1
|
Farinati S, Devillars A, Gabelli G, Vannozzi A, Scariolo F, Palumbo F, Barcaccia G. How Helpful May Be a CRISPR/Cas-Based System for Food Traceability? Foods 2024; 13:3397. [PMID: 39517184 PMCID: PMC11544785 DOI: 10.3390/foods13213397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Genome editing (GE) technologies have the potential to completely transform breeding and biotechnology applied to crop species, contributing to the advancement of modern agriculture and influencing the market structure. To date, the GE-toolboxes include several distinct platforms able to induce site-specific and predetermined genomic modifications, introducing changes within the existing genetic blueprint of an organism. For these reasons, the GE-derived approaches are considered like new plant breeding methods, known also as New Breeding Techniques (NBTs). Particularly, the GE-based on CRISPR/Cas technology represents a considerable improvement forward biotech-related techniques, being highly sensitive, precise/accurate, and straightforward for targeted gene editing in a reliable and reproducible way, with numerous applications in food-related plants. Furthermore, numerous examples of CRISPR/Cas system exploitation for non-editing purposes, ranging from cell imaging to gene expression regulation and DNA assembly, are also increasing, together with recent engagements in target and multiple chemical detection. This manuscript aims, after providing a general overview, to focus attention on the main advances of CRISPR/Cas-based systems into new frontiers of non-editing, presenting and discussing the associated implications and their relative impacts on molecular traceability, an aspect closely related to food safety, which increasingly arouses general interest within public opinion and the scientific community.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gianni Barcaccia
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Campus of Agripolis, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (S.F.); (A.D.); (G.G.); (A.V.); (F.S.); (F.P.)
| |
Collapse
|
2
|
Thapliyal G, Bhandari MS, Vemanna RS, Pandey S, Meena RK, Barthwal S. Engineering traits through CRISPR/cas genome editing in woody species to improve forest diversity and yield. Crit Rev Biotechnol 2023; 43:884-903. [PMID: 35968912 DOI: 10.1080/07388551.2022.2092714] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/27/2022] [Accepted: 05/14/2022] [Indexed: 11/03/2022]
Abstract
Dangers confronting forest ecosystems are many and the strength of these biological systems is deteriorating, thus substantially affecting tree physiology, phenology, and growth. The establishment of genetically engineered trees into degraded woodlands, which would be adaptive to changing climate, could help in subsiding ecological threats and bring new prospects. This should not be resisted due to the apprehension of transgene dispersal in forests. Consequently, it is important to have a deep insight into the genetic structure and phenotypic limits of the reproductive capability of tree stands/population(s) to endure tolerance and survival. Importantly, for a better understanding of genes and their functional mechanisms, gene editing (GeEd) technology is an excellent molecular tool to unravel adaptation progressions. Therefore, GeEd could be harnessed for resolving the allelic interactions for the creation of gene diversity, and transgene dispersal may be alleviated among the population or species in different bioclimatic zones around the globe. This review highlights the potential of the CRISPR/Cas tools in genomic, transcriptomic, and epigenomic-based assorted and programmable alterations of genes in trees that might be able to fix the trait-specific gene function. Also, we have discussed the application of diverse forms of GeEd to genetically improve several traits, such as wood density, phytochemical constituents, biotic and abiotic stress tolerance, and photosynthetic efficiency in trees. We believe that the technology encourages fundamental research in the forestry sector besides addressing key aspects, which might fasten tree breeding and germplasm improvement programs worldwide.
Collapse
Affiliation(s)
- Garima Thapliyal
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, India
| | - Maneesh S Bhandari
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, India
| | - Ramu S Vemanna
- Regional Center for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Shailesh Pandey
- Forest Pathology Discipline, Forest Protection Division, Forest Research Institute, Dehradun, India
| | - Rajendra K Meena
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, India
| | - Santan Barthwal
- Division of Genetics & Tree Improvement, Forest Research Institute, Dehradun, India
| |
Collapse
|
3
|
Zulhussnain M, Zahoor MK, Ranian K, Ahmad A, Jabeen F. CRISPR Cas9 mediated knockout of sex determination pathway genes in Aedes aegypti. BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:243-252. [PMID: 36259148 DOI: 10.1017/s0007485322000505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The vector role of Aedes aegypti for viral diseases including dengue and dengue hemorrhagic fever makes it imperative for its proper control. Despite various adopted control strategies, genetic control measures have been recently focused against this vector. CRISPR Cas9 system is a recent and most efficient gene editing tool to target the sex determination pathway genes in Ae. aegypti. In the present study, CRISPR Cas9 system was used to knockout Ae. aegypti doublesex (Aaedsx) and Ae. aegypti sexlethal (AaeSxl) genes in Ae. aegypti embryos. The injection mixes with Cas9 protein (333 ng ul-1) and gRNAs (each at 100 ng ul-1) were injected into eggs. Injected eggs were allowed to hatch at 26 ± 1°C, 60 ± 10% RH. The survival and mortality rate was recorded in knockout Aaedsx and AaeSxl. The results revealed that knockout produced low survival and high mortality. A significant percentage of eggs (38.33%) did not hatch as compared to control groups (P value 0.00). Highest larval mortality (11.66%) was found in the knockout of Aaedsx female isoform, whereas, the emergence of only male adults also showed that the knockout of Aaedsx (female isoform) does not produce male lethality. The survival (3.33%) of knockout for AaeSxl eggs to the normal adults suggested further study to investigate AaeSxl as an efficient upstream of Aaedsx to target for sex transformation in Ae. aegypti mosquitoes.
Collapse
Affiliation(s)
- Muhammad Zulhussnain
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Kanwal Ranian
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Aftab Ahmad
- Centre of Department of Biochemistry/US-Pakistan Center for Advance Studies in Agriculture and Food Security (USPCAS-AFS), University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Farhat Jabeen
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
4
|
Chandrasekaran M, Boopathi T, Paramasivan M. A status-quo review on CRISPR-Cas9 gene editing applications in tomato. Int J Biol Macromol 2021; 190:120-129. [PMID: 34474054 DOI: 10.1016/j.ijbiomac.2021.08.169] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/09/2021] [Accepted: 08/22/2021] [Indexed: 10/20/2022]
Abstract
Epigenetic changes are emancipated in horticultural crops including tomato due to a variety of environmental factors. These modifications rely on plant phenotypes mediated by genetic architecture consequently resulting in hereditary epigenetic memory. Genome editing strategies like CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat)/CRISPR-associated protein 9 (Cas9) technologies have revolutionized plants biology foreseeing stable inheritance of epigenetic modifications. CRISPR/Cas9 strategy poses as explicit advancement in providing precise genome editing with minimal off-target mutations, ease of experimental design, higher efficiency, versatility, and cost-effectiveness. Dicot crops, especially tomato remain an ideal candidate for CRISPR/Cas9 based gene modulations thereby augmenting productivity and yields. In the present review, key questions on CRISPR/Cas9 applications aid in enhanced growth based on optimal gene discovery, de novo modification, trait improvement, and biotic/abiotic stress management are discussed. In addition, comparative scenario in tomato and similar horticultural crops are adequately summarized for the pros and cons. Further, limitations hampering potential benefits and success phenomena of the lab to field transition of gene editing alterations are discussed collaterally in addressing futuristic optimization for CRISPR/Cas9 research in tomato.
