1
|
Okada K, Shimizu T, Moriya S, Wada M, Abe K, Sawamura Y. Alternative splicing and deletion in S-RNase confer stylar-part self-compatibility in the apple cultivar 'Vered'. PLANT MOLECULAR BIOLOGY 2024; 114:113. [PMID: 39425855 DOI: 10.1007/s11103-024-01514-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/29/2024] [Indexed: 10/21/2024]
Abstract
Although self-incompatibility in apples (Malus × domestica Borkh.) is regulated by a single S-locus with multiple S-haplotypes that comprise pistil S (S-RNase) and pollen S genes, it is not desirable in commercial orchards because it requires cross-pollination to achieve stable fruit production. Therefore, it is important to identify and characterize self-compatible apple cultivars. However, little is known about self-compatibility (SC) and its underlying molecular mechanisms in apples. In this study, we discovered that 'Vered', an early maturing and low chilling-requiring apple cultivar, exhibits stable SC, which was evaluated via self-pollination tests. The S-genotype of 'Vered' was designated as S24S39sm. Results of genetic analysis of selfed progeny of 'Vered' revealed that SC is associated with the S39sm-haplotype, and molecular analyses indicated that it is caused by alternative splicing and a 205-bp deletion in S39sm-RNase. These events induce frameshifts and ultimately produce the defective S39sm-RNase isoforms that lack their C-terminal half. These results enabled us to develop a 117-bp DNA marker that can be used to assist in the selection of self-compatible apples with the dysfunctional S39sm-RNase. Thus, analysis of 'Vered' provided insights into the molecular mechanism of the very rare trait of natural stylar-part SC. Moreover, 'Vered' is a valuable genetic resource for breeding cultivars with SC and/or low chilling requirement in apple. Our findings contribute to a better understanding of self-compatible molecular mechanisms in apple and provide for the accelerated breeding of self-compatible apple cultivars.
Collapse
Affiliation(s)
- Kazuma Okada
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, 2-1 Fujimoto, Tsukuba, Ibaraki, 305-8605, Japan.
| | - Taku Shimizu
- Division of Apple Research, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, 92-24 Nabeyashiki, Shimokuriyagawa, Morioka, Iwate, 020-0123, Japan
| | - Shigeki Moriya
- Division of Apple Research, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, 92-24 Nabeyashiki, Shimokuriyagawa, Morioka, Iwate, 020-0123, Japan
| | - Masato Wada
- Division of Apple Research, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, 92-24 Nabeyashiki, Shimokuriyagawa, Morioka, Iwate, 020-0123, Japan
| | - Kazuyuki Abe
- Division of Apple Research, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, 92-24 Nabeyashiki, Shimokuriyagawa, Morioka, Iwate, 020-0123, Japan
| | - Yutaka Sawamura
- Division of Apple Research, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, 92-24 Nabeyashiki, Shimokuriyagawa, Morioka, Iwate, 020-0123, Japan
| |
Collapse
|
2
|
Hu J, Liu C, Du Z, Guo F, Song D, Wang N, Wei Z, Jiang J, Cao Z, Shi C, Zhang S, Zhu C, Chen P, Larkin RM, Lin Z, Xu Q, Ye J, Deng X, Bosch M, Franklin‐Tong VE, Chai L. Transposable elements cause the loss of self-incompatibility in citrus. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1113-1131. [PMID: 38038155 PMCID: PMC11022811 DOI: 10.1111/pbi.14250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/25/2023] [Accepted: 11/11/2023] [Indexed: 12/02/2023]
Abstract
Self-incompatibility (SI) is a widespread prezygotic mechanism for flowering plants to avoid inbreeding depression and promote genetic diversity. Citrus has an S-RNase-based SI system, which was frequently lost during evolution. We previously identified a single nucleotide mutation in Sm-RNase, which is responsible for the loss of SI in mandarin and its hybrids. However, little is known about other mechanisms responsible for conversion of SI to self-compatibility (SC) and we identify a completely different mechanism widely utilized by citrus. Here, we found a 786-bp miniature inverted-repeat transposable element (MITE) insertion in the promoter region of the FhiS2-RNase in Fortunella hindsii Swingle (a model plant for citrus gene function), which does not contain the Sm-RNase allele but are still SC. We demonstrate that this MITE plays a pivotal role in the loss of SI in citrus, providing evidence that this MITE insertion prevents expression of the S-RNase; moreover, transgenic experiments show that deletion of this 786-bp MITE insertion recovers the expression of FhiS2-RNase and restores SI. This study identifies the first evidence for a role for MITEs at the S-locus affecting the SI phenotype. A family-wide survey of the S-locus revealed that MITE insertions occur frequently adjacent to S-RNase alleles in different citrus genera, but only certain MITEs appear to be responsible for the loss of SI. Our study provides evidence that insertion of MITEs into a promoter region can alter a breeding strategy and suggests that this phenomenon may be broadly responsible for SC in species with the S-RNase system.
