1
|
Song J, Tang L, Cui Y, Fan H, Zhen X, Wang J. Research Progress on Photoperiod Gene Regulation of Heading Date in Rice. Curr Issues Mol Biol 2024; 46:10299-10311. [PMID: 39329965 PMCID: PMC11430500 DOI: 10.3390/cimb46090613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Heading date is a critical physiological process in rice that is influenced by both genetic and environmental factors. The photoperiodic pathway is a primary regulatory mechanism for rice heading, with key florigen genes Hd3a (Heading date 3a) and RFT1 (RICE FLOWERING LOCUS T1) playing central roles. Upstream regulatory pathways, including Hd1 and Ehd1, also significantly impact this process. This review aims to provide a comprehensive examination of the localization, cloning, and functional roles of photoperiodic pathway-related genes in rice, and to explore the interactions among these genes as well as their pleiotropic effects on heading date. We systematically review recent advancements in the identification and functional analysis of genes involved in the photoperiodic pathway. We also discuss the molecular mechanisms underlying rice heading date variation and highlight the intricate interactions between key regulatory genes. Significant progress has been made in understanding the molecular mechanisms of heading date regulation through the cloning and functional analysis of photoperiod-regulating genes. However, the regulation of heading date remains complex, and many underlying mechanisms are not yet fully elucidated. This review consolidates current knowledge on the photoperiodic regulation of heading date in rice, emphasizing novel findings and gaps in the research. It highlights the need for further exploration of the interactions among flowering-related genes and their response to environmental signals. Despite advances, the full regulatory network of heading date remains unclear. Further research is needed to elucidate the intricate gene interactions, transcriptional and post-transcriptional regulatory mechanisms, and the role of epigenetic factors such as histone methylation in flowering time regulation. This review provides a detailed overview of the current understanding of photoperiodic pathway genes in rice, setting the stage for future research to address existing gaps and improve our knowledge of rice flowering regulation.
Collapse
Affiliation(s)
- Jian Song
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Liqun Tang
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yongtao Cui
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Honghuan Fan
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xueqiang Zhen
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianjun Wang
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
2
|
Peng M, Gan F, Pan C, Lin X, Lin F, Ren Y, Na S, Zhu X, Tang W, Wu Z, Fan X, Chen K. Expression of AtNF-YB1 activates early flowering, showing potential in breeding hybrid rice. PHYSIOLOGIA PLANTARUM 2024; 176:e14538. [PMID: 39344294 DOI: 10.1111/ppl.14538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 07/02/2024] [Indexed: 10/01/2024]
Abstract
The nuclear factor Y (NF-Y) has been shown to be involved in plant growth and development in response to various environmental signals. However, the integration of these mechanisms into breeding practices for new cultivars has not been extensively investigated. In this study, the Arabidopsis gene AtNF-YB1 was introduced into rice, including inbred Kasalath and the hybrids Jinfeng × Chenghui 727 and Jinfeng × Chuanhui 907. The obtained transgenic rice showed early flowering under both natural long day (NLD) and natural short day (NSD) conditions. For the inbred Kasalath, the transgenic lines clearly showed a shorter plant height and lower grain yield, with a decrease in spike length and grain number but more productive panicles. However, the hybrids with AtNF-YB1 had much smaller or even zero reduction in spike length and grain number and more productive panicles. Thus, maintained or even increased grain yields of the transgenic hybrids were recorded under the NLD conditions. Quantitative PCR analysis indicated that the rice flowering initiation pathways were early activated via the suppression of Ghd7 induction in the transgenic rice. RNA-Seq further demonstrated that three pathways related to plant photosynthesis were markedly upregulated in both Jinfeng B and the hybrid Jinfeng × Chuanhui 907 with AtNF-YB1 expression. Moreover, physiological experiments showed an upregulation of photosynthetic rates in the transgenic lines. Taken together, this study suggests that AtNF-YB1 expression in rice not only induces early flowering but also benefits photosynthesis, which might be used to develop hybrid varieties with early ripening.
Collapse
Affiliation(s)
- Meifang Peng
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Feng Gan
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Chunmei Pan
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiaomin Lin
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Feng Lin
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yuanhang Ren
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Shungui Na
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xinhai Zhu
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Wenwen Tang
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Zhixue Wu
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiaoli Fan
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Kegui Chen
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
3
|
Toyomoto D, Shibata Y, Uemura M, Taura S, Sato T, Henry R, Ishikawa R, Ichitani K. Seed abortion caused by the combination of two duplicate genes in the progeny from the cross between Oryza sativa and Oryza meridionalis. BREEDING SCIENCE 2024; 74:146-158. [PMID: 39355629 PMCID: PMC11442109 DOI: 10.1270/jsbbs.23084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/15/2024] [Indexed: 10/03/2024]
Abstract
Seed development is an essential phenomenon for all sexual propagative plant species. The functional allele at SEED DEVELOPMENT 1 (SDV1) or SEED DEVELOPMENT 2 (SDV2) loci is essential for seed development for Oryza sativa and Oryza meridionalis. In the present study, we performed fine mapping of SDV1, narrowing down the area of interest to 333kb on chromosome 6. Haplotype analysis around the SDV1 locus of O. meridionalis accessions indicated that they shared the DNA polymorphism, suggesting that they have a common abortive allele at the SDV1 locus. Linkage analysis of the candidate SDV2 gene showed that it was located on chromosome 4. The candidate SDV2 was confirmed using a population in which both the SDV1 and SDV2 genes were segregating. The chromosomal region covering the SDV1 gene was predicted to contain 30 protein-coding genes in O. sativa. Five of these genes have conserved DNA sequences in the chromosomal region of the SDV2 gene on chromosome 4, and not on chromosome 6, of O. meridionalis. These results suggest that these five genes could be candidates for SDV1, and that their orthologous genes located on chromosome 4 of O. meridionalis could be candidates for SDV2.
Collapse
Affiliation(s)
- Daiki Toyomoto
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima 890-0065, Japan
| | - Yukika Shibata
- Graduate school of Agriculture, Forestry and Fisheries, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima 890-0065, Japan
| | - Masato Uemura
- Graduate school of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima 890-0065, Japan
| | - Satoru Taura
- Institute of Gene Research, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima 890-0065, Japan
| | - Tadashi Sato
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572, Japan
| | - Robert Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Ryuji Ishikawa
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Katsuyuki Ichitani
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima 890-0065, Japan
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima 890-0065, Japan
| |
Collapse
|
4
|
Singh S, Sharma P, Mishra S, Khurana P, Khurana JP. CRY2 gene of rice (Oryza sativa subsp. indica) encodes a blue light sensory receptor involved in regulating flowering, plant height and partial photomorphogenesis in dark. PLANT CELL REPORTS 2023; 42:73-89. [PMID: 36251035 DOI: 10.1007/s00299-022-02937-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
OsiCRY2 is involved in light-regulated plant development and plays a role in regulating photomorphogenesis, plant height, flowering and most strikingly partial photomorphogenesis in dark. Cryptochrome 2 (CRY2), the blue/UV-A light photoreceptor in plants, has been reported to regulate photoperiod-dependent flowering and seedling photomorphogenesis (under low-intensity light). Among monocots, CRY2 has been reported from japonica rice, wheat, sorghum and barley. The two sub-species of rice, indica and japonica, exhibit a high degree of genetic variation and morphological and physiological differences. This article describes the characterization of CRY2 of indica rice (OsiCRY2). While the transcript levels of OsiCRY2 did not change significantly under blue light, its protein levels were found to decline with increased time duration under blue light. For phenotypic characterization, OsiCRY2 over-expression (OX) transgenics were generated in Oryza sativa Pusa Sugandh 2 (PS2) cultivar, a highly scented Basmati cultivar. The OsiCRY2OX transgenics displayed shorter coleoptiles and dwarfism than wild-type under blue light, white, and far-red light. Interestingly, even the dark-grown transgenics were shorter, concomitant with higher OsiCRY2 protein levels in transgenics than wild-type. Histological analysis revealed that the decrease in the length of the seedlings was due to a decrease in the length of the epidermal cells. The fully mature rice transgenics were shorter than the untransformed plants but flowered at the same time as wild-type. However, the OsiCRY2 Arabidopsis over-expressors exhibited early flowering by 10-15 days, indicating the potential and conservation of function of OsiCRY2. The whole-genome transcriptome profiling of rice transgenics revealed the differential up-regulation of several light-regulated genes in dark-grown coleoptiles. These data provide evidence that OsiCRY2 regulates photomorphogenesis, plant height, and flowering in indica rice.