Collapse
Affiliation(s)
- Murugesan Chandrasekaran
- Department of Food Science and Biotechnology, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea.
| | | | | |
Collapse
|
5
|
Wolffia arrhiza as a promising producer of recombinant hirudin. 3 Biotech 2021; 11:209. [PMID: 33927997 DOI: 10.1007/s13205-021-02762-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022] Open
Abstract
The production of recombinant proteins in transgenic plants is becoming an increasingly serious alternative to classical biopharming methods as knowledge about this process grows. Wolffia arrhiza, an aquatic plant unique in its anatomy, is a promising expression system that can grow in submerged culture in bioreactors. In our study 8550 explants were subjected to Agrobacterium-mediated transformation, and 41 independent hygromycin-resistant Wolffia lines were obtained, with the transformation efficiency of 0.48%. 40 of them contained the hirudin-1 gene (codon-optimized for expression in plants) and were independent lines of nuclear-transformed Wolffia, the transgenic insertion has been confirmed by PCR and Southern blot analysis. We have analyzed the accumulation of the target protein and its expression has been proven in three transgenic lines. The maximum accumulation of recombinant hirudin was 0.02% of the total soluble protein, which corresponds to 775.5 ± 111.9 ng g-1 of fresh weight of the plant. The results will be used in research on the development of an expression system based on Wolffia plants for the production of hirudin and other recombinant pharmaceutical proteins.
Collapse
|
6
|
Abd-Elsalam KA, Lim KT. Can CRISPRized crops save the global food supply? CRISPR AND RNAI SYSTEMS 2021:1-14. [DOI: 10.1016/b978-0-12-821910-2.00006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
7
|
Pearl Millet Blast Resistance: Current Status and Recent Advancements in Genomic Selection and Genome Editing Approaches. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60585-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
D'Souza MH, Patel TR. Biodefense Implications of New-World Hantaviruses. Front Bioeng Biotechnol 2020; 8:925. [PMID: 32850756 PMCID: PMC7426369 DOI: 10.3389/fbioe.2020.00925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/17/2020] [Indexed: 01/20/2023] Open
Abstract
Hantaviruses, part of the Bunyaviridae family, are a genus of negative-sense, single-stranded RNA viruses that cause two major diseases: New-World Hantavirus Cardiopulmonary Syndrome and Old-World Hemorrhagic Fever with Renal Syndrome. Hantaviruses generally are found worldwide with each disease corresponding to their respective hemispheres. New-World Hantaviruses spread by specific rodent-host reservoirs and are categorized as emerging viruses that pose a threat to global health and security due to their high mortality rate and ease of transmission. Incidentally, reports of Hantavirus categorization as a bioweapon are often contradicted as both US National Institute of Allergy and Infectious Diseases and the Centers for Disease Control and Prevention refer to them as Category A and C bioagents respectively, each retaining qualitative levels of importance and severity. Concerns of Hantavirus being engineered into a novel bioagent has been thwarted by Hantaviruses being difficult to culture, isolate, and purify limiting its ability to be weaponized. However, the natural properties of Hantaviruses pose a threat that can be exploited by conventional and unconventional forces. This review seeks to clarify the categorization of Hantaviruses as a bioweapon, whilst defining the practicality of employing New-World Hantaviruses and their effect on armies, infrastructure, and civilian targets.
Collapse
Affiliation(s)
- Michael Hilary D'Souza
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, Canada
| | - Trushar R Patel
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, Canada.,Department of Microbiology, Immunology and Infectious Disease, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Li Ka Shing Institute of Virology and Discovery Lab, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
9
|
Prado GS, Bamogo PKA, de Abreu JAC, Gillet FX, dos Santos VO, Silva MCM, Brizard JP, Bemquerer MP, Bangratz M, Brugidou C, Sérémé D, Grossi-de-Sa MF, Lacombe S. Nicotiana benthamiana is a suitable transient system for high-level expression of an active inhibitor of cotton boll weevil α-amylase. BMC Biotechnol 2019; 19:15. [PMID: 30849970 PMCID: PMC6408794 DOI: 10.1186/s12896-019-0507-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 03/04/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Insect resistance in crops represents a main challenge for agriculture. Transgenic approaches based on proteins displaying insect resistance properties are widely used as efficient breeding strategies. To extend the spectrum of targeted pathogens and overtake the development of resistance, molecular evolution strategies have been used on genes encoding these proteins to generate thousands of variants with new or improved functions. The cotton boll weevil (Anthonomus grandis) is one of the major pests of cotton in the Americas. An α-amylase inhibitor (α-AIC3) variant previously developed via molecular evolution strategy showed inhibitory activity against A. grandis α-amylase (AGA). RESULTS We produced in a few days considerable amounts of α-AIC3 using an optimised transient heterologous expression system in Nicotiana benthamiana. This high α-AIC3 accumulation allowed its structural and functional characterizations. We demonstrated via MALDI-TOF MS/MS technique that the protein was processed as expected. It could inhibit up to 100% of AGA biological activity whereas it did not act on α-amylase of two non-pathogenic insects. These data confirmed that N. benthamiana is a suitable and simple system for high-level production of biologically active α-AIC3. Based on other benefits such as economic, health and environmental that need to be considerate, our data suggested that α-AIC3 could be a very promising candidate for the production of transgenic crops resistant to cotton boll weevil without lethal effect on at least two non-pathogenic insects. CONCLUSIONS We propose this expression system can be complementary to molecular evolution strategies to identify the most promising variants before starting long-lasting stable transgenic programs.