Collapse
Affiliation(s)
- Jianbing Hu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
- Hubei Hongshan LaboratoryWuhanP. R. China
| | - Chenchen Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
- Hubei Hongshan LaboratoryWuhanP. R. China
| | - Zezhen Du
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
- Hubei Hongshan LaboratoryWuhanP. R. China
| | - Furong Guo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
| | - Dan Song
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
| | - Nan Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
| | - Zhuangmin Wei
- Guangxi Subtropical Crops Research InstituteNanningP. R. China
| | - Jingdong Jiang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
| | - Zonghong Cao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
| | - Chunmei Shi
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
| | - Siqi Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
| | - Chenqiao Zhu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
| | - Peng Chen
- Horticultural Institute, Hunan Academy of Agricultural SciencesChangshaChina
| | - Robert M. Larkin
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
- Hubei Hongshan LaboratoryWuhanP. R. China
| | - Zongcheng Lin
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
- Hubei Hongshan LaboratoryWuhanP. R. China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
- Hubei Hongshan LaboratoryWuhanP. R. China
| | - Junli Ye
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
- Hubei Hongshan LaboratoryWuhanP. R. China
| | - Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUK
| | | | - Lijun Chai
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
- Hubei Hongshan LaboratoryWuhanP. R. China
| |
Collapse
|
3
|
Wei H, Wang B, Xu Y, Fan W, Zhang M, Huang F, Shi C, Li T, Wang S, Wang S. The Mechanism of Ovule Abortion in Self-Pollinated 'Hanfu' Apple Fruits and Related Gene Screening. PLANTS (BASEL, SWITZERLAND) 2024; 13:996. [PMID: 38611525 PMCID: PMC11013273 DOI: 10.3390/plants13070996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024]
Abstract
Apples exhibit S-RNase-mediated self-incompatibility and typically require cross-pollination in nature. 'Hanfu' is a cultivar that produces abundant fruit after self-pollination, although it also shows a high rate of seed abortion afterwards, which greatly reduces fruit quality. In this study, we investigated the ovule development process and the mechanism of ovule abortion in apples after self-pollination. Using a DIC microscope and biomicroscope, we found that the abortion of apple ovules occurs before embryo formation and results from the failure of sperm-egg fusion. Further, we used laser-assisted microdissection (LAM) cutting and sperm and egg cell sequencing at different periods after pollination to obtain the genes related to ovule abortion. The top 40 differentially expressed genes (DEGs) were further verified, and the results were consistent with switching the mechanism at the 5' end of the RNA transcript (SMART-seq). Through this study, we can preliminarily clarify the mechanism of ovule abortion in self-pollinated apple fruits and provide a gene reserve for further study and improvement of 'Hanfu' apple fruit quality.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shengnan Wang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Shengyuan Wang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Li C, Lu M, Zhou J, Wang S, Long Y, Xu Y, Tan X. Transcriptome Analysis of the Late-Acting Self-Incompatibility Associated with RNase T2 Family in Camellia oleifera. PLANTS (BASEL, SWITZERLAND) 2023; 12:1932. [PMID: 37653852 PMCID: PMC10223774 DOI: 10.3390/plants12101932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/01/2023] [Accepted: 05/06/2023] [Indexed: 09/02/2023]
Abstract
The Camellia oil tree (Camellia oleifera Abel.) is an important nonwood forest species in China, and the majority of its cultivars are late-acting self-incompatibility (LSI) types. Although several studies have examined the mechanism of LSI, the process is quite complicated and unclear. In this study, pollen tube growth and fruit setting of two Camellia oil tree cultivars Huashuo (HS) and Huajin (HJ) were investigated after non and self-pollination, and transcriptomic analysis of the ovaries was performed 48 h after self-pollination to identify the potential genes implicated in the LSI of Camellia oil trees. The results showed that the fruit set of HS was significantly higher than that of HJ after self-pollination. Transcriptomic analysis revealed that plant hormone signal transduction, the phosphatidylinositol signaling system, ATP-binding cassette (ABC) transporters, reactive oxygen species (ROS) metabolism, and Ca2+ signaling were mainly contributed in the LSI of reaction of Camellia oil tree. Moreover, nine RNase T2 genes were identified from the transcriptome analysis, which also showed that CoRNase7 participated in the self-incompatibility reaction in HS. Based on phylogenetic analysis, CoRNase6 was closely related to S-RNase from coffee, and CoRNase7 and CoRNase8 were closely related to S-RNase from Camellia sinensis. The 9 RNase T2 genes successfully produced proteins in prokaryotes. Subcellular localization indicated that CoRNase1 and CoRNase5 were cytoplasmic proteins, while CoRNase7 was a plasma membrane protein. These results screened the main metabolic pathways closely related to LSI in Camellia oil tree, and SI signal transduction might be regulated by a large molecular regulatory network. The discovery of T2 RNases provided evidence that Camellia oil tree might be under RNase-based gametophytic self-incompatibility.