Collapse
Affiliation(s)
- Shipra Singh
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Pooja Sharma
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
- Proteus Genomics, 218 Summit Parkway, Birmingham, AL, 35209, USA
| | - Sushma Mishra
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Paramjit Khurana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India.
| | - Jitendra P Khurana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| |
Collapse
|
5
|
Imaizumi T, Kawahara Y, Auge G. Hybrid-derived weedy rice maintains adaptive combinations of alleles associated with seed dormancy. Mol Ecol 2022; 31:6556-6569. [PMID: 36178060 DOI: 10.1111/mec.16709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 01/13/2023]
Abstract
Plant hybridization is a pathway for the evolution of adaptive traits. However, hybridization between adapted and nonadapted populations may affect the persistence of combinations of adaptive alleles evolved through natural selection. Seed dormancy is an adaptive trait for weedy rice because it regulates the timing of seed germination and the persistence of the soil seed bank. Hybridization between weedy and cultivated rice has been confirmed with an adaptive introgression of deep seed dormancy alleles from cultivated rice. Here, we explored the influence of hybridization on the conservation of adaptive allele combinations by evaluating natural variation and genetic structure in seed dormancy-associated genomic regions. Based on sequence variation in the genomic regions associated with seed dormancy, hybrid-derived weedy rice strains maintained most of the adaptive combinations for this trait observed in the parental weedy rice, despite equal representation of the parental weedy and cultivated rice in the whole genome sequence. Moreover, hybrid-derived weedy rice strains were more dormant than their parental weedy rice strains, and this trait was strongly influenced by the environment. This study suggests that hybridization between weedy rice (adaptive allelic combinations for seed dormancy) and cultivated rice (nonadaptive combinations) generates weedy rice strains expressing deep seed dormancy caused by genome stabilization through the removal of alleles derived from cultivated rice, in addition to the adaptive introgression of deep seed dormancy alleles derived from cultivated rice. Thus, hybridization between adapted and nonadapted populations appears to be reinforcing the trajectory towards the evolution of adaptive traits.
Collapse
Affiliation(s)
- Toshiyuki Imaizumi
- Institute for Plant Protection, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | | | - Gabriela Auge
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) - Instituto de Biociencias, Biotecnología y Biología Traslacional, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
6
|
Izawa T. Reloading DNA History in Rice Domestication. PLANT & CELL PHYSIOLOGY 2022; 63:1529-1539. [PMID: 35656860 PMCID: PMC9680854 DOI: 10.1093/pcp/pcac073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/14/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Although crop domestication is a prehistoric event, DNA (or genome) sequences of modern cultivars and the accession lines of wild relatives contain information regarding the history of crop domestication and the breeding process. Accordingly, with plentiful genomic data, many new findings have been obtained concerning the crop domestication process, for which various (some controversial) interpretations exist. Since approximately 20 years ago, dozens of quantitative trait genes (QTGs) related to the domestication process have been cloned from several crops including rice, a global staple food. However, the determination of how and when these QTGs were involved in rice domestication requires a precise understanding of the DNA code. In addition to the identification of domestication-related QTGs, large-scale rice genome analysis based on short-read Illumina data (but with shallow depth) including more than 1,000 rice cultivars and hundreds of wild rice (or Oryza rufipogon) lines, along with extensive genome analysis including more than 3,000 cultivars with sufficient Illumina data, has been reported. From these data, the genome-wide changes during rice domestication have been explained. However, these genome-wide changes were not interpreted based on QTG changes for domestication-related traits during rice domestication. In addition, a substantial gap remains between the archeological hypothesis based on ancient relics and findings from DNA variations among current cultivars. Thus, this review reconsiders the present status of rice domestication research from a biologist's perspective.
Collapse
|
7
|
Maeda AE, Nakamichi N. Plant clock modifications for adapting flowering time to local environments. PLANT PHYSIOLOGY 2022; 190:952-967. [PMID: 35266545 PMCID: PMC9516756 DOI: 10.1093/plphys/kiac107] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/09/2022] [Indexed: 05/25/2023]
Abstract
During and after the domestication of crops from ancestral wild plants, humans selected cultivars that could change their flowering time in response to seasonal daylength. Continuous selection of this trait eventually allowed the introduction of crops into higher or lower latitudes and different climates from the original regions where domestication initiated. In the past two decades, numerous studies have found the causal genes or alleles that change flowering time and have assisted in adapting crop species such as barley (Hordeum vulgare), wheat (Triticum aestivum L.), rice (Oryza sativa L.), pea (Pisum sativum L.), maize (Zea mays spp. mays), and soybean (Glycine max (L.) Merr.) to new environments. This updated review summarizes the genes or alleles that contributed to crop adaptation in different climatic areas. Many of these genes are putative orthologs of Arabidopsis (Arabidopsis thaliana) core clock genes. We also discuss how knowledge of the clock's molecular functioning can facilitate molecular breeding in the future.
Collapse
Affiliation(s)
- Akari E Maeda
- Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Norihito Nakamichi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
8
|
Gu H, Zhang K, Chen J, Gull S, Chen C, Hou Y, Li X, Miao J, Zhou Y, Liang G. OsFTL4, an FT-like Gene, Regulates Flowering Time and Drought Tolerance in Rice (Oryza sativa L.). RICE (NEW YORK, N.Y.) 2022; 15:47. [PMID: 36068333 PMCID: PMC9448835 DOI: 10.1186/s12284-022-00593-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/01/2022] [Indexed: 05/27/2023]
Abstract
The initiation of flowering in cereals is a critical process influenced by environmental and endogenous signals. Flowering Locus T-like (FT-like) genes encode the main signals for flowering. Of the 13 FT-like genes in the rice genome, Hd3a/OsFTL2 and RFT1/OsFTL3 have been extensively studied and revealed to be critical for flowering. In this study, a rice FT-like gene, OsFTL4, was functionally characterized. Specifically, osftl4 mutants were generated using a CRISPR/Cas9 system. Compared with the wild-type control (Guangluai 4), the osftl4-1 and osftl4-2 mutants flowered 9.6 and 5.8 days earlier under natural long-day and short-day conditions, respectively. Additionally, OsFTL4 was mainly expressed in the vascular tissue, with the resulting OsFTL4 protein localized in both the nucleus and cytoplasm. Furthermore, OsFTL4 was observed to compete with Hd3a for the interaction with multiple 14-3-3 proteins. An analysis of the effects of simulated drought stress suggested that silencing OsFTL4 enhances drought tolerance by decreasing stomatal conductance and water loss. These results indicate that OsFTL4 helps integrate the flowering process and the drought response in rice.
Collapse
Affiliation(s)
- Houwen Gu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Kunming Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Jie Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Sadia Gull
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Chuyan Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Yafei Hou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Xiangbo Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Jun Miao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Guohua Liang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
9
|
Li D, Zhang F, Pinson SRM, Edwards JD, Jackson AK, Xia X, Eizenga GC. Assessment of Rice Sheath Blight Resistance Including Associations with Plant Architecture, as Revealed by Genome-Wide Association Studies. RICE (NEW YORK, N.Y.) 2022; 15:31. [PMID: 35716230 PMCID: PMC9206596 DOI: 10.1186/s12284-022-00574-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Sheath blight (ShB) disease caused by Rhizoctonia solani Kühn, is one of the most economically damaging rice (Oryza sativa L.) diseases worldwide. There are no known major resistance genes, leaving only partial resistance from small-effect QTL to deploy for cultivar improvement. Many ShB-QTL are associated with plant architectural traits detrimental to yield, including tall plants, late maturity, or open canopy from few or procumbent tillers, which confound detection of physiological resistance. RESULTS To identify QTL for ShB resistance, 417 accessions from the Rice Diversity Panel 1 (RDP1), developed for association mapping studies, were evaluated for ShB resistance, plant height and days to heading in inoculated field plots in Arkansas, USA (AR) and Nanning, China (NC). Inoculated greenhouse-grown plants were used to evaluate ShB using a seedling-stage method to eliminate effects from height or maturity, and tiller (TN) and panicle number (PN) per plant. Potted plants were used to evaluate the RDP1 for TN and PN. Genome-wide association (GWA) mapping with over 3.4 million SNPs identified 21 targeted SNP markers associated with ShB which tagged 18 ShB-QTL not associated with undesirable plant architecture traits. Ten SNPs were associated with ShB among accessions of the Indica subspecies, ten among Japonica subspecies accessions, and one among all RDP1 accessions. Across the 18 ShB QTL, only qShB4-1 was not previously reported in biparental mapping studies and qShB9 was not reported in the GWA ShB studies. All 14 PN QTL overlapped with TN QTL, with 15 total TN QTL identified. Allele effects at the five TN QTL co-located with ShB QTL indicated that increased TN does not inevitably increase disease development; in fact, for four ShB QTL that overlapped TN QTL, the alleles increasing resistance were associated with increased TN and PN, suggesting a desirable coupling of alleles at linked genes. CONCLUSIONS Nineteen accessions identified as containing the most SNP alleles associated with ShB resistance for each subpopulation were resistant in both AR and NC field trials. Rice breeders can utilize these accessions and SNPs to develop cultivars with enhanced ShB resistance along with increased TN and PN for improved yield potential.
