1
|
Auler PA, Lemos MDS, Porto NP, Mendes KDR, Bret RSC, Daloso DM. Abscisic acid-mediated guard cell metabolism regulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108889. [PMID: 38954945 DOI: 10.1016/j.plaphy.2024.108889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
Abscisic acid (ABA) is crucial for plant water deficit (WD) acclimation, but how the interplay between ABA and guard cell (GC) metabolism aids plant WD acclimation remains unclear. Here, we investigated how ABA regulates GC metabolism and how this contributes to plant WD acclimation using tomato wild type (WT) and the ABA-deficient sitiens mutant. These genotypes were characterized at physiological, metabolic, and transcriptional levels under recurring WD periods and were used to perform a13C-glucose labelling experiment using isolated guard cells following exogenously applied ABA. ABA deficiency altered the level of sugars and organic acids in GCs in both irrigated and WD plants and the dynamic of accumulation/degradation of these compounds in GCs during the dark-to-light transition. WD-induced metabolic changes were more pronounced in sitiens than WT GCs. Results from the 13C-labelling experiment indicate that ABA is required for the glycolytic fluxes toward malate and acts as a negative regulator of a putative sucrose substrate cycle. The expression of key ABA-biosynthetic genes was higher in WT than in sitiens GCs after two cycles of WD. Additionally, the intrinsic leaf water use efficiency increased only in WT after the second WD cycle, compared to sitiens. Our results highlight that ABA deficiency disrupts the homeostasis of GC primary metabolism and the WD memory, negatively affecting plant WD acclimation. Our study demonstrates which metabolic pathways are activated by WD and/or regulated by ABA in GCs, which improves our understanding of plant WD acclimation, with clear consequences for plant metabolic engineering in the future.
Collapse
Affiliation(s)
- Priscila A Auler
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - Moaciria de S Lemos
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - Nicole P Porto
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - Kellyane da R Mendes
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - Raissa S C Bret
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - Danilo M Daloso
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil.
| |
Collapse
|
2
|
Daloso DDM, Morais EG, Oliveira E Silva KF, Williams TCR. Cell-type-specific metabolism in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1093-1114. [PMID: 36987968 DOI: 10.1111/tpj.16214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/20/2023] [Accepted: 03/25/2023] [Indexed: 05/31/2023]
Abstract
Every plant organ contains tens of different cell types, each with a specialized function. These functions are intrinsically associated with specific metabolic flux distributions that permit the synthesis of the ATP, reducing equivalents and biosynthetic precursors demanded by the cell. Investigating such cell-type-specific metabolism is complicated by the mosaic of different cells within each tissue combined with the relative scarcity of certain types. However, techniques for the isolation of specific cells, their analysis in situ by microscopy, or modeling of their function in silico have permitted insight into cell-type-specific metabolism. In this review we present some of the methods used in the analysis of cell-type-specific metabolism before describing what we know about metabolism in several cell types that have been studied in depth; (i) leaf source and sink cells; (ii) glandular trichomes that are capable of rapid synthesis of specialized metabolites; (iii) guard cells that must accumulate large quantities of the osmolytes needed for stomatal opening; (iv) cells of seeds involved in storage of reserves; and (v) the mesophyll and bundle sheath cells of C4 plants that participate in a CO2 concentrating cycle. Metabolism is discussed in terms of its principal features, connection to cell function and what factors affect the flux distribution. Demand for precursors and energy, availability of substrates and suppression of deleterious processes are identified as key factors in shaping cell-type-specific metabolism.
Collapse
Affiliation(s)
- Danilo de Menezes Daloso
- Lab Plant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CA, 60451-970, Brazil
| | - Eva Gomes Morais
- Lab Plant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CA, 60451-970, Brazil
| | - Karen Fernanda Oliveira E Silva
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade de Brasília, Asa Norte, Brasília-DF, 70910-900, Brazil
| | | |
Collapse
|
3
|
Wang J, Li R, Zhao Z, Zhu M, Wang Y. Bioactivity, Uptake, and Distribution of Prothioconazole Loaded on Fluorescent Double-Hollow Shelled Mesoporous Silica in Soybean Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4521-4535. [PMID: 36896464 DOI: 10.1021/acs.jafc.3c00200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Prothioconazole (PTC) has been widely utilized for plant fungal disease control, but its metabolite prothioconazole-desthio (PTC-d) exhibits reproductive toxicity. In the present study, carbon quantum dot (CQD)-modified fluorescent double-hollow shelled mesoporous silica nanoparticles (FL-MSNs) loaded with PTC, referred to as PTC@FL-MSNs, were constructed with an average size of 369 nm and a loading capacity of 28.1 wt %, which could increase the antifungal efficiency of PTC. In addition, upright fluorescence microscope and UPLC-MS/MS studies showed that PTC@FL-MSNs could be effectively transported via root uptake and foliar spray in soybean plants. Compared to a 30% PTC dispersible oil suspension agent, the PTC@FL-MSN treatment group showed higher concentrations (leaves: 0.50 > 0.48 mg/kg), longer half-lives for degradation (leaves: 3.62 > 3.21 d; roots: 3.39 > 2.82 d), and fewer metabolites. These findings suggest that sustained pesticide release and toxicity reduction are potential applications for PTC nanofungicide delivery technology.