Collapse
Affiliation(s)
- Guilherme Souza Prado
- Embrapa Genetic Resources and Biotechnology, Brasília, DF Brazil
- Catholic University of Brasília, Brasília, DF Brazil
| | - Pingdwende Kader Aziz Bamogo
- IRD, CIRAD, Université Montpellier, Interactions Plantes Microorganismes et Environnement (IPME), Montpellier, France
- INERA/LMI Patho-Bios, Institut de L’Environnement et de Recherches Agricoles (INERA), Laboratoire de Virologie et de Biotechnologies Végétales, Ouagadougou, Burkina Faso
| | | | | | | | | | - Jean-Paul Brizard
- IRD, CIRAD, Université Montpellier, Interactions Plantes Microorganismes et Environnement (IPME), Montpellier, France
| | | | - Martine Bangratz
- IRD, CIRAD, Université Montpellier, Interactions Plantes Microorganismes et Environnement (IPME), Montpellier, France
- INERA/LMI Patho-Bios, Institut de L’Environnement et de Recherches Agricoles (INERA), Laboratoire de Virologie et de Biotechnologies Végétales, Ouagadougou, Burkina Faso
| | - Christophe Brugidou
- IRD, CIRAD, Université Montpellier, Interactions Plantes Microorganismes et Environnement (IPME), Montpellier, France
- INERA/LMI Patho-Bios, Institut de L’Environnement et de Recherches Agricoles (INERA), Laboratoire de Virologie et de Biotechnologies Végétales, Ouagadougou, Burkina Faso
| | - Drissa Sérémé
- INERA/LMI Patho-Bios, Institut de L’Environnement et de Recherches Agricoles (INERA), Laboratoire de Virologie et de Biotechnologies Végétales, Ouagadougou, Burkina Faso
| | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília, DF Brazil
- Catholic University of Brasília, Brasília, DF Brazil
| | - Séverine Lacombe
- IRD, CIRAD, Université Montpellier, Interactions Plantes Microorganismes et Environnement (IPME), Montpellier, France
- INERA/LMI Patho-Bios, Institut de L’Environnement et de Recherches Agricoles (INERA), Laboratoire de Virologie et de Biotechnologies Végétales, Ouagadougou, Burkina Faso
| |
Collapse
|
10
|
Sedeek KEM, Mahas A, Mahfouz M. Plant Genome Engineering for Targeted Improvement of Crop Traits. FRONTIERS IN PLANT SCIENCE 2019; 10:114. [PMID: 30809237 PMCID: PMC6379297 DOI: 10.3389/fpls.2019.00114] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/23/2019] [Indexed: 05/18/2023]
Abstract
To improve food security, plant biology research aims to improve crop yield and tolerance to biotic and abiotic stress, as well as increasing the nutrient contents of food. Conventional breeding systems have allowed breeders to produce improved varieties of many crops; for example, hybrid grain crops show dramatic improvements in yield. However, many challenges remain and emerging technologies have the potential to address many of these challenges. For example, site-specific nucleases such as TALENs and CRISPR/Cas systems, which enable high-efficiency genome engineering across eukaryotic species, have revolutionized biological research and its applications in crop plants. These nucleases have been used in diverse plant species to generate a wide variety of site-specific genome modifications through strategies that include targeted mutagenesis and editing for various agricultural biotechnology applications. Moreover, CRISPR/Cas genome-wide screens make it possible to discover novel traits, expand the range of traits, and accelerate trait development in target crops that are key for food security. Here, we discuss the development and use of various site-specific nuclease systems for different plant genome-engineering applications. We highlight the existing opportunities to harness these technologies for targeted improvement of traits to enhance crop productivity and resilience to climate change. These cutting-edge genome-editing technologies are thus poised to reshape the future of agriculture and food security.
Collapse
Affiliation(s)
| | | | - Magdy Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
11
|
Nadakuduti SS, Starker CG, Ko DK, Jayakody TB, Buell CR, Voytas DF, Douches DS. Evaluation of Methods to Assess in vivo Activity of Engineered Genome-Editing Nucleases in Protoplasts. FRONTIERS IN PLANT SCIENCE 2019; 10:110. [PMID: 30800139 PMCID: PMC6376315 DOI: 10.3389/fpls.2019.00110] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 01/23/2019] [Indexed: 06/01/2023]
Abstract
Genome-editing is being implemented in increasing number of plant species using engineered sequence specific nucleases (SSNs) such as Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated systems (CRISPR/Cas9), Transcription activator like effector nucleases (TALENs), and more recently CRISPR/Cas12a. As the tissue culture and regeneration procedures to generate gene-edited events are time consuming, large-scale screening methodologies that rapidly facilitate validation of genome-editing reagents are critical. Plant protoplast cells provide a rapid platform to validate genome-editing reagents. Protoplast transfection with plasmids expressing genome-editing reagents represents an efficient and cost-effective method to screen for in vivo activity of genome-editing constructs and resulting targeted mutagenesis. In this study, we compared three existing methods for detection of editing activity, the T7 endonuclease I assay (T7EI), PCR/restriction enzyme (PCR/RE) digestion, and amplicon-sequencing, with an alternative method which involves tagging a double-stranded oligodeoxynucleotide (dsODN) into the SSN-induced double stranded break and detection of on-target activity of gene-editing reagents by PCR and agarose gel electrophoresis. To validate these methods, multiple reagents including TALENs, CRISPR/Cas9 and Cas9 variants, eCas9(1.1) (enhanced specificity) and Cas9-HF1 (high-fidelity1) were engineered for targeted mutagenesis of Acetolactate synthase1 (ALS1), 5-Enolpyruvylshikimate- 3-phosphate synthase1 (EPSPS1) and their paralogs in potato. While all methods detected editing activity, the PCR detection of dsODN integration provided the most straightforward and easiest method to assess on-target activity of the SSN as well as a method for initial qualitative evaluation of the functionality of genome-editing constructs. Quantitative data on mutagenesis frequencies obtained by amplicon-sequencing of ALS1 revealed that the mutagenesis frequency of CRISPR/Cas9 reagents is better than TALENs. Context-based choice of method for evaluation of gene-editing reagents in protoplast systems, along with advantages and limitations associated with each method, are discussed.
Collapse
Affiliation(s)
- Satya Swathi Nadakuduti
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Colby G. Starker
- Department of Genetics, Cell Biology and Development and Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN, United States
| | - Dae Kwan Ko
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - Thilani B. Jayakody
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - C. Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
- Plant Resilience Institute, Michigan State University, East Lansing, MI, United States
- Michigan State University AgBioResearch, Michigan State University, East Lansing, MI, United States
| | - Daniel F. Voytas
- Department of Genetics, Cell Biology and Development and Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN, United States
| | - David S. Douches
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
- Michigan State University AgBioResearch, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
12
|
Etienne H, Breton D, Breitler JC, Bertrand B, Déchamp E, Awada R, Marraccini P, Léran S, Alpizar E, Campa C, Courtel P, Georget F, Ducos JP. Coffee Somatic Embryogenesis: How Did Research, Experience Gained and Innovations Promote the Commercial Propagation of Elite Clones From the Two Cultivated Species? FRONTIERS IN PLANT SCIENCE 2018; 9:1630. [PMID: 30483287 PMCID: PMC6240679 DOI: 10.3389/fpls.2018.01630] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/19/2018] [Indexed: 05/09/2023]
Abstract
Since the 1990s, somatic embryogenesis (SE) has enabled the propagation of selected varieties, Arabica F1 hybrid and Robusta clones, originating from the two cultivated coffee species, Coffea arabica and Coffea canephora, respectively. This paper shows how mostly empirical research has led to successful industrial transfers launched in the 2000s in Latin America, Africa, and Asia. Coffee SE can be considered as a model for other woody perennial crops for the following reasons: (i) a high biological efficiency has been demonstrated for propagated varieties at all developmental stages, and (ii) somaclonal variation is understood and mastered thanks to intensive research combining molecular markers and field observations. Coffee SE is also a useful model given the strong economic constraints that are specific to this species. In brief, SE faced four difficulties: (i) the high cost of SE derived plants compared to the cost of seedlings of conventional varieties, (ii) the logistic problems involved in reaching small-scale coffee growers, (iii) the need for certification, and (iv) the lack of solvency among small-scale producers. Nursery activities were professionalized by introducing varietal certification, quality control with regard to horticultural problems and somaclonal variation, and sanitary control for Xylella fastidiosa. In addition, different technology transfers were made to ensure worldwide dissemination of improved F1 Arabica hybrids and Robusta clones. Innovations have been decisive for successful scaling-up and reduction of production costs, such as the development of temporary immersion bioreactors for the mass production of pre-germinated embryos, their direct sowing on horticultural soil, and the propagation of rejuvenated SE plants by rooted mini-cuttings. Today, SE is a powerful tool that is widely used in coffee for biotechnological applications including propagation and genetic transformation. Basic research has recently started taking advantage of optimized SE protocols. Based on -omics methodologies, research aims to decipher the molecular events involved in the key developmental switches of coffee SE. In parallel, a high-throughput screening of active molecules on SE appears to be a promising tool to speed-up the optimization of SE protocols.