Collapse
Affiliation(s)
- Danting Li
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Fantao Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Shannon R M Pinson
- USDA Dale Bumpers National Rice Research Center, 2890 Highway 130 East, Stuttgart, AR, 72160, USA.
| | - Jeremy D Edwards
- USDA Dale Bumpers National Rice Research Center, 2890 Highway 130 East, Stuttgart, AR, 72160, USA
| | - Aaron K Jackson
- USDA Dale Bumpers National Rice Research Center, 2890 Highway 130 East, Stuttgart, AR, 72160, USA
| | - Xiuzhong Xia
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Georgia C Eizenga
- USDA Dale Bumpers National Rice Research Center, 2890 Highway 130 East, Stuttgart, AR, 72160, USA.
| |
Collapse
|
10
|
Mishra M, Rathore RS, Joshi R, Pareek A, Singla-Pareek SL. DTH8 overexpression induces early flowering, boosts yield, and improves stress recovery in rice cv IR64. PHYSIOLOGIA PLANTARUM 2022; 174:e13691. [PMID: 35575899 DOI: 10.1111/ppl.13691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/17/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Rice yield and heading date are the two discrete traits controlled by quantitative trait loci (QTLs). Both traits are influenced by the genetic make-up of the plant as well as the environmental factors where it thrives. Drought and salinity adversely affect crop productivity in many parts of the world. Tolerance to these stresses is multigenic and complex in nature. In this study, we have characterized a QTL, DTH8 (days to heading) from Oryza sativa L. cv IR64 that encodes a putative HAP3/NF-YB/CBF subunit of CCAAT-box binding protein (HAP complex). We demonstrate DTH8 to be positively influencing the yield, heading date, and stress tolerance in IR64. DTH8 up-regulates the transcription of RFT1, Hd3a, GHD7, MOC1, and RCN1 in IR64 at the pre-flowering stage and plays a role in early flowering, increased number of tillers, enhanced panicle branching, and improved tolerance towards drought and salinity stress at the reproductive stage. The presence of DTH8 binding elements (CCAAT) in the promoter regions of all of these genes, predicted by in silico analysis of the promoter region, indicates the regulation of their expression by DTH8. In addition, DTH8 overexpressing transgenic lines showed favorable physiological parameters causing less yield penalty under stress than the WT plants. Taken together, DTH8 is a positive regulator of the network of genes related to early flowering/heading, higher yield, as well as salinity and drought stress tolerance, thus, enabling the crops to adapt to a wide range of climatic conditions.
Collapse
Affiliation(s)
- Manjari Mishra
- Plant Stress Biology, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ray Singh Rathore
- Plant Stress Biology, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | - Rohit Joshi
- Plant Stress Biology, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
11
|
Ichitani K, Toyomoto D, Uemura M, Monda K, Ichikawa M, Henry R, Sato T, Taura S, Ishikawa R. New Hybrid Spikelet Sterility Gene Found in Interspecific Cross between Oryza sativa and O. meridionalis. PLANTS 2022; 11:plants11030378. [PMID: 35161359 PMCID: PMC8839173 DOI: 10.3390/plants11030378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 11/22/2022]
Abstract
Various kinds of reproductive barriers have been reported in intraspecific and interspecific crosses between the AA genome Oryza species, to which Asian rice (O. sativa) and African rice (O. glaberrima) belong. A hybrid seed sterility phenomenon was found in the progeny of the cross between O. sativa and O. meridionalis, which is found in Northern Australia and Indonesia and has diverged from the other AA genome species. This phenomenon could be explained by an egg-killer model. Linkage analysis using DNA markers showed that the causal gene was located on the distal end of chromosome 1. Because no known egg-killer gene was located in that chromosomal region, this gene was named HYBRID SPIKELET STERILITY 57 (abbreviated form, S57). In heterozygotes, the eggs carrying the sativa allele are killed, causing semi-sterility. This killer system works incompletely: some eggs carrying the sativa allele survive and can be fertilized. The distribution of alleles in wild populations of O. meridionalis was discussed from the perspective of genetic differentiation of populations.
Collapse
Affiliation(s)
- Katsuyuki Ichitani
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Kagoshima, Japan
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Kagoshima, Japan
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Kagoshima, Japan
- Correspondence: ; Tel.: +81-99-285-8547
| | - Daiki Toyomoto
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Kagoshima, Japan
| | - Masato Uemura
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Kagoshima, Japan
| | - Kentaro Monda
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Kagoshima, Japan
| | - Makoto Ichikawa
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Kagoshima, Japan
| | - Robert Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD 4072, Australia;
| | - Tadashi Sato
- Graduate School of Life Science, Tohoku University, Sendai 980-8577, Miyagi, Japan;
| | - Satoru Taura
- Institute of Gene Research, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Kagoshima, Japan;
| | - Ryuji Ishikawa
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Aomori, Japan;
| |
Collapse
|
12
|
Takai T, Lumanglas P, Fujita D, Sasaki K, Rakotoarisoa NM, Tsujimoto Y, Kobayashi N, Simon EV. Development and evaluation of pyramiding lines carrying early or late heading QTLs in the indica rice cultivar 'IR64'. BREEDING SCIENCE 2021; 71:615-621. [PMID: 35087326 PMCID: PMC8784346 DOI: 10.1270/jsbbs.21045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/08/2021] [Indexed: 06/14/2023]
Abstract
The heading date is an important trait for determining regional and climatic adaptability in rice. To expand the adaptability of the indica rice cultivar 'IR64', we pyramided multiple early or late heading quantitative trait locus (QTLs) in the 'IR64' genetic background by crossing previously developed near-isogenic lines (NILs) with a single QTL for early or late heading. The effects of pyramiding QTLs were observed in three different climatic zones of the Philippines, Madagascar, and Japan. The early heading pyramiding lines (PYLs) headed 6.2 to 12.8 days earlier than 'IR64' while the late heading PYLs headed 18.8 to 27.1 days later than 'IR64'. The PYLs tended to produce low grain yield compared to 'IR64'. The low yield was not improved by combining SPIKE, which is a QTL that increases the number of spikelets per panicle. Conversely, 'IR64-PYL(7+10)' carrying Hd5 and Hd1 headed earlier, produced more tillers, and more panicles per m2 than 'IR64', and mitigated the yield decrease in early heading. These results suggest that the effects of pyramided QTLs on heading date were consistent across various environments and PYLs could be used to enhance the adaptation of 'IR64' in other rice growing environments.
Collapse
Affiliation(s)
- Toshiyuki Takai
- Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki 305-8686, Japan
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Patrick Lumanglas
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Daisuke Fujita
- Faculty of Agriculture, Saga University, Saga, Saga 840-8502, Japan
| | - Kazuhiro Sasaki
- Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki 305-8686, Japan
| | - Njato Michael Rakotoarisoa
- Rice Research Department, National Center of Applied Research on Rural Development, Tsimbazaza, Antananarivo BP1690, Madagascar
| | - Yasuhiro Tsujimoto
- Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki 305-8686, Japan
| | - Nobuya Kobayashi
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8518, Japan
| | - Eliza Vie Simon
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| |
Collapse
|
13
|
Jin Q, Yin S, Li G, Guo T, Wan M, Li H, Li J, Ge X, King GJ, Li Z, Wang J, Zhou G. Functional homoeologous alleles of CONSTANS contribute to seasonal crop type in rapeseed. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3287-3303. [PMID: 34410456 DOI: 10.1007/s00122-021-03896-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Two CO paralogs in Brassica napus were confirmed and shown distinct expression pattern and function in promoting flowering and allelic variation s within BnaCO.A10 were found closely associated with ecotype divergence. CONSTANS (CO) is a key gene that responds to photoperiod and in Arabidopsis can promote flowering under long-day (LD) conditions. Brassica napus L. is a major oil crop and close relative of Arabidopsis, and arose via allopolyploidization from the diploids B. rapa (A genome) and B. oleracea (C genome). In this study, we confirmed that B. napus has two CO genes located on the A10 (BnaCO.A10) and C9 (BnaCO.C9) chromosomes. Significant differences in level and temporal pattern of transcription, as well as in protein function, of these homoeologous may have resulted from sequence variation in the promoter as well as in the coding region. Apart from two insertions of 527 bp and 2002 bp in the promoter of BnaCO.C9 that function as transcriptional enhancers, this gene is otherwise highly conserved in both promoter and coding region. However, BnaCO.A10 was classified into two haplotypes and transgene analysis in Arabidopsis and backcross analysis in rapeseed indicated that the winter-type haplotype had a greater effect in promoting flowering than the spring type. We discuss the contribution of CO alleles to species evolution, and for eco-geographic radiation following crop domestication, alongside scope for managing this locus in future breeding.