Collapse
Affiliation(s)
- Chang Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Changsha 410004, China; (C.L.); (M.L.)
- Academy of Camellia Oil Tree, Central South University of Forestry and Technology, Changsha 410000, China
| | - Mengqi Lu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Changsha 410004, China; (C.L.); (M.L.)
- Academy of Camellia Oil Tree, Central South University of Forestry and Technology, Changsha 410000, China
| | - Junqin Zhou
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Changsha 410004, China; (C.L.); (M.L.)
- Academy of Camellia Oil Tree, Central South University of Forestry and Technology, Changsha 410000, China
| | - Sen Wang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Changsha 410004, China; (C.L.); (M.L.)
- The Belt and Road International Union Research Center for Tropical Arid Nonwood Forest in Hunan Province, Changsha 410000, China
| | - Yi Long
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Changsha 410004, China; (C.L.); (M.L.)
- Academy of Camellia Oil Tree, Central South University of Forestry and Technology, Changsha 410000, China
| | - Yan Xu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Changsha 410004, China; (C.L.); (M.L.)
- Academy of Camellia Oil Tree, Central South University of Forestry and Technology, Changsha 410000, China
| | - Xiaofeng Tan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Changsha 410004, China; (C.L.); (M.L.)
- Academy of Camellia Oil Tree, Central South University of Forestry and Technology, Changsha 410000, China
| |
Collapse
|
5
|
Lin H, Yao Y, Sun P, Feng L, Wang S, Ren Y, Yu X, Xi Z, Liu J. Haplotype-resolved genomes of two buckwheat crops provide insights into their contrasted rutin concentrations and reproductive systems. BMC Biol 2023; 21:87. [PMID: 37069628 PMCID: PMC10111841 DOI: 10.1186/s12915-023-01587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/31/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Two widely cultivated annual buckwheat crops, Fagopyrum esculentum and F. tataricum, differ from each other in both rutin concentration and reproductive system. However, the underlying genetic mechanisms remain poorly elucidated. RESULTS Here, we report the first haplotype-resolved chromosome-level genome assemblies of the two species. Two haplotype genomes of F. esculentum were assembled as 1.23 and 1.19 Gb with N50 = 9.8 and 12.4 Mb, respectively; the two haplotype genomes of F. tataricum were 453.7 and 446.2 Mb with N50 = 50 and 30 Mb, respectively. We further annotated protein-coding genes of each haplotype genome based on available gene sets and 48 newly sequenced transcriptomes. We found that more repetitive sequences, especially expansion of long terminal repeat retrotransposons (LTR-RTs), contributed to the large genome size of F. esculentum. Based on the well-annotated sequences, gene expressions, and luciferase experiments, we identified the sequence mutations of the promoter regions of two key genes that are likely to have greatly contributed to the high rutin concentration and selfing reproduction in F. tartaricum. CONCLUSIONS Our results highlight the importance of high-quality genomes to identify genetic mutations underlying phenotypic differences between closely related species. F. tataricum may have been experienced stronger selection than F. esculentum through choosing these two non-coding alleles for the desired cultivation traits. These findings further suggest that genetic manipulation of the non-coding promoter regions could be widely employed for breeding buckwheat and other crops.
