data of cotton EF, IF and LF stages to identify floral marker genes and evaluated their expression by real-time quantitative PCR (qPCR). Twelve marker genes were preferentially expressed in a stage-specific manner, including the putative homologs for AtLEAFY, AtAPETALA 3, AtAGAMOUS-LIKE 19 and AtMALE STERILITY 1, which are crucial for several aspects of reproductive development, such as flower organogenesis and anther and petal development. We also evaluated the expression profile of B-class MADS-box genes in G. hirsutum floral transcriptome (EF, IF, and LF). In addition, we performed a comparative analysis of developmental programs between Arabidopsis thaliana and G. hirsutum that considered major morphoanatomical and molecular processes of flower, anther, and ovule development. Our findings provide the first detailed analysis of cotton flower development.
Collapse
Affiliation(s)
- Stéfanie Menezes de Moura
- Department of Genetics, Universidade Federal do Rio de Janeiro (UFRJ), Av. Prof. Rodolpho Paulo Rocco, s/n, Prédio do CCS, Instituto de Biologia, 2° andar, sala A2-93, Rio de Janeiro, RJ, 219410-970, Brazil
| | - Mônica Lanzoni Rossi
- University of São Paulo, USP-CENA, Av. Centenário 303, Piracicaba, SP, 13416-903, Brazil
| | - Sinara Artico
- Department of Genetics, Universidade Federal do Rio de Janeiro (UFRJ), Av. Prof. Rodolpho Paulo Rocco, s/n, Prédio do CCS, Instituto de Biologia, 2° andar, sala A2-93, Rio de Janeiro, RJ, 219410-970, Brazil
| | - Maria Fátima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, PqEB, Av. W5 Norte (final), Caixa Postal 02372, Brasília, DF, CEP 70770-900, Brazil
| | | | - Marcio Alves-Ferreira
- Department of Genetics, Universidade Federal do Rio de Janeiro (UFRJ), Av. Prof. Rodolpho Paulo Rocco, s/n, Prédio do CCS, Instituto de Biologia, 2° andar, sala A2-93, Rio de Janeiro, RJ, 219410-970, Brazil.
| |
Collapse
|
16
|
Liu Z, Wu X, Cheng M, Xie Z, Xiong C, Zhang S, Wu J, Wang P. Identification and functional characterization of SOC1-like genes in Pyrus bretschneideri. Genomics 2019; 112:1622-1632. [PMID: 31533070 DOI: 10.1016/j.ygeno.2019.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 12/11/2022]
Abstract
Flowering is a prerequisite for pear fruit production. Therefore, the development of flower buds and the control of flowering time are important for pear trees. However, the molecular mechanism of pear flowering is unclear. SOC1, a member of MADS-box family, is known as a flowering signal integrator in Arabidopsis. We identified eight SOC1-like genes in Pyrus bretschneideri and analyzed their basic information and expression patterns. Some pear SOC1-like genes were regulated by photoperiod in leaves. Moreover, the expression patterns were diverse during the development of pear flower buds. Two members of the pear SOC1-like genes, PbSOC1d and PbSOC1g, could lead to early flowering phenotype when overexpressed in Arabidopsis. PbSOC1d and PbSOC1g were identified as activators of the floral meristem identity genes AtAP1 and AtLFY and promote flowering time. These results suggest that PbSOC1d and PbSOC1g are promoters of flowering time and may be involved in flower bud development in pear.