Collapse
Affiliation(s)
- Jingyuan Wang
- Key Laboratory of Agri-Food Safety of Anhui Province, Department of Pesticide Science, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Rong Li
- Key Laboratory of Agri-Food Safety of Anhui Province, Department of Pesticide Science, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Zongyuan Zhao
- Key Laboratory of Agri-Food Safety of Anhui Province, Department of Pesticide Science, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Meiqing Zhu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Yi Wang
- Key Laboratory of Agri-Food Safety of Anhui Province, Department of Pesticide Science, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
4
|
Kuerschner L, Thiele C. Tracing Lipid Metabolism by Alkyne Lipids and Mass Spectrometry: The State of the Art. Front Mol Biosci 2022; 9:880559. [PMID: 35669564 PMCID: PMC9163959 DOI: 10.3389/fmolb.2022.880559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/19/2022] [Indexed: 01/22/2023] Open
Abstract
Lipid tracing studies are a key method to gain a better understanding of the complex metabolic network lipids are involved in. In recent years, alkyne lipid tracers and mass spectrometry have been developed as powerful tools for such studies. This study aims to review the present standing of the underlying technique, highlight major findings the strategy allowed for, summarize its advantages, and discuss some limitations. In addition, an outlook on future developments is given.
Collapse
|
5
|
Gupta S, Schillaci M, Roessner U. Metabolomics as an emerging tool to study plant-microbe interactions. Emerg Top Life Sci 2022; 6:175-183. [PMID: 35191478 PMCID: PMC9023012 DOI: 10.1042/etls20210262] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 01/14/2023]
Abstract
In natural environments, interaction between plant roots and microorganisms are common. These interactions between microbial species and plants inhabited by them are being studied using various techniques. Metabolomics research based on mass spectrometric techniques is one of the crucial approaches that underpins system biology and relies on precision instrument analysis. In the last decade, this emerging field has received extensive attention. It provides a qualitative and quantitative approach for determining the mechanisms of symbiosis of bacteria and fungi with plants and also helps to elucidate the tolerance mechanisms of host plants against various abiotic stresses. However, this -omics application and its tools in plant-microbe interaction studies is still underutilized compared with genomic and transcriptomic methods. Therefore, it is crucial to bring this field forward to bear on the study of plant resistance and susceptibility. This review describes the current status of methods and progress in metabolomics applications for plant-microbe interaction studies discussing current challenges and future prospects.