Collapse
Affiliation(s)
- Hervé Etienne
- CIRAD, UMR IPME, Montpellier, France
- IPME, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - David Breton
- Nestlé R&D Center Tours – Plant Science Research Unit, Tours, France
| | - Jean-Christophe Breitler
- CIRAD, UMR IPME, Montpellier, France
- IPME, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Benoît Bertrand
- CIRAD, UMR IPME, Montpellier, France
- IPME, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Eveline Déchamp
- CIRAD, UMR IPME, Montpellier, France
- IPME, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Rayan Awada
- CIRAD, UMR IPME, Montpellier, France
- IPME, Université de Montpellier, IRD, CIRAD, Montpellier, France
- Nestlé R&D Center Tours – Plant Science Research Unit, Tours, France
| | - Pierre Marraccini
- CIRAD, UMR IPME, Montpellier, France
- IPME, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Sophie Léran
- CIRAD, UMR IPME, Montpellier, France
- IPME, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | | | - Claudine Campa
- IRD, CIRAD, Université de Montpellier, IPME, Montpellier, France
| | | | - Frédéric Georget
- CIRAD, UMR IPME, Montpellier, France
- IPME, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Jean-Paul Ducos
- Nestlé R&D Center Tours – Plant Science Research Unit, Tours, France
| |
Collapse
|
13
|
Magee CL, Kleyn PW, Monks BM, Betz U, Basnet S. Pre-existing technological core and roots for the CRISPR breakthrough. PLoS One 2018; 13:e0198541. [PMID: 30231020 PMCID: PMC6145527 DOI: 10.1371/journal.pone.0198541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 08/10/2018] [Indexed: 01/28/2023] Open
Abstract
This paper applies objective methods to explore the technological origins of the widely acclaimed CRISPR breakthrough in the technological domain of genome engineering. Previously developed patent search techniques are first used to recover a set of patents that well-represent the genome editing domain before CRISPR. Main paths are then determined from the citation network associated with this patent set allowing identification of the three major knowledge trajectories. The most significant of these trajectories for CRISPR involves the core of genome editing with less significant trajectories involving cloning and endonuclease specific developments. The major patents on the core trajectory are consistent with qualitative expert knowledge of the topical area. A second set of patents that we call the CRISPR roots are obtained by finding the patents directly cited by the recent CRISPR patents along with patents cited by that set of patents. We find that the CRISPR roots contain 8 key patents from the genome engineering main path associated with restriction endonucleases and the expected strong connection of CRISPR to prior genome editing technology such as Zn finger nucleases. Nonetheless, analysis of the full CRISPR roots shows that a very wide array of technological knowledge beyond genome engineering has contributed to achieving the CRISPR breakthrough. Such breadth in origins is not surprising since "spillover" is generally perceived as important and previous qualitative studies of CRISPR have shown not only technological breadth in origins but scientific breadth as well. In addition, we find that the estimated rate of functional performance improvement of the CRISPR roots set is about 9% per year compared to the genome engineering set (~4% per year). These estimates indicate below average rates of improvement and may indicate that CRISPR (and perhaps yet undiscovered) genome engineering developments could evolve in effectiveness over an upcoming long rather than short time period.
Collapse
Affiliation(s)
- Christopher L. Magee
- MIT Institute for Data, Systems and Society (IDSS), Cambridge, Massachusetts, United States of America
- SUTD-MIT International Design Center, Cambridge, Massachusetts, United States of America
| | - Patrick W. Kleyn
- EMD Serono Research & Development Institute, Billerica, Massachusetts, United States of America
| | | | | | - Subarna Basnet
- SUTD-MIT International Design Center, Cambridge, Massachusetts, United States of America
- Raysoonga inc., Framingham, Massachusetts, United States of America
| |
Collapse
|
14
|
Krishnan HB, Jez JM. Review: The promise and limits for enhancing sulfur-containing amino acid content of soybean seed. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:14-21. [PMID: 29807584 DOI: 10.1016/j.plantsci.2018.03.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
Soybeans are an excellent source of protein in monogastric diets and rations with ∼75% of soybeans produced worldwide used primarily for animal feed. Even though soybeans are protein-rich and have a well-balanced amino acid profile, the nutritive quality of this important crop could be further improved by elevating the concentrations of certain amino acids. The levels of the sulfur-containing amino acids cysteine and methionine in soybean seed proteins are inadequate for optimal growth and development of monogastric animals, which necessitates dietary supplementation. Subsequently, concerted efforts have been made to increase the concentrations of cysteine and methionine in soybean seeds by both classical breeding and genetic engineering; however, these efforts have met with only limited success. In this review, we discuss the strengths and weakness of different approaches in elevating the sulfur amino acid content of soybeans. Manipulation of enzymes involved in the sulfur assimilatory pathway appears to be a viable avenue for improving sulfur amino acid content. This approach requires a through biochemical characterization of sulfur assimilatory enzymes in soybean seeds. We highlight recent studies targeting key sulfur assimilatory enzymes and the manipulation of sulfur metabolism in transgenic soybeans to improve the nutritive value of soybean proteins.
Collapse
Affiliation(s)
- Hari B Krishnan
- Plant Genetics Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University of Missouri, Columbia, MO 65211, USA.
| | - Joseph M Jez
- Department of Biology,Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
15
|
Ahmed S, Zhou X, Pang Y, Jin L, Bao J. Improving Starch‐Related Traits in Potato Crops: Achievements and Future Challenges. STARCH-STARKE 2018. [DOI: 10.1002/star.201700113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sulaiman Ahmed
- Institute of Nuclear Agricultural ScienceCollege of Agriculture and BiotechnologyZhejiang UniversityHuajiachi CampusHangzhou310029China
| | - Xin Zhou
- Institute of Nuclear Agricultural ScienceCollege of Agriculture and BiotechnologyZhejiang UniversityHuajiachi CampusHangzhou310029China
| | - Yuehan Pang
- Institute of Nuclear Agricultural ScienceCollege of Agriculture and BiotechnologyZhejiang UniversityHuajiachi CampusHangzhou310029China
| | - Liping Jin
- Department of PotatoInstitute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
- Key Laboratory of Biology and Genetic Improvement of Tuber and Root CropMinistry of AgricultureBeijing100081P.R. China
| | - Jinsong Bao
- Institute of Nuclear Agricultural ScienceCollege of Agriculture and BiotechnologyZhejiang UniversityHuajiachi CampusHangzhou310029China
- Key Laboratory of Biology and Genetic Improvement of Tuber and Root CropMinistry of AgricultureBeijing100081P.R. China
| |
Collapse
|
16
|
Eriksson D, Brinch-Pedersen H, Chawade A, Holme IB, Hvoslef-Eide TAK, Ritala A, Teeri TH, Thorstensen T. Scandinavian perspectives on plant gene technology: applications, policies and progress. PHYSIOLOGIA PLANTARUM 2018; 162:219-238. [PMID: 29080293 DOI: 10.1111/ppl.12661] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/10/2017] [Accepted: 10/25/2017] [Indexed: 05/29/2023]
Abstract
Plant research and breeding has a long and successful history in the Scandinavian countries, Denmark, Finland, Norway and Sweden. Researchers in the region have been early in adopting plant gene technologies as they developed. This review gives a background, as well as discuss the current and future progress of plant gene technology in these four countries. Country-specific details of the regulation of genetically modified plants are described, as well as similarities and differences in the approach to regulation of novel genome-editing techniques. Also, the development of a sustainable bioeconomy may encompass the application of plant gene technology and we discuss whether or not this is reflected in current associated national strategies. In addition, country-specific information about the opinion of the public and other stakeholders on plant gene technology is presented, together with a country-wise political comparison and a discussion of the potential reciprocal influence between public opinion and the political process of policy development. The Scandinavian region is unique in several aspects, such as climate and certain agriculturally related regulations, and at the same time the region is vulnerable to changes in plant breeding investments due to the relatively small market sizes. It is therefore important to discuss the role and regulation of innovative solutions in Scandinavian plant research and breeding.