Collapse
Affiliation(s)
- Zhe Liu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoping Wu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengyu Cheng
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihua Xie
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Changlong Xiong
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Juyou Wu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Peng Wang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
17
|
The cotton HD-Zip transcription factor GhHB12 regulates flowering time and plant architecture via the GhmiR157-GhSPL pathway. Commun Biol 2018; 1:229. [PMID: 30564750 PMCID: PMC6292863 DOI: 10.1038/s42003-018-0234-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 11/06/2018] [Indexed: 12/03/2022] Open
Abstract
Domestication converts perennial and photoperiodic ancestral cotton to day-neutral cotton varieties, and the selection of short-season cotton varieties is one of the major objectives of cotton breeding. However, little is known about the mechanism of flowering time in cotton. Here, we report a cotton HD-ZIP I-class transcription factor (GhHB12) specifically expressed in axillary buds, which antagonisticlly interacts with GhSPL10/13 to repress the expression of GhFT, GhFUL, and GhSOC1, resulting in bushy architecture and delayed flowering under long-day conditions. We found that GhHB12-mediated ancestral upland cotton phenotypes (bushy architecture and delayed flowering) could be rescued under short-day conditions. We showed that overexpressing of GhrSPL10 partially rescues the bushy architecture and delayed flowering phenotypes, while overexpression of GhmiR157 reinforced these phenotypes in GhHB12-overexpressing plants. This study defines a regulatory module which regulates cotton architecture, phase transition and could be applied in the breeding of early maturing cotton varieties. Xin He et al. present a characterization of GhHB12, a HD-ZIP family transcription factor expressed in upland cotton axillary buds. They show that GhHB12 regulates flowering time, plant architecture and phase transition via a regulatory module that could be harnessed to improve cotton for mechanical harvesting.
Collapse
|
18
|
Jaudal M, Zhang L, Che C, Li G, Tang Y, Wen J, Mysore KS, Putterill J. A SOC1-like gene MtSOC1a promotes flowering and primary stem elongation in Medicago. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4867-4880. [PMID: 30295903 PMCID: PMC6137972 DOI: 10.1093/jxb/ery284] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/10/2018] [Indexed: 05/19/2023]
Abstract
Medicago flowering, like that of Arabidopsis, is promoted by vernalization and long days, but alternative mechanisms are predicted because Medicago lacks the key regulators CO and FLC. Three Medicago SOC1-like genes, including MtSOC1a, were previously implicated in flowering control, but no legume soc1 mutants with altered flowering were reported. Here, reverse transciption-quantitative PCR (RT-qPCR) indicated that the timing and magnitude of MtSOC1a expression was regulated by the flowering promoter FTa1, while in situ hybridization indicated that MtSOC1a expression increased in the shoot apical meristem during the floral transition. A Mtsoc1a mutant showed delayed flowering and short primary stems. Overexpression of MtSOC1a partially rescued the flowering of Mtsoc1a, but caused a dramatic increase in primary stem height, well before the transition to flowering. Internode cell length correlated with stem height, indicating that MtSOC1a promotes cell elongation in the primary stem. However, application of gibberellin (GA3) caused stem elongation in both the wild type and Mtsoc1a, indicating that the mutant was not defective in gibberellin responsiveness. These results indicate that MtSOC1a may function as a floral integrator gene and promotes primary stem elongation. Overall, this study suggests that apart from some conservation with the Arabidopsis flowering network, MtSOC1a has a novel role in regulating aspects of shoot architecture.
Collapse
Affiliation(s)
- Mauren Jaudal
- Flowering Lab, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Lulu Zhang
- Flowering Lab, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Chong Che
- Flowering Lab, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Guifen Li
- Noble Research Institute, LLC, Ardmore, OK, USA
| | - Yuhong Tang
- Noble Research Institute, LLC, Ardmore, OK, USA
| | - Jiangqi Wen
- Noble Research Institute, LLC, Ardmore, OK, USA
| | | | - Joanna Putterill
- Flowering Lab, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
19
|
Fang S, Gao K, Hu W, Snider JL, Wang S, Chen B, Zhou Z. Chemical priming of seed alters cotton floral bud differentiation by inducing changes in hormones, metabolites and gene expression. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:633-640. [PMID: 30130740 DOI: 10.1016/j.plaphy.2018.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 05/25/2023]
Abstract
Fruiting branches and floral buds are forming well before squares are visible and determine cotton (Gossypium hirsutum L.) productivity. Pre-soaking with plant growth regulators (PGRs) affects the quantity of floral buds. However, studies illustrating the physiological mechanism of floral bud differentiation in response to PGRs are lacking. To address this, cotton seeds were primed with water (control), 5 mg L-1 gibberellic acid (GA3), 25 mg L-1 N6-benzyladenine (6-BA), and 150 mg L-1 dimethyl piperidinium chloride (DPC) respectively. Results showed that plants from seed pre-treated with GA3 and 6-BA differentiated more floral buds relative to control, while DPC application initiated less floral buds than control. GA3 and 6-BA application significantly increased the levels of zeatin riboside (ZR) by up-regulating IPT expression and gibberellic acid (GA3) but decreased the indole-3-acetic acid (IAA) content. Consequently, the ZR/IAA and GA3/IAA ratios were markedly increased, contributing to higher floral bud numbers. Contrasting results were observed for DPC treatment. Additionally, GA3 and 6-BA treatments up-regulated GhSOC1, GhMADS13 and GhAGL24 expression, which was associated with higher sucrose contents mainly attributed to higher endogenous ZR levels, inducing floral initiation. Whereas the GhMADS13 was down-regulated to suppress floral bud differentiation under DPC application. Surprisingly, the floral-associated genes were more sensitive to GA3 than 6-BA, which induced the differences in bud numbers at the beginning of flower bud differentiation. Thus, we conclude that seed pre-treated with PGRs affected hormone content, induced sugar accumulation in apical buds and regulated genes involved in floral induction, which impacted floral bud differentiation.