Collapse
Affiliation(s)
- Sneha Gupta
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Martino Schillaci
- Consiglio Nazionale Delle Ricerche-Istituto per la Protezione Sostenibile Delle Piante, Strada delle Cacce 73, 10135 Torino, Italy
| | - Ute Roessner
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
6
|
Lima VF, Erban A, Daubermann AG, Freire FBS, Porto NP, Cândido-Sobrinho SA, Medeiros DB, Schwarzländer M, Fernie AR, Dos Anjos L, Kopka J, Daloso DM. Establishment of a GC-MS-based 13 C-positional isotopomer approach suitable for investigating metabolic fluxes in plant primary metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1213-1233. [PMID: 34486764 DOI: 10.1111/tpj.15484] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
13 C-Metabolic flux analysis (13 C-MFA) has greatly contributed to our understanding of plant metabolic regulation. However, the generation of detailed in vivo flux maps remains a major challenge. Flux investigations based on nuclear magnetic resonance have resolved small networks with high accuracy. Mass spectrometry (MS) approaches have broader potential, but have hitherto been limited in their power to deduce flux information due to lack of atomic level position information. Herein we established a gas chromatography (GC) coupled to MS-based approach that provides 13 C-positional labelling information in glucose, malate and glutamate (Glu). A map of electron impact (EI)-mediated MS fragmentation was created and validated by 13 C-positionally labelled references via GC-EI-MS and GC-atmospheric pressure chemical ionization-MS technologies. The power of the approach was revealed by analysing previous 13 C-MFA data from leaves and guard cells, and 13 C-HCO3 labelling of guard cells harvested in the dark and after the dark-to-light transition. We demonstrated that the approach is applicable to established GC-EI-MS-based 13 C-MFA without the need for experimental adjustment, but will benefit in the future from paired analyses by the two GC-MS platforms. We identified specific glucose carbon atoms that are preferentially labelled by photosynthesis and gluconeogenesis, and provide an approach to investigate the phosphoenolpyruvate carboxylase (PEPc)-derived 13 C-incorporation into malate and Glu. Our results suggest that gluconeogenesis and the PEPc-mediated CO2 assimilation into malate are activated in a light-independent manner in guard cells. We further highlight that the fluxes from glycolysis and PEPc toward Glu are restricted by the mitochondrial thioredoxin system in illuminated leaves.
Collapse
Affiliation(s)
- Valéria F Lima
- LabPLant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CE, 60451-970, Brazil
| | - Alexander Erban
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, D-14476, Germany
| | - André G Daubermann
- Departamento de Biologia, Setor de Fisiologia Vegetal, Universidade Federal de Lavras, Lavras-MG, 37200-900, Brazil
| | - Francisco Bruno S Freire
- LabPLant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CE, 60451-970, Brazil
| | - Nicole P Porto
- LabPLant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CE, 60451-970, Brazil
| | - Silvio A Cândido-Sobrinho
- LabPLant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CE, 60451-970, Brazil
| | - David B Medeiros
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, D-14476, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, Westfälische-Wilhelms-Universität Münster, Münster, D-48143, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, D-14476, Germany
| | - Leticia Dos Anjos
- Departamento de Biologia, Setor de Fisiologia Vegetal, Universidade Federal de Lavras, Lavras-MG, 37200-900, Brazil
| | - Joachim Kopka
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, D-14476, Germany
| | - Danilo M Daloso
- LabPLant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CE, 60451-970, Brazil
| |
Collapse
|
7
|
Capellades J, Junza A, Samino S, Brunner JS, Schabbauer G, Vinaixa M, Yanes O. Exploring the Use of Gas Chromatography Coupled to Chemical Ionization Mass Spectrometry (GC-CI-MS) for Stable Isotope Labeling in Metabolomics. Anal Chem 2021; 93:1242-1248. [PMID: 33369389 DOI: 10.1021/acs.analchem.0c02998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Isotopic-labeling experiments have been valuable to monitor the flux of metabolic reactions in biological systems, which is crucial to understand homeostatic alterations with disease. Experimental determination of metabolic fluxes can be inferred from a characteristic rearrangement of stable isotope tracers (e.g., 13C or 15N) that can be detected by mass spectrometry (MS). Metabolites measured are generally members of well-known metabolic pathways, and most of them can be detected using both gas chromatography (GC)-MS and liquid chromatography (LC)-MS. In here, we show that GC methods coupled to chemical ionization (CI) MS have a clear advantage over alternative methodologies due to GC's superior chromatography separation efficiency and the fact that CI is a soft ionization technique that yields identifiable protonated molecular ion peaks. We tested diverse GC-CI-MS setups, including methane and isobutane reagent gases, triple quadrupole (QqQ) MS in SIM mode, or selected ion clusters using optimized narrow windows (∼10 Da) in scan mode, and standard full scan methods using high resolution GC-(q)TOF and GC-Orbitrap systems. Isobutane as a reagent gas in combination with both low-resolution (LR) and high-resolution (HR) MS showed the best performance, enabling precise detection of isotopologues in most metabolic intermediates of central carbon metabolism. Finally, with the aim of overcoming manual operations, we developed an R-based tool called isoSCAN that automatically quantifies all isotopologues of intermediate metabolites of glycolysis, TCA cycle, amino acids, pentose phosphate pathway, and urea cycle, from LRMS and HRMS data.