Collapse
Affiliation(s)
- Dennis Eriksson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, 230 53 Alnarp, Sweden
| | - Henrik Brinch-Pedersen
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, 230 53 Alnarp, Sweden
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, 230 53 Alnarp, Sweden
| | - Inger B Holme
- Department of Molecular Biology and Genetics, Research Centre Flakkebjerg, Aarhus University, 4300 Slagelse, Denmark
| | - Trine A K Hvoslef-Eide
- Department of Plant Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway
| | - Anneli Ritala
- VTT Technical Research Centre of Finland Ltd., P.O.Box 1000, FI-02044 Espoo, Finland
| | - Teemu H Teeri
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, P.O. Box 27, 00014 Finland
| | - Tage Thorstensen
- Department of Biotechnology and Molecular Genetics, Norwegian Institute of Bioeconomy Research, P.O. Box 115 NO-1431, Ås, Norway
| |
Collapse
|
17
|
Elorriaga E, Klocko AL, Ma C, Strauss SH. Variation in Mutation Spectra Among CRISPR/Cas9 Mutagenized Poplars. FRONTIERS IN PLANT SCIENCE 2018; 9:594. [PMID: 29868058 PMCID: PMC5949366 DOI: 10.3389/fpls.2018.00594] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/16/2018] [Indexed: 05/18/2023]
Abstract
In an effort to produce reliably contained transgenic trees, we used the CRISPR/Cas9 system to alter three genes expected to be required for normal flowering in poplar (genus Populus). We designed synthetic guide RNAs (sgRNAs) to target the poplar homolog of the floral meristem identity gene, LEAFY (LFY), and the two poplar orthologs of the floral organ identity gene AGAMOUS (AG). We generated 557 transgenic events with sgRNA(s) and the Cas9 transgene and 49 events with Cas9 but no sgRNA, and analyzed all events by Sanger Sequencing of both alleles. Out of the 684 amplicons from events with sgRNAs, 474 had mutations in both alleles (77.5%). We sequenced both AG paralogs for 71 events in INRA clone 717-1B4 and 22 events in INRA clone 353-53, and found that 67 (94.4%) and 21 (95.5%) were double locus knockouts. Due partly to a single nucleotide polymorphism (SNP) present in the target region, one sgRNA targeting the AG paralogs was found to be completely inactive by itself (0%) but showed some activity in generating deletions when used in a construct with a second sgRNA (10.3-24.5%). Small insertion/deletion (indel) mutations were prevalent among mutated alleles of events with only one sgRNA (ranging from 94.3 to 99.1%), while large deletions were prevalent among alleles with two active sgRNAs (mean proportion of mutated alleles was 22.6% for small indels vs. 77.4% for large indels). For both LFY and AG, each individual sgRNA-gene combination had a unique mutation spectrum (p < 0.001). An AG-sgRNA construct with two sgRNAs had similar mutation spectra among two poplar clones (p > 0.05), however, a LFY-sgRNA construct with a single sgRNA gave significantly different mutation spectra among the same two clones (p < 0.001). The 49 empty vector control events had no mutations in either allele, and 310 potential "off-target" sequences also had no mutations in 58 transgenic events studied. CRISPR/Cas9 is a very powerful and precise system for generating loss-of-function mutations in poplars, and should be effective for generating reliably infertile trees that may promote regulatory, market, or public acceptance of genetic engineering technology.
Collapse
Affiliation(s)
- Estefania Elorriaga
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States
| | - Amy L. Klocko
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | - Cathleen Ma
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States
| | - Steven H. Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States
- *Correspondence: Steven H. Strauss
| |
Collapse
|
18
|
Gal-On A, Fuchs M, Gray S. Generation of novel resistance genes using mutation and targeted gene editing. Curr Opin Virol 2017; 26:98-103. [DOI: 10.1016/j.coviro.2017.07.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 01/10/2023]
|
19
|
Jia H, Zhang L, Wang T, Han J, Tang H, Zhang L. Development of a CRISPR/Cas9-mediated gene-editing tool in Streptomyces rimosus. Microbiology (Reading) 2017; 163:1148-1155. [DOI: 10.1099/mic.0.000501] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Haiyan Jia
- Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province; Key Laboratory of Microbial Diversity Research and Application of Hebei Province; Key Discipline of Biological Engineering of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, PR China
| | - Longmei Zhang
- Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province; Key Laboratory of Microbial Diversity Research and Application of Hebei Province; Key Discipline of Biological Engineering of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, PR China
| | - Tongtong Wang
- Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province; Key Laboratory of Microbial Diversity Research and Application of Hebei Province; Key Discipline of Biological Engineering of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, PR China
| | - Jin Han
- Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province; Key Laboratory of Microbial Diversity Research and Application of Hebei Province; Key Discipline of Biological Engineering of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, PR China
| | - Hui Tang
- Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province; Key Laboratory of Microbial Diversity Research and Application of Hebei Province; Key Discipline of Biological Engineering of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, PR China
| | - Liping Zhang
- Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province; Key Laboratory of Microbial Diversity Research and Application of Hebei Province; Key Discipline of Biological Engineering of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, PR China
| |
Collapse
|
20
|
Pacher M, Puchta H. From classical mutagenesis to nuclease-based breeding - directing natural DNA repair for a natural end-product. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:819-833. [PMID: 28027431 DOI: 10.1111/tpj.13469] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 05/18/2023]
Abstract
Production of mutants of crop plants by the use of chemical or physical genotoxins has a long tradition. These factors induce the natural DNA repair machinery to repair damage in an error-prone way. In the case of radiation, multiple double-strand breaks (DSBs) are induced randomly in the genome, leading in very rare cases to a desirable phenotype. In recent years the use of synthetic, site-directed nucleases (SDNs) - also referred to as sequence-specific nucleases - like the CRISPR/Cas system has enabled scientists to use exactly the same naturally occurring DNA repair mechanisms for the controlled induction of genomic changes at pre-defined sites in plant genomes. As these changes are not necessarily associated with the permanent integration of foreign DNA, the obtained organisms per se cannot be regarded as genetically modified as there is no way to distinguish them from natural variants. This applies to changes induced by DSBs as well as single-strand breaks, and involves repair by non-homologous end-joining and homologous recombination. The recent development of SDN-based 'DNA-free' approaches makes mutagenesis strategies in classical breeding indistinguishable from SDN-derived targeted genome modifications, even in regard to current regulatory rules. With the advent of new SDN technologies, much faster and more precise genome editing becomes available at reasonable cost, and potentially without requiring time-consuming deregulation of newly created phenotypes. This review will focus on classical mutagenesis breeding and the application of newly developed SDNs in order to emphasize similarities in the context of the regulatory situation for genetically modified crop plants.