Collapse
Affiliation(s)
- Hao Lin
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
- State Key Laboratory of Dao-Di Herbs, Beijng, 100700, People's Republic of China
| | - Yingjun Yao
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Pengchuan Sun
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Landi Feng
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Shuo Wang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Yumeng Ren
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Xi Yu
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Zhengxiang Xi
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Jianquan Liu
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China.
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
6
|
Liu C, Xiao P, Jiang F, Wang S, Liu Z, Song G, Li W, Lv T, Li J, Wang D, Li Y, Wu C, Li T. Exogenous gibberellin treatment improves fruit quality in self-pollinated apple. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 174:11-21. [PMID: 35121481 DOI: 10.1016/j.plaphy.2022.01.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Although a few apple (Malus × ×domestica) varieties are self-compatible, little is known about the differences in fruit quality between self- and cross-pollinated apple. In our current study, we compared the fruit quality of self-pollinated apple plants (cultivar 'Hanfu') in self-pollination or cross-pollinated by another cultivar 'Qinguan'. Analysis of fruit quality revealed substantial differences in the external qualities between self- and cross-pollinated apple fruit, but not in the internal qualities. Fruits harvested from self-pollinated 'Hanfu' were smaller and more asymmetrical than those harvested from the cross-pollinated plants. We developed a mathematical model describing how seed number and distribution affect fruit growth. According to this model, the fewer the seeds, the greater the force released from the seeds and the more asymmetrical the fruit. Detection of endogenous hormone and the associated gene expression revealed that gibberellin (GA) levels and GA transporter gene expression on the seedless side were significantly lower than those on the seeded side. Analysis of fruit pectin methylesterase activity and demethylated pectin levels indicated that the lack of GA limits fruit cell wall extension. Additionally, spraying the self-pollinating plants with gibberellic acid increased the fruit weight and lowered the proportion of asymmetrical fruit, recovering the exterior fruit quality to that of the cross-pollinated fruit. Furthermore, exogenous GA treatment increased the wax layer thickness and reduced the fruit water loss rate, leading to a dramatic improvement in fruit storage capacity. Therefore, exogenous GA treatment could be used to ensure regular fruit production of self-pollinated 'Hanfu'.
Collapse
Affiliation(s)
- Chunsheng Liu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
| | - Pengshuai Xiao
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
| | - Feng Jiang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
| | - Shengyuan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
| | - Zhi Liu
- Institute of Pomology, Liaoning Academy of Agricultural Sciences, Yingkou, 115009, China.
| | - Guozhu Song
- Liaoning Green Agriculture Technology Center, Shenyang, 110034, China.
| | - Wei Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
| | - Tianxing Lv
- Institute of Pomology, Liaoning Academy of Agricultural Sciences, Yingkou, 115009, China.
| | - Jun Li
- Liaoning Green Agriculture Technology Center, Shenyang, 110034, China.
| | - Dongmei Wang
- Institute of Pomology, Liaoning Academy of Agricultural Sciences, Yingkou, 115009, China.
| | - Yang Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
| | - Chuanbao Wu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
7
|
Hu J, Xu Q, Liu C, Liu B, Deng C, Chen C, Wei Z, Ahmad MH, Peng K, Wen H, Chen X, Chen P, Larkin RM, Ye J, Deng X, Chai L. Downregulated expression of S 2-RNase attenuates self-incompatibility in "Guiyou No. 1" pummelo. HORTICULTURE RESEARCH 2021; 8:199. [PMID: 34465762 PMCID: PMC8408199 DOI: 10.1038/s41438-021-00634-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Self-incompatibility (SI) substantially restricts the yield and quality of citrus. Therefore, breeding and analyzing self-compatible germplasm is of great theoretical and practical significance for citrus. Here, we focus on the mechanism of a self-compatibility mutation in 'Guiyou No. 1' pummelo (Citrus maxima), which is a spontaneous mutant of 'Shatian' pummelo (Citrus maxima, self-incompatibility). The rate of fruit set and the growth of pollen tubes in the pistil confirmed that a spontaneous mutation in the pistil is responsible for the self-compatibility of 'Guiyou No. 1'. Segregation ratios of the S genotype in F1 progeny, expression analysis, and western blotting validated that the reduced levels of S2-RNase mRNA contribute to the loss of SI in 'Guiyou No. 1'. Furthermore, we report a phased assembly of the 'Guiyou No. 1' pummelo genome and obtained two complete and well-annotated S haplotypes. Coupled with an analysis of SV variations, methylation levels, and gene expression, we identified a candidate gene (CgHB40), that may influence the regulation of the S2-RNase promoter. Our data provide evidence that a mutation that affects the pistil led to the loss of SI in 'Guiyou No. 1' by influencing a poorly understood mechanism that affects transcriptional regulation. This work significantly advances our understanding of the genetic basis of the SI system in citrus and provides information on the regulation of S-RNase genes.