Collapse
Affiliation(s)
- Jordi Capellades
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Metabolomics Platform, Reus, Spain
| | - Alexandra Junza
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Sara Samino
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Julia S Brunner
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, 1090 Vienna, Austria.,Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, 1090 Vienna, Austria
| | - Gernot Schabbauer
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, 1090 Vienna, Austria.,Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, 1090 Vienna, Austria
| | - Maria Vinaixa
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Metabolomics Platform, Reus, Spain
| | - Oscar Yanes
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Metabolomics Platform, Reus, Spain
| |
Collapse
|
8
|
Daloso DDM, Williams TCR. Current Challenges in Plant Systems Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1346:155-170. [DOI: 10.1007/978-3-030-80352-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Using stable isotope tracers to monitor membrane dynamics in C. elegans. Chem Phys Lipids 2020; 233:104990. [PMID: 33058817 DOI: 10.1016/j.chemphyslip.2020.104990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 12/29/2022]
Abstract
Membranes within an animal are composed of phospholipids, cholesterol, and proteins that together form a dynamic barrier. The types of lipids that are found within a membrane bilayer impact its biophysical properties including its fluidity, permeability, and susceptibility to damage. While membrane composition is very stable in healthy adults, aberrant membrane structure is seen in a wide and varied array of diseases as well as during natural aging. Despite the wide-reaching impacts of membrane composition, there is relatively little known about how membrane landscape is established and maintained over time. In vivo biochemical modeling of membrane lipids is needed to understand how these molecules interact in their natural configurations. Here, we have described analytical methods that increase the capacity to map the dynamics of individual membrane phospholipids using different types of mass spectrometry. Specifically, we describe novel stable isotope (13C and 15N) strategies to quantify the turnover of dozens of fatty acid tails and intact phospholipids simultaneously.
Collapse
|
10
|
Kruve A. Strategies for Drawing Quantitative Conclusions from Nontargeted Liquid Chromatography-High-Resolution Mass Spectrometry Analysis. Anal Chem 2020; 92:4691-4699. [PMID: 32134258 DOI: 10.1021/acs.analchem.9b03481] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This Feature aims at giving an overview of different possibilities for quantitatively comparing the results obtained from LC-HRMS-based nontargeted analysis. More specifically, quantification via structurally similar internal standards, different isotope labeling strategies, radiolabeling, and predicted ionization efficiencies are reviewed.
Collapse
Affiliation(s)
- Anneli Kruve
- Institute of Chemistry, University of Tartu, Ravila 14a, Tartu 50411, Estonia.,Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
11
|
Batista-Silva W, Medeiros DB, Rodrigues-Salvador A, Daloso DM, Omena-Garcia RP, Oliveira FS, Pino LE, Peres LEP, Nunes-Nesi A, Fernie AR, Zsögön A, Araújo WL. Modulation of auxin signalling through DIAGETROPICA and ENTIRE differentially affects tomato plant growth via changes in photosynthetic and mitochondrial metabolism. PLANT, CELL & ENVIRONMENT 2019; 42:448-465. [PMID: 30066402 DOI: 10.1111/pce.13413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
Auxin modulates a range of plant developmental processes including embryogenesis, organogenesis, and shoot and root development. Recent studies have shown that plant hormones also strongly influence metabolic networks, which results in altered growth phenotypes. Modulating auxin signalling pathways may therefore provide an opportunity to alter crop performance. Here, we performed a detailed physiological and metabolic characterization of tomato (Solanum lycopersicum) mutants with either increased (entire) or reduced (diageotropica-dgt) auxin signalling to investigate the consequences of altered auxin signalling on photosynthesis, water use, and primary metabolism. We show that reduced auxin sensitivity in dgt led to anatomical and physiological modifications, including altered stomatal distribution along the leaf blade and reduced stomatal conductance, resulting in clear reductions in both photosynthesis and water loss in detached leaves. By contrast, plants with higher auxin sensitivity (entire) increased the photosynthetic capacity, as deduced by higher Vcmax and Jmax coupled with reduced stomatal limitation. Remarkably, our results demonstrate that auxin-sensitive mutants (dgt) are characterized by impairments in the usage of starch that led to lower growth, most likely associated with decreased respiration. Collectively, our findings suggest that mutations in different components of the auxin signalling pathway specifically modulate photosynthetic and respiratory processes.