Collapse
Affiliation(s)
- Michael Pacher
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, PO 6980, 76049, Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, PO 6980, 76049, Karlsruhe, Germany
| |
Collapse
|
21
|
Agarwal PK, Gupta K, Lopato S, Agarwal P. Dehydration responsive element binding transcription factors and their applications for the engineering of stress tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2135-2148. [PMID: 28419345 DOI: 10.1093/jxb/erx118] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Dehydration responsive element binding (DREB) factors or CRT element binding factors (CBFs) are members of the AP2/ERF family, which comprises a large number of stress-responsive regulatory genes. This review traverses almost two decades of research, from the discovery of DREB/CBF factors to their optimization for application in plant biotechnology. In this review, we describe (i) the discovery, classification, structure, and evolution of DREB genes and proteins; (ii) induction of DREB genes by abiotic stresses and involvement of their products in stress responses; (iii) protein structure and DNA binding selectivity of different groups of DREB proteins; (iv) post-transcriptional and post-translational mechanisms of DREB transcription factor (TF) regulation; and (v) physical and/or functional interaction of DREB TFs with other proteins during plant stress responses. We also discuss existing issues in applications of DREB TFs for engineering of enhanced stress tolerance and improved performance under stress of transgenic crop plants.
Collapse
Affiliation(s)
- Pradeep K Agarwal
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar-364 002, (Gujarat), India
| | - Kapil Gupta
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar-364 002, (Gujarat), India
| | - Sergiy Lopato
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Parinita Agarwal
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar-364 002, (Gujarat), India
| |
Collapse
|
22
|
Affiliation(s)
- Gerhard Flachowsky
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Federal Research Institute of Animal Health, Bundesallee 50, 38116 Braunschweig, Germany
| | - Tim Reuter
- Alberta Agriculture and Forestry, Agriculture Centre, 100-5401 -1st Avenue South, Lethbridge, Alberta T1J 4V6 Canada
| |
Collapse
|
23
|
Kumar APK, McKeown PC, Boualem A, Ryder P, Brychkova G, Bendahmane A, Sarkar A, Chatterjee M, Spillane C. TILLING by Sequencing (TbyS) for targeted genome mutagenesis in crops. MOLECULAR BREEDING 2017; 37:14. [PMID: 0 DOI: 10.1007/s11032-017-0620-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
24
|
Andersson M, Turesson H, Nicolia A, Fält AS, Samuelsson M, Hofvander P. Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. PLANT CELL REPORTS 2017; 36:117-128. [PMID: 27699473 PMCID: PMC5206254 DOI: 10.1007/s00299-016-2062-3] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 09/27/2016] [Indexed: 05/14/2023]
Abstract
Altered starch quality with full knockout of GBSS gene function in potato was achieved using CRISPR-Cas9 technology, through transient transfection and regeneration from isolated protoplasts. Site-directed mutagenesis (SDM) has shown great progress in introducing precisely targeted mutations. Engineered CRISPR-Cas9 has received increased focus compared to other SDM techniques, since the method is easily adapted to different targets. Here, we demonstrate that transient application of CRISPR-Cas9-mediated genome editing in protoplasts of tetraploid potato (Solanum tuberosum) yielded mutations in all four alleles in a single transfection, in up to 2 % of regenerated lines. Three different regions of the gene encoding granule-bound starch synthase (GBSS) were targeted under different experimental setups, resulting in mutations in at least one allele in 2-12 % of regenerated shoots, with multiple alleles mutated in up to 67 % of confirmed mutated lines. Most mutations resulted in small indels of 1-10 bp, but also vector DNA inserts of 34-236 bp were found in 10 % of analysed lines. No mutations were found in an allele diverging one bp from a used guide sequence, verifying similar results found in other plants that high homology between guide sequence and target region near the protospacer adjacent motif (PAM) site is essential. To meet the challenge of screening large numbers of lines, a PCR-based high-resolution fragment analysis method (HRFA) was used, enabling identification of multiple mutated alleles with a resolution limit of 1 bp. Full knockout of GBSS enzyme activity was confirmed in four-allele mutated lines by phenotypic studies of starch. One remaining wild-type (WT) allele was shown sufficient to maintain enough GBSS enzyme activity to produce significant amounts of amylose.
Collapse
Affiliation(s)
- Mariette Andersson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, SE-23053, Alnarp, Sweden
| | - Helle Turesson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, SE-23053, Alnarp, Sweden
| | - Alessandro Nicolia
- ENEA Research Centre Casaccia, SSPT-BIOAG-BIOTEC, Via Anguillarese, 301, 00123, Rome, Italy
| | - Ann-Sofie Fält
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, SE-23053, Alnarp, Sweden
| | | | - Per Hofvander
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, SE-23053, Alnarp, Sweden.
| |
Collapse
|
25
|
Bortesi L, Zhu C, Zischewski J, Perez L, Bassié L, Nadi R, Forni G, Lade SB, Soto E, Jin X, Medina V, Villorbina G, Muñoz P, Farré G, Fischer R, Twyman RM, Capell T, Christou P, Schillberg S. Patterns of CRISPR/Cas9 activity in plants, animals and microbes. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:2203-2216. [PMID: 27614091 PMCID: PMC5103219 DOI: 10.1111/pbi.12634] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 05/19/2023]
Abstract
The CRISPR/Cas9 system and related RNA-guided endonucleases can introduce double-strand breaks (DSBs) at specific sites in the genome, allowing the generation of targeted mutations in one or more genes as well as more complex genomic rearrangements. Modifications of the canonical CRISPR/Cas9 system from Streptococcus pyogenes and the introduction of related systems from other bacteria have increased the diversity of genomic sites that can be targeted, providing greater control over the resolution of DSBs, the targeting efficiency (frequency of on-target mutations), the targeting accuracy (likelihood of off-target mutations) and the type of mutations that are induced. Although much is now known about the principles of CRISPR/Cas9 genome editing, the likelihood of different outcomes is species-dependent and there have been few comparative studies looking at the basis of such diversity. Here we critically analyse the activity of CRISPR/Cas9 and related systems in different plant species and compare the outcomes in animals and microbes to draw broad conclusions about the design principles required for effective genome editing in different organisms. These principles will be important for the commercial development of crops, farm animals, animal disease models and novel microbial strains using CRISPR/Cas9 and other genome-editing tools.