Collapse
Affiliation(s)
- Jianbing Hu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Chenchen Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Binghao Liu
- Guangxi Engineering Research Center of Citrus Breeding and Culture, Guangxi Academy of Specialty Crops, Guilin, 541004, People's Republic of China
| | - Chongling Deng
- Guangxi Engineering Research Center of Citrus Breeding and Culture, Guangxi Academy of Specialty Crops, Guilin, 541004, People's Republic of China
| | - Chuanwu Chen
- Guangxi Engineering Research Center of Citrus Breeding and Culture, Guangxi Academy of Specialty Crops, Guilin, 541004, People's Republic of China
| | - Zhuangmin Wei
- Guangxi Subtropical Crops Research Institute, Nanning, 530001, People's Republic of China
| | - Muhammad Husnain Ahmad
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Kang Peng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hao Wen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xiangling Chen
- Horticulture Research Institute, Guangxi Academy of Agriculture Sciences, Nanning Investigation & Experiment Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning, 530007, Guangxi, People's Republic of China
| | - Peng Chen
- Horticultural Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, People's Republic of China
| | - Robert M Larkin
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Junli Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Lijun Chai
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
8
|
Wu C, Gu Z, Li T, Yu J, Liu C, Fan W, Wang B, Jiang F, Zhang Q, Li W. The apple MdPTI1L kinase is phosphorylated by MdOXI1 during S-RNase-induced reactive oxygen species signaling in pollen tubes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 305:110824. [PMID: 33691959 DOI: 10.1016/j.plantsci.2021.110824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Apple (Malus domestica) exhibits classic S-RNase-mediated gametophytic self-incompatibility. Previous studies have shown that the S-RNase secreted from style cells could trigger signal transduction and defense responses mediated by Ca2+ and reactive oxygen species (ROS) after entering into the pollen tube. In this study, we investigated the downstream genes activated by ROS during S-RNase-mediated gametophytic self-incompatibility in pollen tubes. A substantial increase in ROS, as well as up-regulated expression of a serine-threonine protein kinase gene, OXIDATIVE SIGNAL-INDUCIBLE1 (MdOXI1), was detected in apple pollen tubes treated with self-S-RNase. A kinase assay-linked phosphoproteomics (KALIP) analysis suggested that MdOXI1 could bind and phosphorylate the downstream protein kinase Pto-interacting protein 1-like (MdPTI1L). The phosphorylation level of MdPTI1L was significantly reduced after silencing MdOXI1 with antisense oligonucleotides in the pollen tube. Silencing of either MdOXI1 or MdPTI1L alleviated the inhibitory effect of self-S-RNase on pollen tube growth. Our results thus indicate that MdPTI1L is phosphorylated by MdOXI1 in the pollen tube and participates in the ROS signaling pathway triggered by S-RNase.
Collapse
Affiliation(s)
- Chuanbao Wu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Zhaoyu Gu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Jie Yu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Chunsheng Liu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Wenqi Fan
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Baoan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Feng Jiang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Qiulei Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Wei Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
9
|
Li Y, Wu J, Wu C, Yu J, Liu C, Fan W, Li T, Li W. A mutation near the active site of S-RNase causes self-compatibility in S-RNase-based self-incompatible plants. PLANT MOLECULAR BIOLOGY 2020; 103:129-139. [PMID: 32088832 DOI: 10.1007/s11103-020-00979-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/12/2020] [Indexed: 05/07/2023]
Abstract
The structurally simplest amino acid glycine could make contribution to nuclease activity of S-RNase and self-incompatibility in S-RNase-based plants. S-RNase is regarded as inhibitor of self-pollen tube in S-RNase-based self-incompatibility plants. Certain residues like histidine are necessary for RNase activity and self-incompatibility; however, it is unknown whether any other residues contribute to this. Previously, we identified an association between the self-compatible Chinese pear (Pyrus × bretschneideri) cultivar 'Yanzhuang' (YZ) and a mutation causing a residue shift (glycine-to-valine) in the 2nd conserved region (C2) of S21-RNase; however, it was unclear how this nonpolar aliphatic amino acid substitution caused self-compatibility. In this study, we observed that 'YZ' offspring were self-compatible when S21-RNases were all mutated. In vitro pollen tube (S21S21) growth was not completely arrested by the mutated S21-RNase. Residue frequency analysis showed that the glycine residue is highly conserved in diverse S-RNases across many plant species. We therefore generated a mutated petunia SV'-RNase (glycine to valine) and transformed it into S3LS3L petunia. The transformed pistil could not inhibit SV pollen tubes. Three-dimensional protein prediction suggested that the glycine-to-valine mutation alters the spatial structure near the active site, and RNase activity of mutated S-RNase was reducing. Thus, the glycine residue in the C2 is essential for RNase activity, substitution of this residue leads to a failure of self-incompatibility.