Collapse
Affiliation(s)
- Qingdong Jin
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuai Yin
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ge Li
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tao Guo
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ming Wan
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haitao Li
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Juanjuan Li
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianhong Ge
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, 2480, Australia
| | - Zaiyun Li
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wang
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Guangsheng Zhou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
14
|
Imaizumi T, Ebana K, Kawahara Y, Muto C, Kobayashi H, Koarai A, Olsen KM. Genomic divergence during feralization reveals both conserved and distinct mechanisms of parallel weediness evolution. Commun Biol 2021; 4:952. [PMID: 34376793 PMCID: PMC8355325 DOI: 10.1038/s42003-021-02484-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/23/2021] [Indexed: 12/28/2022] Open
Abstract
Agricultural weeds are the most important biotic constraints to global crop production, and chief among these is weedy rice. Despite increasing yield losses from weedy rice in recent years worldwide, the genetic basis of weediness evolution remains unclear. Using whole-genome sequence analyses, we examined the origins and adaptation of Japanese weedy rice. We find evidence for a weed origin from tropical japonica crop ancestry, which has not previously been documented in surveys of weedy rice worldwide. We further show that adaptation occurs largely through different genetic mechanisms between independently-evolved temperate japonica- and tropical japonica-derived strains; most genomic signatures of positive selection are unique within weed types. In addition, some weedy rice strains have evolved through hybridization between weedy and cultivated rice with adaptive introgression from the crop. Surprisingly, introgression from cultivated rice confers not only crop-like adaptive traits (such as shorter plant height, facilitating crop mimicry) but also weedy-like traits (such as seed dormancy). These findings reveal how hybridization with cultivated rice can promote persistence and proliferation of weedy rice.
Collapse
Affiliation(s)
- Toshiyuki Imaizumi
- Institute for Plant Protection, National Agriculture and Food Research Organization, Tsukuba, Japan.
| | - Kaworu Ebana
- Research Center of Genetic Resources, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Yoshihiro Kawahara
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Chiaki Muto
- Research Center of Genetic Resources, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Hiroyuki Kobayashi
- Central Region Agricultural Research Center, National Agriculture and Food Research Organization, Tsukuba, Japan
- Center for Weed and Wildlife Management, Utsunomiya University, Utsunomiya, Japan
| | - Akira Koarai
- Institute for Plant Protection, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Kenneth M Olsen
- Department of Biology, Washington University in St. Louis, St. Louis, USA
| |
Collapse
|
15
|
Hour AL, Hsieh WH, Chang SH, Wu YP, Chin HS, Lin YR. Genetic Diversity of Landraces and Improved Varieties of Rice (Oryza sativa L.) in Taiwan. RICE (NEW YORK, N.Y.) 2020; 13:82. [PMID: 33315140 PMCID: PMC7736384 DOI: 10.1186/s12284-020-00445-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/06/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND Rice, the most important crop in Asia, has been cultivated in Taiwan for more than 5000 years. The landraces preserved by indigenous peoples and brought by immigrants from China hundreds of years ago exhibit large variation in morphology, implying that they comprise rich genetic resources. Breeding goals according to the preferences of farmers, consumers and government policies also alter gene pools and genetic diversity of improved varieties. To unveil how genetic diversity is affected by natural, farmers', and breeders' selections is crucial for germplasm conservation and crop improvement. RESULTS A diversity panel of 148 rice accessions, including 47 cultivars and 59 landraces from Taiwan and 42 accessions from other countries, were genotyped by using 75 molecular markers that revealed an average of 12.7 alleles per locus with mean polymorphism information content of 0.72. These accessions could be grouped into five subpopulations corresponding to wild rice, japonica landraces, indica landraces, indica cultivars, and japonica cultivars. The genetic diversity within subpopulations was: wild rices > landraces > cultivars; and indica rice > japonica rice. Despite having less variation among cultivars, japonica landraces had greater genetic variation than indica landraces because the majority of Taiwanese japonica landraces preserved by indigenous peoples were classified as tropical japonica. Two major clusters of indica landraces were formed by phylogenetic analysis, in accordance with immigration from two origins. Genetic erosion had occurred in later japonica varieties due to a narrow selection of germplasm being incorporated into breeding programs for premium grain quality. Genetic differentiation between early and late cultivars was significant in japonica (FST = 0.3751) but not in indica (FST = 0.0045), indicating effects of different breeding goals on modern germplasm. Indigenous landraces with unique intermediate and admixed genetic backgrounds were untapped, representing valuable resources for rice breeding. CONCLUSIONS The genetic diversity of improved rice varieties has been substantially shaped by breeding goals, leading to differentiation between indica and japonica cultivars. Taiwanese landraces with different origins possess various and unique genetic backgrounds. Taiwanese rice germplasm provides diverse genetic variation for association mapping to unveil useful genes and is a precious genetic reservoir for rice improvement.
Collapse
Affiliation(s)
- Ai-Ling Hour
- Department of Life Science, Fu-Jen Catholic University, New Taipei City, 242062, Taiwan
| | - Wei-Hsun Hsieh
- Department of Agronomy, National Taiwan University, Taipei, 10617, Taiwan
| | - Su-Huang Chang
- Department of Agronomy, National Taiwan University, Taipei, 10617, Taiwan
| | - Yong-Pei Wu
- Department of Agronomy, Chiayi Agricultural Experiment Branch, Taiwan Agricultural Research Institute, Chiayi, 600015, Taiwan
| | - Han-Shiuan Chin
- Department of Agronomy, National Taiwan University, Taipei, 10617, Taiwan
| | - Yann-Rong Lin
- Department of Agronomy, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
16
|
Sequence Variants Linked to Key Traits in Interspecific Crosses between African and Asian Rice. PLANTS 2020; 9:plants9121653. [PMID: 33256095 PMCID: PMC7761468 DOI: 10.3390/plants9121653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 11/16/2022]
Abstract
Asian and African rice gene pools vary in many traits that are important in rice breeding. The genetic basis of these differences was evaluated by analysis of important agronomic traits in crosses between African and Asian rice. Trait-associated variants (TAVs) influencing three quantitative agronomic traits, heading date (Hd), tiller number at maturity (T), and 1000 grain weight (TGW), were identified by association analysis of crosses between Asian and African rice. Populations were developed by crossing WAB56-104 (Oryza sativa) and CG14 (Oryza glaberrima). DNA from plants with extremely high or low values for these phenotypes was bulked and sequenced. The reference genome of O. sativa cv Nipponbare was used in general association analysis and candidate gene analysis. A total of 5152 non-synonymous single nucleotide polymorphisms (SNPs) across 3564 genes distinguished the low and the high bulks for Hd, T, and TGW traits; 611 non-synonymous SNPs across 447 genes were found in KEGG pathways. Six non-synonymous SNPs were found in the sequences of LOC107275952, LOC4334529, LOC4326177, LOC107275432, LOC4335790, and LOC107275425 genes associated with Hd, T, and TGW traits. These genes were involved in: abscisic-acid biosynthesis, carotenoid biosynthesis, starch and sucrose metabolism, and cytokinin biosynthesis. Analysis of 24 candidate genes associated with Hd, T, and TGW traits showed seven non-synonymous variations in the sequence of Hd3a and Ehd2 from the Hd genes (not in a KEGG pathway), D10 and D53 from the T genes (strigolactones biosynthetic pathway), and Gn1a and GIF1 from the TGW genes (cytokinin biosynthetic and starch and sucrose metabolism pathways). This study identified significant differences in allele frequencies supported by high sequence depth in analysis of bulks displaying high and low values for these key traits. These trait-associated variants are likely to be useful in rice improvement.