Collapse
Affiliation(s)
- Luisa Bortesi
- Institute for Molecular BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Changfu Zhu
- Department of Plant Production and Forestry ScienceSchool of Agrifood and Forestry Science and Engineering (ETSEA)University of Lleida‐Agrotecnio CenterLleidaSpain
| | - Julia Zischewski
- Institute for Molecular BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Lucia Perez
- Department of Plant Production and Forestry ScienceSchool of Agrifood and Forestry Science and Engineering (ETSEA)University of Lleida‐Agrotecnio CenterLleidaSpain
| | - Ludovic Bassié
- Department of Plant Production and Forestry ScienceSchool of Agrifood and Forestry Science and Engineering (ETSEA)University of Lleida‐Agrotecnio CenterLleidaSpain
| | - Riad Nadi
- Department of Plant Production and Forestry ScienceSchool of Agrifood and Forestry Science and Engineering (ETSEA)University of Lleida‐Agrotecnio CenterLleidaSpain
| | - Giobbe Forni
- Department of Plant Production and Forestry ScienceSchool of Agrifood and Forestry Science and Engineering (ETSEA)University of Lleida‐Agrotecnio CenterLleidaSpain
| | - Sarah Boyd Lade
- Department of Plant Production and Forestry ScienceSchool of Agrifood and Forestry Science and Engineering (ETSEA)University of Lleida‐Agrotecnio CenterLleidaSpain
| | - Erika Soto
- Department of Plant Production and Forestry ScienceSchool of Agrifood and Forestry Science and Engineering (ETSEA)University of Lleida‐Agrotecnio CenterLleidaSpain
| | - Xin Jin
- Department of Plant Production and Forestry ScienceSchool of Agrifood and Forestry Science and Engineering (ETSEA)University of Lleida‐Agrotecnio CenterLleidaSpain
| | - Vicente Medina
- Department of Plant Production and Forestry ScienceSchool of Agrifood and Forestry Science and Engineering (ETSEA)University of Lleida‐Agrotecnio CenterLleidaSpain
| | - Gemma Villorbina
- Department of Plant Production and Forestry ScienceSchool of Agrifood and Forestry Science and Engineering (ETSEA)University of Lleida‐Agrotecnio CenterLleidaSpain
| | - Pilar Muñoz
- Department of Plant Production and Forestry ScienceSchool of Agrifood and Forestry Science and Engineering (ETSEA)University of Lleida‐Agrotecnio CenterLleidaSpain
| | - Gemma Farré
- Department of Plant Production and Forestry ScienceSchool of Agrifood and Forestry Science and Engineering (ETSEA)University of Lleida‐Agrotecnio CenterLleidaSpain
| | - Rainer Fischer
- Institute for Molecular BiotechnologyRWTH Aachen UniversityAachenGermany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
| | | | - Teresa Capell
- Department of Plant Production and Forestry ScienceSchool of Agrifood and Forestry Science and Engineering (ETSEA)University of Lleida‐Agrotecnio CenterLleidaSpain
| | - Paul Christou
- Department of Plant Production and Forestry ScienceSchool of Agrifood and Forestry Science and Engineering (ETSEA)University of Lleida‐Agrotecnio CenterLleidaSpain
- ICREACatalan Institute for Research and Advanced StudiesBarcelonaSpain
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
| |
Collapse
|
26
|
Martin Avila E, Gisby MF, Day A. Seamless editing of the chloroplast genome in plants. BMC PLANT BIOLOGY 2016; 16:168. [PMID: 27474038 PMCID: PMC4966725 DOI: 10.1186/s12870-016-0857-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/20/2016] [Indexed: 05/13/2023]
Abstract
BACKGROUND Gene editing technologies enable the precise insertion of favourable mutations and performance enhancing trait genes into chromosomes whilst excluding all excess DNA from modified genomes. The technology gives rise to a new class of biotech crops which is likely to have widespread applications in agriculture. Despite progress in the nucleus, the seamless insertions of point mutations and non-selectable foreign genes into the organelle genomes of crops have not been described. The chloroplast genome is an attractive target to improve photosynthesis and crop performance. Current chloroplast genome engineering technologies for introducing point mutations into native chloroplast genes leave DNA scars, such as the target sites for recombination enzymes. Seamless editing methods to modify chloroplast genes need to address reversal of site-directed point mutations by template mediated repair with the vast excess of wild type chloroplast genomes that are present early in the transformation process. RESULTS Using tobacco, we developed an efficient two-step method to edit a chloroplast gene by replacing the wild type sequence with a transient intermediate. This was resolved to the final edited gene by recombination between imperfect direct repeats. Six out of 11 transplastomic plants isolated contained the desired intermediate and at the second step this was resolved to the edited chloroplast gene in five of six plants tested. Maintenance of a single base deletion mutation in an imperfect direct repeat of the native chloroplast rbcL gene showed the limited influence of biased repair back to the wild type sequence. The deletion caused a frameshift, which replaced the five C-terminal amino acids of the Rubisco large subunit with 16 alternative residues resulting in a ~30-fold reduction in its accumulation. We monitored the process in vivo by engineering an overlapping gusA gene downstream of the edited rbcL gene. Translational coupling between the overlapping rbcL and gusA genes resulted in relatively high GUS accumulation (~0.5 % of leaf protein). CONCLUSIONS Editing chloroplast genomes using transient imperfect direct repeats provides an efficient method for introducing point mutations into chloroplast genes. Moreover, we describe the first synthetic operon allowing expression of a downstream overlapping gene by translational coupling in chloroplasts. Overlapping genes provide a new mechanism for co-ordinating the translation of foreign proteins in chloroplasts.
Collapse
Affiliation(s)
- Elena Martin Avila
- Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT UK
- Present address: Research School of Biology, The Australian National University, Acton, ACT 2601 Australia
| | - Martin F. Gisby
- Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT UK
| | - Anil Day
- Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT UK
| |
Collapse
|
27
|
Daneri-Castro SN, Svensson B, Roberts TH. Barley germination: Spatio-temporal considerations for designing and interpreting ‘omics’ experiments. J Cereal Sci 2016. [DOI: 10.1016/j.jcs.2016.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Cardi T, Neal Stewart C. Progress of targeted genome modification approaches in higher plants. PLANT CELL REPORTS 2016; 35:1401-16. [PMID: 27025856 DOI: 10.1007/s00299-016-1975-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/21/2016] [Indexed: 05/07/2023]
Abstract
Transgene integration in plants is based on illegitimate recombination between non-homologous sequences. The low control of integration site and number of (trans/cis)gene copies might have negative consequences on the expression of transferred genes and their insertion within endogenous coding sequences. The first experiments conducted to use precise homologous recombination for gene integration commenced soon after the first demonstration that transgenic plants could be produced. Modern transgene targeting categories used in plant biology are: (a) homologous recombination-dependent gene targeting; (b) recombinase-mediated site-specific gene integration; (c) oligonucleotide-directed mutagenesis; (d) nuclease-mediated site-specific genome modifications. New tools enable precise gene replacement or stacking with exogenous sequences and targeted mutagenesis of endogeneous sequences. The possibility to engineer chimeric designer nucleases, which are able to target virtually any genomic site, and use them for inducing double-strand breaks in host DNA create new opportunities for both applied plant breeding and functional genomics. CRISPR is the most recent technology available for precise genome editing. Its rapid adoption in biological research is based on its inherent simplicity and efficacy. Its utilization, however, depends on available sequence information, especially for genome-wide analysis. We will review the approaches used for genome modification, specifically those for affecting gene integration and modification in higher plants. For each approach, the advantages and limitations will be noted. We also will speculate on how their actual commercial development and implementation in plant breeding will be affected by governmental regulations.