Collapse
Affiliation(s)
- Willian Batista-Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - David B Medeiros
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Acácio Rodrigues-Salvador
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Danilo M Daloso
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Rebeca P Omena-Garcia
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Franciele Santos Oliveira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Lilian Ellen Pino
- Departmento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Lázaro Eustáquio Pereira Peres
- Departmento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Alisdair R Fernie
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Agustín Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
12
|
Advances in metabolic flux analysis toward genome-scale profiling of higher organisms. Biosci Rep 2018; 38:BSR20170224. [PMID: 30341247 PMCID: PMC6250807 DOI: 10.1042/bsr20170224] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 10/06/2018] [Accepted: 10/14/2018] [Indexed: 11/25/2022] Open
Abstract
Methodological and technological advances have recently paved the way for metabolic flux profiling in higher organisms, like plants. However, in comparison with omics technologies, flux profiling has yet to provide comprehensive differential flux maps at a genome-scale and in different cell types, tissues, and organs. Here we highlight the recent advances in technologies to gather metabolic labeling patterns and flux profiling approaches. We provide an opinion of how recent local flux profiling approaches can be used in conjunction with the constraint-based modeling framework to arrive at genome-scale flux maps. In addition, we point at approaches which use metabolomics data without introduction of label to predict either non-steady state fluxes in a time-series experiment or flux changes in different experimental scenarios. The combination of these developments allows an experimentally feasible approach for flux-based large-scale systems biology studies.
Collapse
|
13
|
Triebl A, Wenk MR. Analytical Considerations of Stable Isotope Labelling in Lipidomics. Biomolecules 2018; 8:biom8040151. [PMID: 30453585 PMCID: PMC6315579 DOI: 10.3390/biom8040151] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 12/26/2022] Open
Abstract
Over the last two decades, lipids have come to be understood as far more than merely components of cellular membranes and forms of energy storage, and are now also being implicated to play important roles in a variety of diseases, with lipid biomarker research one of the most widespread applications of lipidomic techniques both in research and in clinical settings. Stable isotope labelling has become a staple technique in the analysis of small molecule metabolism and dynamics, as it is the only experimental setup by which biosynthesis, remodelling and degradation of biomolecules can be directly measured. Using state-of-the-art analytical technologies such as chromatography-coupled high resolution tandem mass spectrometry, the stable isotope label can be precisely localized and quantified within the biomolecules. The application of stable isotope labelling to lipidomics is however complicated by the diversity of lipids and the complexity of the necessary data analysis. This article discusses key experimental aspects of stable isotope labelling in the field of mass spectrometry-based lipidomics, summarizes current applications and provides an outlook on future developments and potential.
Collapse
Affiliation(s)
- Alexander Triebl
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore; Singapore 117596, Singapore.
| | - Markus R Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore; Singapore 117596, Singapore.
| |
Collapse
|
14
|
Avin-Wittenberg T, Baluška F, Bozhkov PV, Elander PH, Fernie AR, Galili G, Hassan A, Hofius D, Isono E, Le Bars R, Masclaux-Daubresse C, Minina EA, Peled-Zehavi H, Coll NS, Sandalio LM, Satiat-Jeunemaitre B, Sirko A, Testillano PS, Batoko H. Autophagy-related approaches for improving nutrient use efficiency and crop yield protection. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1335-1353. [PMID: 29474677 DOI: 10.1093/jxb/ery069] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/16/2018] [Indexed: 05/18/2023]
Abstract
Autophagy is a eukaryotic catabolic pathway essential for growth and development. In plants, it is activated in response to environmental cues or developmental stimuli. However, in contrast to other eukaryotic systems, we know relatively little regarding the molecular players involved in autophagy and the regulation of this complex pathway. In the framework of the COST (European Cooperation in Science and Technology) action TRANSAUTOPHAGY (2016-2020), we decided to review our current knowledge of autophagy responses in higher plants, with emphasis on knowledge gaps. We also assess here the potential of translating the acquired knowledge to improve crop plant growth and development in a context of growing social and environmental challenges for agriculture in the near future.