Collapse
Affiliation(s)
- Sheng Fang
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Kai Gao
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Wei Hu
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, PR China; Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, 31794, USA.
| | - John L Snider
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, 31794, USA.
| | - Shanshan Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Binglin Chen
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Zhiguo Zhou
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
20
|
Ashraf J, Zuo D, Wang Q, Malik W, Zhang Y, Abid MA, Cheng H, Yang Q, Song G. Recent insights into cotton functional genomics: progress and future perspectives. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:699-713. [PMID: 29087016 PMCID: PMC5814580 DOI: 10.1111/pbi.12856] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/03/2017] [Accepted: 10/18/2017] [Indexed: 05/11/2023]
Abstract
Functional genomics has transformed from futuristic concept to well-established scientific discipline during the last decade. Cotton functional genomics promise to enhance the understanding of fundamental plant biology to systematically exploit genetic resources for the improvement of cotton fibre quality and yield, as well as utilization of genetic information for germplasm improvement. However, determining the cotton gene functions is a much more challenging task, which has not progressed at a rapid pace. This article presents a comprehensive overview of the recent tools and resources available with the major advances in cotton functional genomics to develop elite cotton genotypes. This effort ultimately helps to filter a subset of genes that can be used to assemble a final list of candidate genes that could be employed in future novel cotton breeding programme. We argue that next stage of cotton functional genomics requires the draft genomes refinement, re-sequencing broad diversity panels with the development of high-throughput functional genomics tools and integrating multidisciplinary approaches in upcoming cotton improvement programmes.
Collapse
Affiliation(s)
- Javaria Ashraf
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangHenanChina
| | - Dongyun Zuo
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangHenanChina
| | - Qiaolian Wang
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangHenanChina
| | - Waqas Malik
- Genomics LabDepartment of Plant Breeding and GeneticsFaculty of Agricultural Sciences and TechnologyBahauddin Zakariya UniversityMultanPunjabPakistan
| | - Youping Zhang
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangHenanChina
| | - Muhammad Ali Abid
- Genomics LabDepartment of Plant Breeding and GeneticsFaculty of Agricultural Sciences and TechnologyBahauddin Zakariya UniversityMultanPunjabPakistan
| | - Hailiang Cheng
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangHenanChina
| | - Qiuhong Yang
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangHenanChina
| | - Guoli Song
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangHenanChina
| |
Collapse
|
21
|
Su J, Pang C, Wei H, Li L, Liang B, Wang C, Song M, Wang H, Zhao S, Jia X, Mao G, Huang L, Geng D, Wang C, Fan S, Yu S. Identification of favorable SNP alleles and candidate genes for traits related to early maturity via GWAS in upland cotton. BMC Genomics 2016; 17:687. [PMID: 27576450 PMCID: PMC5006539 DOI: 10.1186/s12864-016-2875-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/05/2016] [Indexed: 11/17/2022] Open
Abstract
Background Early maturity is one of the most important and complex agronomic traits in upland cotton (Gossypium hirsutum L). To dissect the genetic architecture of this agronomically important trait, a population consisting of 355 upland cotton germplasm accessions was genotyped using the specific-locus amplified fragment sequencing (SLAF-seq) approach, of which a subset of 185 lines representative of the diversity among the accessions was phenotypically characterized for six early maturity traits in four environments. A genome-wide association study (GWAS) was conducted using the generalized linear model (GLM) and mixed linear model (MLM). Results A total of 81,675 SNPs in 355 upland cotton accessions were discovered using SLAF-seq and were subsequently used in GWAS. Thirteen significant associations between eight SNP loci and five early maturity traits were successfully identified using the GLM and MLM; two of the 13 associations were common between the models. By computing phenotypic effect values for the associations detected at each locus, 11 highly favorable SNP alleles were identified for five early maturity traits. Moreover, dosage pyramiding effects of the