Collapse
|
17
|
Marzec M, Situmorang A, Brewer PB, Brąszewska A. Diverse Roles of MAX1 Homologues in Rice. Genes (Basel) 2020; 11:E1348. [PMID: 33202900 PMCID: PMC7709044 DOI: 10.3390/genes11111348] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/30/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
Cytochrome P450 enzymes encoded by MORE AXILLARY GROWTH1 (MAX1)-like genes produce most of the structural diversity of strigolactones during the final steps of strigolactone biosynthesis. The diverse copies of MAX1 in Oryza sativa provide a resource to investigate why plants produce such a wide range of strigolactones. Here we performed in silico analyses of transcription factors and microRNAs that may regulate each rice MAX1, and compared the results with available data about MAX1 expression profiles and genes co-expressed with MAX1 genes. Data suggest that distinct mechanisms regulate the expression of each MAX1. Moreover, there may be novel functions for MAX1 homologues, such as the regulation of flower development or responses to heavy metals. In addition, individual MAX1s could be involved in specific functions, such as the regulation of seed development or wax synthesis in rice. Our analysis reveals potential new avenues of strigolactone research that may otherwise not be obvious.
Collapse
Affiliation(s)
- Marek Marzec
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland;
| | - Apriadi Situmorang
- ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia; (A.S.); (P.B.B.)
| | - Philip B. Brewer
- ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia; (A.S.); (P.B.B.)
| | - Agnieszka Brąszewska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland;
| |
Collapse
|
18
|
Kishchenko O, Zhou Y, Jatayev S, Shavrukov Y, Borisjuk N. Gene editing applications to modulate crop flowering time and seed dormancy. ABIOTECH 2020; 1:233-245. [PMID: 36304127 PMCID: PMC9590486 DOI: 10.1007/s42994-020-00032-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/10/2020] [Indexed: 02/07/2023]
Abstract
Gene editing technologies such as CRISPR/Cas9 have been used to improve many agricultural traits, from disease resistance to grain quality. Now, emerging research has used CRISPR/Cas9 and other gene editing technologies to target plant reproduction, including major areas such as flowering time and seed dormancy. Traits related to these areas have important implications for agriculture, as manipulation of flowering time has multiple applications, including tailoring crops for regional adaptation and improving yield. Moreover, understanding seed dormancy will enable approaches to improve germination upon planting and prevent pre-harvest sprouting. Here, we summarize trends and recent advances in using gene editing to gain a better understanding of plant reproduction and apply the resulting information for crop improvement.
Collapse
Affiliation(s)
- Olena Kishchenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai’an, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai’an, China
- Institute of Cell Biology and Genetic Engineering, NAS of Ukraine, Kiev, Ukraine
| | - Yuzhen Zhou
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai’an, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Satyvaldy Jatayev
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan, Kazakhstan
| | - Yuri Shavrukov
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, Australia
| | - Nikolai Borisjuk
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai’an, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai’an, China
| |
Collapse
|
19
|
Wu CC, Wei FJ, Chiou WY, Tsai YC, Wu HP, Gotarkar D, Wei ZH, Lai MH, Hsing YIC. Studies of rice Hd1 haplotypes worldwide reveal adaptation of flowering time to different environments. PLoS One 2020; 15:e0239028. [PMID: 32941524 PMCID: PMC7498076 DOI: 10.1371/journal.pone.0239028] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/29/2020] [Indexed: 11/30/2022] Open
Abstract
Rice domestication/adaptation is a good model for studies of the development and spread of this important crop. Mutations that caused morphological and physiological change, followed by human selection/expansion, finally led to the improvement of phenotypes suitable for different kinds of environments. We used the sequence information for Heading date 1 (Hd1) gene to reveal the association between sequence changes and flowering phenotypes of rice in different regions. Seven loss-of-function hd1 haplotypes had been reported. By data-mining the genome sequencing information in the public domain, we discovered 3 other types. These loss-of-function allele haplotypes are present in subtropical and tropical regions, which indicates human selection. Some of these haplotypes are present locally. However, types 7 and 13 are present in more than one-third of the world's rice accessions, including landraces and modern varieties. In the present study, phylogenetic, allele network and selection pressure analyses revealed that these two haplotypes might have occurred early in Southeastern Asia and then were introgressed in many local landraces in nearby regions. We also demonstrate that these haplotypes are present in weedy rice populations, which again indicates that these alleles were present in rice cultivation for long time. In comparing the wild rice sequence information, these loss-of-function haplotypes occurred in agro but were not from wild rice.
Collapse
Affiliation(s)
- Cheng-Chieh Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Institute of Plant Science, National Taiwan University, Taipei, Taiwan
| | - Fu-Jin Wei
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Wan-Yi Chiou
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yuan-Ching Tsai
- Department of Agronomy, National Chia-yi University, Chiayi, Taiwan
| | - Hshin-Ping Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Dhananjay Gotarkar
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Zhi-Han Wei
- Department of Agronomy, National Chia-yi University, Chiayi, Taiwan
| | - Ming-Hsin Lai
- Crop Science Division, Taiwan Agriculture Research Institute, Taichung, Taiwan
| | - Yue-Ie Caroline Hsing
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
20
|
Mo Y, Jeong JM, Ha SK, Kim J, Lee C, Lee GP, Jeung JU. Characterization of QTLs and Candidate Genes for Days to Heading in Rice Recombinant Inbred Lines. Genes (Basel) 2020; 11:E957. [PMID: 32825032 PMCID: PMC7565938 DOI: 10.3390/genes11090957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 11/16/2022] Open
Abstract
Understanding the gene mechanisms controlling days to heading (DH) is important in rice breeding for adaption in the target environment. Using a recombinant inbred line population derived from the cross between two japonica rice cultivars, Koshihikari and Baegilmi, we identified three consistent quantitative trait loci (QTLs) for DH for two years, qDH3, qDH6, and qDH7 on chromosomes 3, 6, and 7, respectively. While Baegilmi contributed the allele for early heading at qDH6 and qDH7 with the additive effect of five days each, Koshihikari contributed the allele for early heading at qDH3 with the additive effect of three days. Notably, pyramiding two or more alleles for early heading at these QTLs accelerated heading effectively. Sequencing of Hd16, Hd1, and Ghd7, the previously known heading date genes underlying qDH3, qDH6, and qDH7, respectively, revealed that Baegilmi and Koshihikari carry different alleles at the three genes. Molecular markers were developed to screen the allelic compositions of the three genes among 295 Korean commercial rice cultivars. The results showed that few cultivars carry alleles for early heading at the three genes, highlighting that DH can be further accelerated and fine-tuned in breeding programs by combining the desirable alleles of Hd16, Hd1, and Ghd7.
Collapse
Affiliation(s)
- Youngjun Mo
- National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea; (Y.M.); (J.-M.J.); (S.-K.H.); (J.K.); (C.L.)
| | - Jong-Min Jeong
- National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea; (Y.M.); (J.-M.J.); (S.-K.H.); (J.K.); (C.L.)
| | - Su-Kyung Ha
- National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea; (Y.M.); (J.-M.J.); (S.-K.H.); (J.K.); (C.L.)
| | - Jinhee Kim
- National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea; (Y.M.); (J.-M.J.); (S.-K.H.); (J.K.); (C.L.)
| | - Changmin Lee
- National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea; (Y.M.); (J.-M.J.); (S.-K.H.); (J.K.); (C.L.)
| | - Gung Pyo Lee
- Department of Integrative Plant Science, Chung-Ang University, Anseong 17546, Korea;
| | - Ji-Ung Jeung
- National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea; (Y.M.); (J.-M.J.); (S.-K.H.); (J.K.); (C.L.)
| |
Collapse
|
21
|
Wu M, Liu H, Lin Y, Chen J, Fu Y, Luo J, Zhang Z, Liang K, Chen S, Wang F. In-Frame and Frame-Shift Editing of the Ehd1 Gene to Develop Japonica Rice With Prolonged Basic Vegetative Growth Periods. FRONTIERS IN PLANT SCIENCE 2020; 11:307. [PMID: 32265960 PMCID: PMC7096585 DOI: 10.3389/fpls.2020.00307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 03/03/2020] [Indexed: 05/05/2023]
Abstract
Japonica rice has become increasingly popular in China owing to its superior grain quality. Over the past decades, "indica to japonica" projects have been proposed to promote cultivation of japonica rice in low latitudes in China. Traditionally, japonica varieties were planted mainly in mid latitudes in the northeast plain and Yangtze River region. The key obstacle for introducing elite mid-latitude japonica varieties to low latitudes is the severe shortening of growth period of the japonica varieties due to their sensitivity to low-latitude short photoperiod and high temperature. Here we report development of new japonica rice with prolonged basic vegetative growth (BVG) periods for low latitudes by targeted editing the Early heading date 1 (Ehd1) gene. Using CRISPR/Cas9 system, we generated both frame-shift and/or in-frame deletion mutants in four japonica varieties, Nipponbare, Longdao16, Longdao24, and Xiushui134. When planting at low-latitude stations, the frame-shift homozygous lines exhibited significantly longer BVG periods compared with wild-types. Interestingly, we observed that minor deletion of the first few residues within the receiver domain could quantitatively impair the function of Ehd1 on activation of Hd3a and RFT1, resulting in an intermediate-long BVG period phenotype in the homozygous in-frame deletion ehd1 lines. Field investigation further showed that, both the in-frame and frame-shift lines exhibited significantly improved yield potential compared with wild-types. Our study demonstrates an effective approach to rapid breeding of elite japonica varieties with intermediate-long and long BVG periods for flexible cropping systems in diverse areas or under different seasons in southern China, and other low-latitude regions.