Collapse
Affiliation(s)
- Yang Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Junkai Wu
- College of Horticulture Science and Technology, Hebei Normal University of Science & Technology, Hebei, China
| | - Chuanbao Wu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Jie Yu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Chunsheng Liu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Wenqi Fan
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
| | - Wei Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
10
|
Wang S, Wang S, Zhang W, Zhang Q, Hao L, Zhang Y, Xu C, Yu Y, Wang B, Li T, Jiang F. PbTTG1 forms a ribonucleoprotein complex with polypyrimidine tract-binding protein PbPTB3 to facilitate the long-distance trafficking of PbWoxT1 mRNA. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:424-432. [PMID: 30824022 DOI: 10.1016/j.plantsci.2019.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
The grafting of horticultural crops enables breeders to induce phenotypic changes in rootstocks and scions. A number of signaling molecules, including RNAs and proteins, were recently shown to underlie these changes; however, little is known about the composition of ribonucleoprotein (RNP) complexes or how these macromolecules are transported. Here, we used a polypyrimidine tract-binding protein, PbPTB3, as a bait to screen a library of phloem cDNA from a pear variety 'Du Li' (Pyrus betulaefolia). We identified a new protein constituent of the RNP complex, TRANSPARENT TESTA GLABRA1 (PbTTG1), a WD40 protein that interacts with PbPTB3 to facilitate its transport with PbWoxT1 mRNA through the phloem. Overexpression experiments indicated that PbTTG1 binds to PbPTB3, facilitating its transmission from the leaf through the petiole, while silencing of PbTTG1 expression prevented their translocation. Heterografting experiments also showed that silencing of PbTTG1 prevented the transport of PbPTB3 from the rootstock to the scion. Collectively, these findings established that PbTTG1 binds to PbPTB3 and PbWoxT1 to form an RNP complex, which facilitates their long-distance movement.
Collapse
Affiliation(s)
- Shengnan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Shengyuan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Wenna Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Qiulei Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Li Hao
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yi Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Chaoran Xu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yunfei Yu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Baoan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China.
| | - Feng Jiang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
11
|
Zhang S, Liang M, Wang N, Xu Q, Deng X, Chai L. Reproduction in woody perennial Citrus: an update on nucellar embryony and self-incompatibility. PLANT REPRODUCTION 2018; 31:43-57. [PMID: 29457194 DOI: 10.1007/s00497-018-0327-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 02/14/2018] [Indexed: 05/22/2023]
Abstract
Review on citrus reproduction. Citrus is one of the most important and widely grown fruit crops. It possesses several special reproductive characteristics, such as nucellar embryony and self-incompatibility. The special phenomenon of nucellar embryony in citrus, also known as the polyembryony, is a kind of sporophytic apomixis. During the past decade, the emergence of novel technologies and the construction of multiple citrus reference genomes have facilitated rapid advances to our understanding of nucellar embryony. Indeed, several research teams have preliminarily determined the genetic basis of citrus apomixis. On the other hand, the phenomenon of self-incompatibility that promotes genetic diversity by rejecting self-pollen and accepting non-self-pollen is difficult to study in citrus because the long juvenile period of citrus presents challenges to identifying candidate genes that control this phenomenon. In this review, we focus on advances to our understanding of reproduction in citrus from the last decade and discuss priorities for the coming decade.
Collapse
Affiliation(s)
- Siqi Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Mei Liang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Nan Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lijun Chai
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|