Collapse
Affiliation(s)
- Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Frantisek Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee, Bonn, Germany
| | - Peter V Bozhkov
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Pernilla H Elander
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Gad Galili
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot Israel
| | - Ammar Hassan
- Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee, Bonn, Germany
| | - Daniel Hofius
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center of Plant Biology, Uppsala, Sweden
| | - Erika Isono
- Department of Biology, University of Konstanz, Universitätsstrasse, Konstanz, Germany
| | - Romain Le Bars
- Cell Biology Pôle Imagerie-Gif, Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Céline Masclaux-Daubresse
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, Versailles, France
| | - Elena A Minina
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Hadas Peled-Zehavi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot Israel
| | - Núria S Coll
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra-Cerdanyola del Valles, Catalonia, Spain
| | - Luisa M Sandalio
- Departmento de Bioquímica, Biología Celular y Molecular de Plantas Experimental del Zaidín, CSIC, Granada, Spain
| | - Béatrice Satiat-Jeunemaitre
- Cell Biology Pôle Imagerie-Gif, Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Agnieszka Sirko
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, ul. Pawinskiego, Warsaw, Poland
| | - Pilar S Testillano
- Pollen Biotechnology of Crop Plants group, Centro de Investigaciones Biológicas, Biological Research Centre (CIB), CSIC, Ramiro de Maeztu, Madrid, Spain
| | - Henri Batoko
- Université Catholique de Louvain, Institute of Life Sciences, Croix du Sud, Louvain-la-Neuve, Belgium
| |
Collapse
|
15
|
Zachleder V, Vítová M, Hlavová M, Moudříková Š, Mojzeš P, Heumann H, Becher JR, Bišová K. Stable isotope compounds - production, detection, and application. Biotechnol Adv 2018; 36:784-797. [PMID: 29355599 DOI: 10.1016/j.biotechadv.2018.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 12/14/2022]
Abstract
Stable isotopes are used in wide fields of application from natural tracers in biology, geology and archeology through studies of metabolic fluxes to their application as tracers in quantitative proteomics and structural biology. We review the use of stable isotopes of biogenic elements (H, C, N, O, S, Mg, Se) with the emphasis on hydrogen and its heavy isotope deuterium. We will discuss the limitations of enriching various compounds in stable isotopes when produced in living organisms. Finally, we overview methods for measuring stable isotopes, focusing on methods for detection in single cells in situ and their exploitation in modern biotechnologies.
Collapse
Affiliation(s)
- Vilém Zachleder
- Institute of Microbiology, CAS, Centre Algatech, Laboratory of Cell Cycles of Algae, CZ-379 81 Třeboň, Czech Republic
| | - Milada Vítová
- Institute of Microbiology, CAS, Centre Algatech, Laboratory of Cell Cycles of Algae, CZ-379 81 Třeboň, Czech Republic
| | - Monika Hlavová
- Institute of Microbiology, CAS, Centre Algatech, Laboratory of Cell Cycles of Algae, CZ-379 81 Třeboň, Czech Republic
| | - Šárka Moudříková
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, CZ-121 16 Prague 2, Czech Republic
| | - Peter Mojzeš
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, CZ-121 16 Prague 2, Czech Republic
| | | | | | - Kateřina Bišová
- Institute of Microbiology, CAS, Centre Algatech, Laboratory of Cell Cycles of Algae, CZ-379 81 Třeboň, Czech Republic.
| |
Collapse
|
16
|
Atzrodt J, Derdau V, Kerr WJ, Reid M. Deuterium- und tritiummarkierte Verbindungen: Anwendungen in den modernen Biowissenschaften. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201704146] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jens Atzrodt
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry; Industriepark Höchst, G876 65926 Frankfurt Deutschland
| | - Volker Derdau
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry; Industriepark Höchst, G876 65926 Frankfurt Deutschland
| | - William J. Kerr
- Department of Pure and Applied Chemistry, WestCHEM; University of Strathclyde; 295 Cathedral Street Glasgow Scotland G1 1XL Großbritannien
| | - Marc Reid
- Department of Pure and Applied Chemistry, WestCHEM; University of Strathclyde; 295 Cathedral Street Glasgow Scotland G1 1XL Großbritannien
| |
Collapse
|
17
|
Atzrodt J, Derdau V, Kerr WJ, Reid M. Deuterium- and Tritium-Labelled Compounds: Applications in the Life Sciences. Angew Chem Int Ed Engl 2018; 57:1758-1784. [PMID: 28815899 DOI: 10.1002/anie.201704146] [Citation(s) in RCA: 430] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/27/2017] [Indexed: 12/19/2022]
Abstract
Hydrogen isotopes are unique tools for identifying and understanding biological and chemical processes. Hydrogen isotope labelling allows for the traceless and direct incorporation of an additional mass or radioactive tag into an organic molecule with almost no changes in its chemical structure, physical properties, or biological activity. Using deuterium-labelled isotopologues to study the unique mass-spectrometric patterns generated from mixtures of biologically relevant molecules drastically simplifies analysis. Such methods are now providing unprecedented levels of insight in a wide and continuously growing range of applications in the life sciences and beyond. Tritium (3 H), in particular, has seen an increase in utilization, especially in pharmaceutical drug discovery. The efforts and costs associated with the synthesis of labelled compounds are more than compensated for by the enhanced molecular sensitivity during analysis and the high reliability of the data obtained. In this Review, advances in the application of hydrogen isotopes in the life sciences are described.