Collapse
Affiliation(s)
- Mingji Wu
- College of Agriculture, Fujian Agricultural and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Genetic Engineering for Agriculture, Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Huaqing Liu
- Fujian Key Laboratory of Genetic Engineering for Agriculture, Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Yan Lin
- Fujian Key Laboratory of Genetic Engineering for Agriculture, Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jianmin Chen
- Fujian Key Laboratory of Genetic Engineering for Agriculture, Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Yanping Fu
- Fujian Key Laboratory of Genetic Engineering for Agriculture, Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jiami Luo
- Fujian Key Laboratory of Genetic Engineering for Agriculture, Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Zhujian Zhang
- College of Agriculture, Fujian Agricultural and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Genetic Engineering for Agriculture, Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Kangjing Liang
- College of Agriculture, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Songbiao Chen
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Feng Wang
- Fujian Key Laboratory of Genetic Engineering for Agriculture, Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| |
Collapse
|
22
|
Cui Y, Wang J, Feng L, Liu S, Li J, Qiao W, Song Y, Zhang Z, Cheng Y, Zhang L, Zheng X, Yang Q. A Combination of Long-Day Suppressor Genes Contributes to the Northward Expansion of Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:864. [PMID: 32612630 PMCID: PMC7308711 DOI: 10.3389/fpls.2020.00864] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/27/2020] [Indexed: 05/21/2023]
Abstract
Growing cultivated rice with a moderate heading date is the key to expanding its cultivation area and maintaining stable yields. The genes that regulate heading date are largely cloned; however, it remains unclear how genetic mutations and their combinations affect the heading date and adaptability of cultivated rice. Here, we report the analysis of genetic variation in eight long-day flowering suppressor genes (Hd1, DTH8, Ghd7, OsCOL4, DTH7, Hd6, Se5, and PhyB) and the phylogenetic relationship of eight genes. Genetic variations in DTH8, Ghd7, Hd1, DTH7, PhyB, and OsCOL4 are correlated with differences in heading date and the correlation between the genetic diversity of Hd6 and Se5 and rice heading data are weak. One group of haplotypes of DTH8, Ghd7, Hd1, DTH7, PhyB, and OsCOL4 are associated with earlier heading dates and appear to have accumulated during the northward expansion of rice cultivation. A minimum of four group A alleles of DTH8, Ghd7, Hd1, DTH7, PhyB, and OsCOL4 are required for the growth of cultivated rice at latitudes above 30°N. This study presents a preliminary investigation of the genetic patterns and adaptation mechanisms of long-day flowering suppressor genes and provides a useful reference for the molecular breeding of rice cultivars for various environments and farming systems.
Collapse
Affiliation(s)
- Yongxia Cui
- National Key Facility for Crop Gene Resources and Genetic Improvement, Department of Center for Crop Germplasm Resources, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junrui Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Department of Center for Crop Germplasm Resources, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Feng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Department of Center for Crop Germplasm Resources, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sha Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Department of Center for Crop Germplasm Resources, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaqi Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Department of Center for Crop Germplasm Resources, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weihua Qiao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Department of Center for Crop Germplasm Resources, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yue Song
- National Key Facility for Crop Gene Resources and Genetic Improvement, Department of Center for Crop Germplasm Resources, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zongqiong Zhang
- Department of Center for Crop Germplasm Resources, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yunlian Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Department of Center for Crop Germplasm Resources, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lifang Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Department of Center for Crop Germplasm Resources, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoming Zheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Department of Center for Crop Germplasm Resources, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Xiaoming Zheng, ; Qingwen Yang,
| | - Qingwen Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Department of Center for Crop Germplasm Resources, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Xiaoming Zheng, ; Qingwen Yang,
| |
Collapse
|
23
|
Ferrero-Serrano Á, Cantos C, Assmann SM. The Role of Dwarfing Traits in Historical and Modern Agriculture with a Focus on Rice. Cold Spring Harb Perspect Biol 2019; 11:a034645. [PMID: 31358515 PMCID: PMC6824242 DOI: 10.1101/cshperspect.a034645] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Semidwarf stature is a valuable agronomic trait in grain crops that reduces lodging and increases harvest index. A fundamental advance during the 1960s Green Revolution was the introduction of semidwarf cultivars of rice and wheat. Essentially, all semidwarf varieties of rice under cultivation today owe their diminished stature to a specific null mutation in the gibberellic acid (GA) biosynthesis gene, SD1 However, it is now well-established that, in addition to GAs, brassinosteroids and strigolactones also control plant height. In this review, we describe the synthesis and signaling pathways of these three hormones as understood in rice and discuss the mutants and transgenics in these pathways that confer semidwarfism and other valuable architectural traits. We propose that such genes offer underexploited opportunities for broadening the genetic basis and germplasm in semidwarf rice breeding.
Collapse
Affiliation(s)
| | - Christian Cantos
- Biology Department, Penn State University, University Park, Pennsylvania 16802, USA
| | - Sarah M Assmann
- Biology Department, Penn State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
24
|
Nonoue Y, Hori K, Ono N, Shibaya T, Ogiso-Tanaka E, Mizobuchi R, Fukuoka S, Yano M. Detection of heading date QTLs in advanced-backcross populations of an elite indica rice cultivar, IR64. BREEDING SCIENCE 2019; 69:352-358. [PMID: 31481845 PMCID: PMC6711732 DOI: 10.1270/jsbbs.18172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/12/2019] [Indexed: 05/24/2023]
Abstract
IR64 is one of the world's most popular rice cultivars. To collect genetic factors involved in controlling its heading date, we developed 70 reciprocal advanced-backcross populations with a total of 6284 individuals at the BC4F2 generation from crosses between Koshihikari and IR64. We detected 29 QTLs associated with heading date on chromosomes 3, 5-8, 10, and 12. Twenty QTLs were located in the same chromosome regions as previously isolated heading date genes (Hd1, Hd6, Hd16, Ghd7, DTH8, Hd17, and Hd18). The rest were located in other chromosome regions. We found more number of QTLs than previous studies using mapping populations of IR64. Fine mapping in additional advanced-backcross populations clearly revealed that QTLs on the long arm of chromosome 7 are overlapping and seem to be a novel genetic factor for heading date because of their different locations from OsPRR37. Our results suggest that the difference in heading date between IR64 and Koshihikari is genetically controlled by many factors, and that a non-functional allele of Hd1 contributes to early heading of IR64 in the genetic background of functional alleles of other heading date QTLs and genes such as Hd6 and Hd16.