Collapse
Affiliation(s)
- Teodoro Cardi
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca per l'Orticoltura, Via Cavalleggeri 25, 84098, Pontecagnano, Italy.
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
29
|
Khatodia S, Bhatotia K, Passricha N, Khurana SMP, Tuteja N. The CRISPR/Cas Genome-Editing Tool: Application in Improvement of Crops. FRONTIERS IN PLANT SCIENCE 2016; 7:506. [PMID: 27148329 PMCID: PMC4835450 DOI: 10.3389/fpls.2016.00506] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/30/2016] [Indexed: 05/18/2023]
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeats associated Cas9/sgRNA system is a novel targeted genome-editing technique derived from bacterial immune system. It is an inexpensive, easy, most user friendly and rapidly adopted genome editing tool transforming to revolutionary paradigm. This technique enables precise genomic modifications in many different organisms and tissues. Cas9 protein is an RNA guided endonuclease utilized for creating targeted double-stranded breaks with only a short RNA sequence to confer recognition of the target in animals and plants. Development of genetically edited (GE) crops similar to those developed by conventional or mutation breeding using this potential technique makes it a promising and extremely versatile tool for providing sustainable productive agriculture for better feeding of rapidly growing population in a changing climate. The emerging areas of research for the genome editing in plants include interrogating gene function, rewiring the regulatory signaling networks and sgRNA library for high-throughput loss-of-function screening. In this review, we have described the broad applicability of the Cas9 nuclease mediated targeted plant genome editing for development of designer crops. The regulatory uncertainty and social acceptance of plant breeding by Cas9 genome editing have also been described. With this powerful and innovative technique the designer GE non-GM plants could further advance climate resilient and sustainable agriculture in the future and maximizing yield by combating abiotic and biotic stresses.
Collapse
Affiliation(s)
- Surender Khatodia
- Amity Institute of Biotechnology, Amity University HaryanaGurgaon, India
| | - Kirti Bhatotia
- Amity Institute of Biotechnology, Amity University HaryanaGurgaon, India
| | - Nishat Passricha
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology New Delhi, India
| | - S. M. P. Khurana
- Amity Institute of Biotechnology, Amity University HaryanaGurgaon, India
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology New Delhi, India
- Amity Institute of Microbial Technology, Amity UniversityNoida, India
| |
Collapse
|
30
|
Zhang JH, Adikaram P, Pandey M, Genis A, Simonds WF. Optimization of genome editing through CRISPR-Cas9 engineering. Bioengineered 2016; 7:166-74. [PMID: 27340770 PMCID: PMC4927198 DOI: 10.1080/21655979.2016.1189039] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/09/2016] [Accepted: 05/09/2016] [Indexed: 12/22/2022] Open
Abstract
CRISPR (Clustered Regularly-Interspaced Short Palindromic Repeats)-Cas9 (CRISPR associated protein 9) has rapidly become the most promising genome editing tool with great potential to revolutionize medicine. Through guidance of a 20 nucleotide RNA (gRNA), CRISPR-Cas9 finds and cuts target protospacer DNA precisely 3 base pairs upstream of a PAM (Protospacer Adjacent Motif). The broken DNA ends are repaired by either NHEJ (Non-Homologous End Joining) resulting in small indels, or by HDR (Homology Directed Repair) for precise gene or nucleotide replacement. Theoretically, CRISPR-Cas9 could be used to modify any genomic sequences, thereby providing a simple, easy, and cost effective means of genome wide gene editing. However, the off-target activity of CRISPR-Cas9 that cuts DNA sites with imperfect matches with gRNA have been of significant concern because clinical applications require 100% accuracy. Additionally, CRISPR-Cas9 has unpredictable efficiency among different DNA target sites and the PAM requirements greatly restrict its genome editing frequency. A large number of efforts have been made to address these impeding issues, but much more is needed to fully realize the medical potential of CRISPR-Cas9. In this article, we summarize the existing problems and current advances of the CRISPR-Cas9 technology and provide perspectives for the ultimate perfection of Cas9-mediated genome editing.
Collapse
Affiliation(s)
- Jian-Hua Zhang
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Poorni Adikaram
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mritunjay Pandey
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Allison Genis
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - William F. Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
31
|
Biotechnological strategies for studying actinorhizal symbiosis in Casuarinaceae: transgenesis and beyond. Symbiosis 2016. [DOI: 10.1007/s13199-016-0400-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Abstract
Protein glycosylation is an essential co- and post-translational modification of secretory and membrane proteins in all eukaryotes. The initial steps of N-glycosylation and N-glycan processing are highly conserved between plants, mammals and yeast. In contrast, late N-glycan maturation steps in the Golgi differ significantly in plants giving rise to complex N-glycans with β1,2-linked xylose, core α1,3-linked fucose and Lewis A-type structures. While the essential role of N-glycan modifications on distinct mammalian glycoproteins is already well documented, we have only begun to decipher the biological function of this ubiquitous protein modification in different plant species. In this review, I focus on the biosynthesis and function of different protein N-linked glycans in plants. Special emphasis is given on glycan-mediated quality control processes in the ER and on the biological role of characteristic complex N-glycan structures.
Collapse
Affiliation(s)
- Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
33
|
Noman A, Aqeel M, He S. CRISPR-Cas9: Tool for Qualitative and Quantitative Plant Genome Editing. FRONTIERS IN PLANT SCIENCE 2016; 7:1740. [PMID: 27917188 PMCID: PMC5116475 DOI: 10.3389/fpls.2016.01740] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 11/04/2016] [Indexed: 05/07/2023]
Abstract
Recent developments in genome editing techniques have aroused substantial excitement among agricultural scientists. These techniques offer new opportunities for developing improved plant lines with addition of important traits or removal of undesirable traits. Increased adoption of genome editing has been geared by swiftly developing Clustered regularly interspaced short palindromic repeats (CRISPR). This is appearing as driving force for innovative utilization in diverse branches of plant biology. CRISPR-Cas9 mediated genome editing is being used for rapid, easy and efficient alteration of genes among diverse plant species. With approximate completion of conceptual work about CRISPR-Cas9, plant scientists are applying this genome editing tool for crop attributes enhancement. The capability of this system for performing targeted and efficient modifications in genome sequence as well as gene expression will certainly spur novel developments not only in model plants but in crop and ornamental plants as well. Additionally, due to non-involvement of foreign DNA, this technique may help alleviating regulatory issues associated with genetically modified plants. We expect that prevailing challenges in plant science like genomic region manipulation, crop specific vectors etc. will be addressed along with sustained growth of this genome editing tool. In this review, recent progress of CRISPR-Cas9 technology in plants has been summarized and discussed. We reviewed significance of CRISPR-Cas9 for specific and non-traditional aspects of plant life. It also covers strengths of this technique in comparison with other genome editing techniques, e.g., Zinc finger nucleases, Transcription activator-like effector nucleases and potential challenges in coming decades have been described.
Collapse
Affiliation(s)
- Ali Noman
- College of Crop Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Muhammad Aqeel
- Department of Botany, University of AgricultureFaisalabad, Pakistan
| | - Shuilin He
- College of Crop Science, Fujian Agriculture and Forestry UniversityFuzhou, China
- National Education Minister Key Laboratory for Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
- *Correspondence: Shuilin He,
| |
Collapse
|