highly favorable SNP alleles and significant linear correlations between the numbers of highly favorable alleles and the phenotypic values of the target traits were identified. Most importantly, a major locus (rs13562854) on chromosome Dt3 and a potential candidate gene (CotAD_01947) for early maturity were detected. Conclusions This study identified highly favorable SNP alleles and candidate genes associated with early maturity traits in upland cotton. The results demonstrate that GWAS is a powerful tool for dissecting complex traits and identifying candidate genes. The highly favorable SNP alleles and candidate genes for early maturity traits identified in this study should be show high potential for improvement of early maturity in future cotton breeding programs. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2875-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junji Su
- College of Agronomy, Northwest A&F University, Yangling, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China.,Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, Xinjiang, China
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Libei Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Bing Liang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Caixiang Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Meizhen Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shuqi Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaoyun Jia
- College of Agronomy, Northwest A&F University, Yangling, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Guangzhi Mao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Long Huang
- Bioinformatics Division, Biomarker Technologies Corporation, Beijing, China
| | - Dandan Geng
- Bioinformatics Division, Biomarker Technologies Corporation, Beijing, China
| | - Chengshe Wang
- College of Agronomy, Northwest A&F University, Yangling, China.
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China.
| | - Shuxun Yu
- College of Agronomy, Northwest A&F University, Yangling, China. .,State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China.
| |
Collapse
|
22
|
Zhang X, Wang C, Pang C, Wei H, Wang H, Song M, Fan S, Yu S. Characterization and Functional Analysis of PEBP Family Genes in Upland Cotton (Gossypium hirsutum L.). PLoS One 2016; 11:e0161080. [PMID: 27552108 PMCID: PMC4995033 DOI: 10.1371/journal.pone.0161080] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/29/2016] [Indexed: 11/25/2022] Open
Abstract
Upland cotton (Gossypium hirsutum L.) is a naturally occurring photoperiod-sensitive perennial plant species. However, sensitivity to the day length was lost during domestication. The phosphatidylethanolamine-binding protein (PEBP) gene family, of which three subclades have been identified in angiosperms, functions to promote and suppress flowering in photoperiod pathway. Recent evidence indicates that PEBP family genes play an important role in generating mobile flowering signals. We isolated homologues of the PEBP gene family in upland cotton and examined their regulation and function. Nine PEBP-like genes were cloned and phylogenetic analysis indicated the genes belonged to four subclades (FT, MFT, TFL1 and PEBP). Cotton PEBP-like genes showed distinct expression patterns in relation to different cotton genotypes, photoperiod responsive and cultivar maturity. The GhFT gene expression of a semi-wild race of upland cotton were strongly induced under short day condition, whereas the GhPEBP2 gene expression was induced under long days. We also elucidated that GhFT but not GhPEBP2 interacted with FD-like bZIP transcription factor GhFD and promote flowering under both long- and short-day conditions. The present result indicated that GhPEBP-like genes may perform different functions. This work corroborates the involvement of PEBP-like genes in photoperiod response and regulation of flowering time in different cotton genotypes, and contributes to an improved understanding of the function of PEBP-like genes in cotton.
Collapse
Affiliation(s)
- Xiaohong Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, People’s Republic of China
| | - Congcong Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, People’s Republic of China
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, People’s Republic of China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, People’s Republic of China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, People’s Republic of China
| | - Meizhen Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, People’s Republic of China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, People’s Republic of China
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, People’s Republic of China
| |
Collapse
|