Collapse
Affiliation(s)
- Yasunori Nonoue
- National Agriculture and Food Research Organization (NARO), Institute of Crop Science,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518,
Japan
- National Institute of Agrobiological Sciences,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602,
Japan
| | - Kiyosumi Hori
- National Agriculture and Food Research Organization (NARO), Institute of Crop Science,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518,
Japan
- National Institute of Agrobiological Sciences,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602,
Japan
| | - Nozomi Ono
- National Institute of Agrobiological Sciences,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602,
Japan
| | - Taeko Shibaya
- National Institute of Agrobiological Sciences,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602,
Japan
| | - Eri Ogiso-Tanaka
- National Agriculture and Food Research Organization (NARO), Institute of Crop Science,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518,
Japan
- National Institute of Agrobiological Sciences,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602,
Japan
| | - Ritsuko Mizobuchi
- National Agriculture and Food Research Organization (NARO), Institute of Crop Science,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518,
Japan
- National Institute of Agrobiological Sciences,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602,
Japan
| | - Shuichi Fukuoka
- National Agriculture and Food Research Organization (NARO), Institute of Crop Science,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518,
Japan
- National Institute of Agrobiological Sciences,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602,
Japan
| | - Masahiro Yano
- National Agriculture and Food Research Organization (NARO), Institute of Crop Science,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518,
Japan
- National Institute of Agrobiological Sciences,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602,
Japan
| |
Collapse
|
25
|
Kim SR, Torollo G, Yoon MR, Kwak J, Lee CK, Prahalada GD, Choi IR, Yeo US, Jeong OY, Jena KK, Lee JS. Loss-of-Function Alleles of Heading date 1 ( Hd1) Are Associated With Adaptation of Temperate Japonica Rice Plants to the Tropical Region. FRONTIERS IN PLANT SCIENCE 2018; 9:1827. [PMID: 30619400 PMCID: PMC6295564 DOI: 10.3389/fpls.2018.01827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/26/2018] [Indexed: 05/11/2023]
Abstract
Adaptation of temperate japonica rice varieties to tropical regions is impeded by extremely early flowering probably due to photoperiod change from long to short. However, constant breeding efforts led to development of temperate japonica varieties adapted to tropical/subtropical regions, but the genetic factor underlying this is still elusive. We analyzed the 45 diverse rice accessions and 12 tropical-adapted temperate japonica lines for the allele types of seven major flowering genes Hd1, OsPPR37, DTH8, Ghd7, Ehd1, RFT1, and Hd3a and flowering time under three different field conditions in temperate and tropical locations. The accessions originated from the tropical/subtropical regions preferred the non-functional alleles of Hd1 and not other flowering genes. The genetic effect analysis of each gene showed that only the functional Hd1 caused early flowering in the tropical location. All 12 temperate japonica breeding lines adapted to the tropics possessed the loss-of-function alleles of Hd1 with no change of other flowering genes compared to common Korean temperate japonica varieties. A phylogenetic analysis using 2,918 SNP data points revealed that the genome status of the 12 breeding lines were very similar to Korean temperate japonica varieties. These results indicate that the functional Hd1 alleles of temperate japonica varieties induced extremely early flowering in the tropics and the non-functional hd1 alleles brought about the adaptation of temperate japonica rice to tropical regions.
Collapse
Affiliation(s)
- Sung-Ryul Kim
- Strategic Innovation Platform, International Rice Research Institute, Metro Manila, Philippines
| | - Gideon Torollo
- Rice Breeding Platform, International Rice Research Institute, Metro Manila, Philippines
| | - Mi-Ra Yoon
- National Institute of Crop Science, Rural Development Administration, Jeonju, South Korea
| | - Jieun Kwak
- National Institute of Crop Science, Rural Development Administration, Jeonju, South Korea
| | - Choon-Ki Lee
- National Institute of Crop Science, Rural Development Administration, Jeonju, South Korea
| | - G. D. Prahalada
- Strategic Innovation Platform, International Rice Research Institute, Metro Manila, Philippines
| | - Il-Ryong Choi
- Rice Breeding Platform, International Rice Research Institute, Metro Manila, Philippines
| | - Un-Sang Yeo
- National Institute of Crop Science, Rural Development Administration, Jeonju, South Korea
| | - O-Young Jeong
- Rice Breeding Platform, International Rice Research Institute, Metro Manila, Philippines
- National Institute of Crop Science, Rural Development Administration, Jeonju, South Korea
| | - Kshirod K. Jena
- Strategic Innovation Platform, International Rice Research Institute, Metro Manila, Philippines
| | - Jeom-Sig Lee
- Rice Breeding Platform, International Rice Research Institute, Metro Manila, Philippines
- National Institute of Crop Science, Rural Development Administration, Jeonju, South Korea
| |
Collapse
|
26
|
Sagart L, Hsu TF, Tsai YC, Wu CC, Huang LT, Chen YC, Chen YF, Tseng YC, Lin HY, Hsing YIC. A northern Chinese origin of Austronesian agriculture: new evidence on traditional Formosan cereals. RICE (NEW YORK, N.Y.) 2018; 11:57. [PMID: 30306280 PMCID: PMC6179969 DOI: 10.1186/s12284-018-0247-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/12/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Genetic data for traditional Taiwanese (Formosan) agriculture is essential for tracing the origins on the East Asian mainland of the Austronesian language family, whose homeland is generally placed in Taiwan. Three main models for the origins of the Taiwanese Neolithic have been proposed: origins in coastal north China (Shandong); in coastal central China (Yangtze Valley), and in coastal south China. A combination of linguistic and agricultural evidence helps resolve this controversial issue. RESULTS We report on botanically informed linguistic fieldwork of the agricultural vocabulary of Formosan aborigines, which converges with earlier findings in archaeology, genetics and historical linguistics to assign a lesser role for rice than was earlier thought, and a more important one for the millets. We next present the results of an investigation of domestication genes in a collection of traditional rice landraces maintained by the Formosan aborigines over a hundred years ago. The genes controlling awn length, shattering, caryopsis color, plant and panicle shapes contain the same mutated sequences as modern rice varieties everywhere else in the world, arguing against an independent domestication in south China or Taiwan. Early and traditional Formosan agriculture was based on foxtail millet, broomcorn millet and rice. We trace this suite of cereals to northeastern China in the period 6000-5000 BCE and argue, following earlier proposals, that the precursors of the Austronesians, expanded south along the coast from Shandong after c. 5000 BCE to reach northwest Taiwan in the second half of the 4th millennium BCE. This expansion introduced to Taiwan a mixed farming, fishing and intertidal foraging subsistence strategy; domesticated foxtail millet, broomcorn millet and japonica rice; a belief in the sacredness of foxtail millet; ritual ablation of the upper incisors in adolescents of both sexes; domesticated dogs; and a technological package including inter alia houses, nautical technology, and loom weaving. CONCLUSION We suggest that the pre-Austronesians expanded south along the coast from that region after c. 5000 BCE to reach northwest Taiwan in the second half of the 4th millennium BCE.
Collapse
Affiliation(s)
- Laurent Sagart
- Centre de Recherches Linguistiques sur l’Asie Orientale/Centre National de la Recherche Scientifique, INaLCO, 2 rue de Lille, 75007 Paris, France
| | - Tze-Fu Hsu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115 Taiwan
| | - Yuan-Ching Tsai
- Department of Agronomy, National Chiayi University, Chiayi, 600 Taiwan
| | - Cheng-Chieh Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115 Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei, 106 Taiwan
| | - Lin-Tzu Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115 Taiwan
| | - Yu-Chi Chen
- Taiwan International Cooperation and Development Fund, Taipei, 111 Taiwan
| | - Yi-Fang Chen
- Soil and Water Conservation Bureau, Council of Agriculture, Nantou, 540 Taiwan
| | - Yu-Chien Tseng
- Department of Agronomy, National Chiayi University, Chiayi, 600 Taiwan
| | - Hung-Ying Lin
- Department of Agronomy, Iowa State University, Ames, Iowa 50011-1085 USA
| | - Yue-ie Caroline Hsing
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115 Taiwan
- Department of Agronomy, National Taiwan University, Taipei, 106 Taiwan
| |
Collapse
|
27
|
Wu HP, Wei FJ, Wu CC, Lo SF, Chen LJ, Fan MJ, Chen S, Wen IC, Yu SM, Ho THD, Lai MH, Hsing YIC. Large-scale phenomics analysis of a T-DNA tagged mutant population. Gigascience 2018; 6:1-7. [PMID: 28854617 PMCID: PMC5570018 DOI: 10.1093/gigascience/gix055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/04/2017] [Indexed: 01/26/2023] Open
Abstract
Rice, Oryza sativa L., is one of the most important crops in the world. With the rising world population, feeding people in a more sustainable and environmentally friendly way becomes increasingly important. Therefore, the rice research community needs to share resources to better understand the functions of rice genes that are the foundation for future agricultural biotechnology development, and one way to achieve this goal is via the extensive study of insertional mutants. We have constructed a large rice insertional mutant population in a japonica rice variety, Tainung 67. The collection contains about 93 000 mutant lines, among them 85% with phenomics data and 65% with flanking sequence data. We screened the phenotypes of 12 individual plants for each line grown under field conditions according to 68 subcategories and 3 quantitative traits. Both phenotypes and integration sites are searchable in the Taiwan Rice Insertional Mutants Database. Detailed analyses of phenomics data, T-DNA flanking sequences, and whole-genome sequencing data for rice insertional mutants can lead to the discovery of novel genes. In addition, studies of mutant phenotypes can reveal relationships among varieties, cultivation locations, and cropping seasons.