Collapse
Affiliation(s)
- Jens Atzrodt
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry, Industriepark Höchst, G876, 65926, Frankfurt, Germany
| | - Volker Derdau
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry, Industriepark Höchst, G876, 65926, Frankfurt, Germany
| | - William J Kerr
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow, Scotland, G1 1XL, UK
| | - Marc Reid
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow, Scotland, G1 1XL, UK
| |
Collapse
|
18
|
Standard Key Steps in Mass Spectrometry-Based Plant Metabolomics Experiments: Instrument Performance and Analytical Method Validation. Methods Mol Biol 2018; 1778:19-31. [PMID: 29761428 DOI: 10.1007/978-1-4939-7819-9_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Studies of the plant metabolome include the analysis of a wide range of chemical species with very diverse physicochemical properties requiring powerful analytical tools for the separation, characterization, and quantification of this vast compound diversity present in plant matrices. In quantitative metabolomics studies, major efforts are put into optimizing sample extraction and separation as well as instrument conditions to measure specific plant metabolites. Here, challenges in the use of mass spectrometry (MS) as a quantitative tool in plant metabolomics experiments are discussed, and an overview of the most critical steps in the development and validation of MS-based analytical methods is presented.
Collapse
|
19
|
Pang Q, Zhang T, Wang Y, Kong W, Guan Q, Yan X, Chen S. Metabolomics of Early Stage Plant Cell-Microbe Interaction Using Stable Isotope Labeling. FRONTIERS IN PLANT SCIENCE 2018; 9:760. [PMID: 29922325 PMCID: PMC5996122 DOI: 10.3389/fpls.2018.00760] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/17/2018] [Indexed: 05/02/2023]
Abstract
Metabolomics has been used in unraveling metabolites that play essential roles in plant-microbe (including pathogen) interactions. However, the problem of profiling a plant metabolome with potential contaminating metabolites from the coexisting microbes has been largely ignored. To address this problem, we implemented an effective stable isotope labeling approach, where the metabolome of a plant bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000 was labeled with heavy isotopes. The labeled bacterial cells were incubated with Arabidopsis thaliana epidermal peels (EPs) with guard cells, and excessive bacterial cells were subsequently removed from the plant tissues by washing. The plant metabolites were characterized by liquid chromatography mass spectrometry using multiple reactions monitoring, which can differentiate plant and bacterial metabolites. Targeted metabolomic analysis suggested that Pst DC3000 infection may modulate stomatal movement by reprograming plant signaling and primary metabolic pathways. This proof-of-concept study demonstrates the utility of this strategy in differentiation of the plant and microbe metabolomes, and it has broad applications in studying metabolic interactions between microbes and other organisms.
Collapse
Affiliation(s)
- Qiuying Pang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Tong Zhang
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Yang Wang
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Wenwen Kong
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Qijie Guan
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Xiufeng Yan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
- *Correspondence: Xiufeng Yan, Sixue Chen,
| | - Sixue Chen
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, United States
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research (ICBR), University of Florida, Gainesville, FL, United States
- *Correspondence: Xiufeng Yan, Sixue Chen,
| |
Collapse
|
20
|
Perez de Souza L, Fernie AR, Tohge T. Carbon Atomic Survey for Identification of Selected Metabolic Fluxes. Methods Mol Biol 2018; 1778:59-67. [PMID: 29761431 DOI: 10.1007/978-1-4939-7819-9_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Stable-isotope-labeling experiments have become a frequently used tool to investigate different metabolic systems. They have been recently applied to several comprehensive studies in plant metabolomics providing interesting insights into metabolic dynamics and regulation. However, the complexity of mass spectrometry data originating from such experiments is rarely fully explored. Data analysis often considers metabolites in their entirety which obscures important information at the atomic level. Recently, the use of mass spectrometry fragmentation for obtaining positional-labeling information was described for a few specific metabolites. Here, we describe a general methodology that can be applied for extracting positional-labeling information based on the characterization of fragments that are inherent in gas chromatography electron impact mass spectrometry (GC-EI-MS) chromatograms.