Collapse
Affiliation(s)
- Hshin-Ping Wu
- Institute of Plant and Microbial Biology, Academia Sinica, 128, Section 2, Yien-chu-yuan Road, Nankang, Taipei 115, Taiwan
| | - Fu-Jin Wei
- Institute of Plant and Microbial Biology, Academia Sinica, 128, Section 2, Yien-chu-yuan Road, Nankang, Taipei 115, Taiwan
| | - Cheng-Chieh Wu
- Institute of Plant and Microbial Biology, Academia Sinica, 128, Section 2, Yien-chu-yuan Road, Nankang, Taipei 115, Taiwan.,Institute of Plant Biology, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | - Shuen-Fang Lo
- Institute of Molecular Biology, Academia Sinica, 128, Section 2, Yien-chu-yuan Road, Nankang, Taipei 115, Taiwan.,Agricultural Biotechnology Center, National Chung Hsing University, 145, Xingda Road, Taichung 402, Taiwan
| | - Liang-Jwu Chen
- Institute of Molecular Biology, National Chung Hsing University, 145, Xingda Road, Taichung 402, Taiwan
| | - Ming-Jen Fan
- Department of Biotechnology, Asia University, 500, Lioufeng Road, Taichung 413, Taiwan
| | - Shu Chen
- Plant Germplasm Division, Taiwan Agricultural Research Institute, 189, Zhongzheng Road, Taichung 413, Taiwan
| | - Ien-Chie Wen
- Plant Germplasm Division, Taiwan Agricultural Research Institute, 189, Zhongzheng Road, Taichung 413, Taiwan
| | - Su-May Yu
- Institute of Molecular Biology, Academia Sinica, 128, Section 2, Yien-chu-yuan Road, Nankang, Taipei 115, Taiwan.,Agricultural Biotechnology Center, National Chung Hsing University, 145, Xingda Road, Taichung 402, Taiwan.,Department of Life Sciences, National Chung Hsing University, 145, Xingda Road, Taichung 402, Taiwan
| | - Tuan-Hua David Ho
- Institute of Plant and Microbial Biology, Academia Sinica, 128, Section 2, Yien-chu-yuan Road, Nankang, Taipei 115, Taiwan.,Agricultural Biotechnology Center, National Chung Hsing University, 145, Xingda Road, Taichung 402, Taiwan.,Department of Life Sciences, National Chung Hsing University, 145, Xingda Road, Taichung 402, Taiwan
| | - Ming-Hsin Lai
- Crop Science Division, Taiwan Agricultural Research Institute, 189, Zhongzheng Road, Taichung 413, Taiwan
| | - Yue-Ie C Hsing
- Institute of Plant and Microbial Biology, Academia Sinica, 128, Section 2, Yien-chu-yuan Road, Nankang, Taipei 115, Taiwan.,Department of Agronomy, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| |
Collapse
|
28
|
Mackill DJ, Khush GS. IR64: a high-quality and high-yielding mega variety. RICE (NEW YORK, N.Y.) 2018; 11:18. [PMID: 29629479 PMCID: PMC5890005 DOI: 10.1186/s12284-018-0208-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/14/2018] [Indexed: 05/05/2023]
Abstract
High-yielding varieties developed in the 1960s and 1970s at the International Rice Research Institute (IRRI) and elsewhere benefited farmers and the public, ultimately increasing yields and reducing the cost of rice to consumers. Most of these varieties, however, did not have the optimum cooking quality that was possessed by many of the traditional varieties they replaced. In 1985, the IRRI-developed indica variety IR64 was released in the Philippines. In addition to its high yield, early maturity and disease resistance, it had excellent cooking quality, matching that of the best varieties available. These merits resulted in its rapid spread and cultivation on over 10 million ha in the two decades after it was released. It has intermediate amylose content and gelatinization temperature, and good taste. It is resistant to blast and bacterial blight diseases, and to brown planthopper. Because of its success as a variety, it has been used extensively in scientific studies and has been well-characterized genetically. Many valuable genes have been introduced into IR64 through backcross breeding and it has been used in thousands of crosses. Its area of cultivation has declined in the past 10 years, but it has been replaced by a new generation of high-quality varieties that are mostly its progeny or relatives. Continued basic studies on IR64 and related varieties should help in unraveling the complex genetic control of yield and other desirable traits that are prized by rice farmers and consumers.
Collapse
Affiliation(s)
- David J Mackill
- Mars, Inc. and Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
| | - Gurdev S Khush
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| |
Collapse
|
29
|
Wei FJ, Tsai YC, Hsu YM, Chen YA, Huang CT, Wu HP, Huang LT, Lai MH, Kuang LY, Lo SF, Yu SM, Lin YR, Hsing YIC. Lack of Genotype and Phenotype Correlation in a Rice T-DNA Tagged Line Is Likely Caused by Introgression in the Seed Source. PLoS One 2016; 11:e0155768. [PMID: 27186981 PMCID: PMC4871347 DOI: 10.1371/journal.pone.0155768] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/03/2016] [Indexed: 01/12/2023] Open
Abstract
Rice (Oryza sativa) is one of the most important crops in the world. Several rice insertional mutant libraries are publicly available for systematic analysis of gene functions. However, the tagging efficiency of these mutant resources-the relationship between genotype and phenotype-is very low. We used whole-genome sequencing to analyze a T-DNA-tagged transformant from the Taiwan Rice Insertional Mutants (TRIM) resource. The phenomics records for M0028590, one of the TRIM lines, revealed three phenotypes-wild type, large grains, and tillering dwarf-in the 12 T1 plants. Using the sequencing data for 7 plants from three generations of this specific line, we demonstrate that introgression from an indica rice variety might occur in one generation before the seed was used for callus generation and transformation of this line. In addition, the large-grain trait came from the GS3 gene of the introgressed region and the tillering dwarf phenotype came from a single nucleotide change in the D17 gene that occurred during the callus induction to regeneration of the transformant. As well, another regenerant showed completely heterozygous single-nucleotide polymorphisms across the whole genome. In addition to the known sequence changes such as T-DNA integration, single nucleotide polymorphism, insertion, deletion, chromosome rearrangement and doubling, spontaneous outcrossing occurred in the rice field may also explain some mutated traits in a tagged mutant population. Thus, the co-segregation of an integration event and the phenotype should be checked when using these mutant populations.
Collapse
Affiliation(s)
- Fu-Jin Wei
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Yuan-Ching Tsai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Ming Hsu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-An Chen
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Ching-Ting Huang
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Hshin-Ping Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Lin-Tzu Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Ming-Hsin Lai
- Crop Science Division, Taiwan Agriculture Research Institute, Taichung, Taiwan
| | - Lin-Yun Kuang
- Transgenic Plant Core Facility, Academia Sinica, Taipei, Taiwan
| | - Shuen-Fang Lo
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Su-May Yu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yann-Rong Lin
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Yue-Ie Caroline Hsing
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
30
|
Hill CB, Li C. Genetic Architecture of Flowering Phenology in Cereals and Opportunities for Crop Improvement. FRONTIERS IN PLANT SCIENCE 2016; 7:1906. [PMID: 28066466 PMCID: PMC5165254 DOI: 10.3389/fpls.2016.01906] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/01/2016] [Indexed: 05/21/2023]
Abstract
Cereal crop species including bread wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), rice (Oryza sativa L.), and maize (Zea mays L.) provide the bulk of human nutrition and agricultural products for industrial use. These four cereals are central to meet future demands of food supply for an increasing world population under a changing climate. A prerequisite for cereal crop production is the transition from vegetative to reproductive and grain-filling phases starting with flower initiation, a key developmental switch tightly regulated in all flowering plants. Although studies in the dicotyledonous model plant Arabidopsis thaliana build the foundations of our current understanding of plant phenology genes and regulation, the availability of genome assemblies with high-confidence sequences for rice, maize, and more recently bread wheat and barley, now allow the identification of phenology-associated gene orthologs in monocots. Together with recent advances in next-generation sequencing technologies, QTL analysis, mutagenesis, complementation analysis, and RNA interference, many phenology genes have been functionally characterized in cereal crops and conserved as well as functionally divergent genes involved in flowering were found. Epigenetic and other molecular regulatory mechanisms that respond to environmental and endogenous triggers create an enormous plasticity in flowering behavior among cereal crops to ensure flowering is only induced under optimal conditions. In this review, we provide a summary of recent discoveries of flowering time regulators with an emphasis on four cereal crop species (bread wheat, barley, rice, and maize), in particular, crop-specific regulatory mechanisms and genes. In addition, pleiotropic effects on agronomically important traits such as grain yield, impact on adaptation to new growing environments and conditions, genetic sequence-based selection and targeted manipulation of phenology genes, as well as crop growth simulation models for predictive crop breeding, are discussed.
Collapse
Affiliation(s)
- Camilla B. Hill
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, PerthWA, Australia
- *Correspondence: Chengdao Li, Camilla B. Hill,
| | - Chengdao Li
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, PerthWA, Australia
- Department of Agriculture and Food Western Australia, South PerthWA, Australia
- *Correspondence: Chengdao Li, Camilla B. Hill,
| |
Collapse
|