Collapse
Affiliation(s)
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Takayuki Tohge
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.,Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| |
Collapse
|
21
|
Lima VF, de Souza LP, Williams TCR, Fernie AR, Daloso DM. Gas Chromatography-Mass Spectrometry-Based 13C-Labeling Studies in Plant Metabolomics. Methods Mol Biol 2018; 1778:47-58. [PMID: 29761430 DOI: 10.1007/978-1-4939-7819-9_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Stable-isotope labeling analysis has been used to discover new metabolic pathways and their key regulatory points in a wide range of organisms. Given the complexity of the plant metabolic network, this analysis provides information complementary to that obtained from metabolite profiling that can be used to understand how plants cope with adverse conditions, and how metabolism varies between different cells, tissues, and organs. Here we describe the experimental procedures from sample harvesting and extraction to mass spectral analysis and interpretation that allow the researcher to perform 13C-labeling experiments. A wide range of plant material, from single cells to whole plants, can be used to investigate the metabolic fate of the 13C from a predefined tracer. Thus, a key point of this analysis is to choose the correct biological system, the substrate and the condition to be investigated; all of which implicitly relies on the biological question to be investigated. Rapid sample quenching and a careful data analysis are also critical points in such studies. By contrast to other metabolomic approaches, stable-isotope labeling can provide information concerning the fluxes through metabolic networks, which is essential for understanding and manipulating metabolic phenotypes and therefore of pivotal importance for both systems biology and plant metabolic engineering.
Collapse
Affiliation(s)
- Valéria F Lima
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | | | | | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Danilo M Daloso
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
22
|
Obata T, Rosado-Souza L, Fernie AR. Coupling Radiotracer Experiments with Chemical Fractionation for the Estimation of Respiratory Fluxes. Methods Mol Biol 2017; 1670:17-30. [PMID: 28871530 DOI: 10.1007/978-1-4939-7292-0_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Carbohydrates catabolized via respiratory processes are not only used for energy production but also for biosynthesis of cellular components including soluble molecules (sugars, amino acids, organic acids, and their derivatives) and insoluble macromolecules (proteins, starch, and cell wall). Radiotracer experiments using 14C-labeled glucose provide a global picture of the fate of respired carbon in the metabolic network. This method is based on a chemical fractionation of biomolecules in 14C-glucose fed plant materials and the subsequent determination of radioactivity in each fraction. Metabolic flux into each fraction can be estimated from the specific activity of the hexose phosphate pool. Here, we describe the procedure for glucose metabolism in potato tuber but similar protocols can be adopted for various plant organs and substrates.
Collapse
Affiliation(s)
- Toshihiro Obata
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.,Department of Biochemistry, University of Nebraska Lincoln, 1901 Vine St, 68588, Lincoln, NE, USA
| | - Laise Rosado-Souza
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| |
Collapse
|
23
|
Freund DM, Hegeman AD. Recent advances in stable isotope-enabled mass spectrometry-based plant metabolomics. Curr Opin Biotechnol 2016; 43:41-48. [PMID: 27610928 DOI: 10.1016/j.copbio.2016.08.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 01/01/2023]
Abstract
Methods employing isotope labeled compounds have been an important part of the bioanalytical canon for many decades. The past fifteen years have seen the development of many new approaches using stable (non-radioactive) isotopes as labels for high-throughput bioanalytical, 'omics-scale' measurements of metabolites (metabolomics) and proteins (proteomics). This review examines stable isotopic labeling approaches that have been developed for labeling whole intact plants, plant tissues, or crude extracts of plant materials with stable isotopes (mainly using 2H, 13C, 15N, 18O or 34S). The application of metabolome-scale labeling for improving metabolite annotation, metabolic pathway elucidation, and relative quantification in mass spectrometry-based metabolomics of plants is also reviewed.
Collapse
Affiliation(s)
- Dana M Freund
- Department of Horticultural Science, Department of Plant Biology, and the Microbial and Plant Genomics Institute, University of Minnesota, Twin Cities, MN, USA
| | - Adrian D Hegeman
- Department of Horticultural Science, Department of Plant Biology, and the Microbial and Plant Genomics Institute, University of Minnesota, Twin Cities, MN, USA.
| |
Collapse
|