1
|
Cejudo FJ, González MC, Pérez-Ruiz JM. Redox regulation of chloroplast metabolism. PLANT PHYSIOLOGY 2021; 186:9-21. [PMID: 33793865 PMCID: PMC8154093 DOI: 10.1093/plphys/kiaa062] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/16/2020] [Indexed: 05/08/2023]
Abstract
Regulation of enzyme activity based on thiol-disulfide exchange is a regulatory mechanism in which the protein disulfide reductase activity of thioredoxins (TRXs) plays a central role. Plant chloroplasts are equipped with a complex set of up to 20 TRXs and TRX-like proteins, the activity of which is supported by reducing power provided by photosynthetically reduced ferredoxin (FDX) with the participation of a FDX-dependent TRX reductase (FTR). Therefore, the FDX-FTR-TRXs pathway allows the regulation of redox-sensitive chloroplast enzymes in response to light. In addition, chloroplasts contain an NADPH-dependent redox system, termed NTRC, which allows the use of NADPH in the redox network of these organelles. Genetic approaches using mutants of Arabidopsis (Arabidopsis thaliana) in combination with biochemical and physiological studies have shown that both redox systems, NTRC and FDX-FTR-TRXs, participate in fine-tuning chloroplast performance in response to changes in light intensity. Moreover, these studies revealed the participation of 2-Cys peroxiredoxin (2-Cys PRX), a thiol-dependent peroxidase, in the control of the reducing activity of chloroplast TRXs as well as in the rapid oxidation of stromal enzymes upon darkness. In this review, we provide an update on recent findings regarding the redox regulatory network of plant chloroplasts, focusing on the functional relationship of 2-Cys PRXs with NTRC and the FDX-FTR-TRXs redox systems for fine-tuning chloroplast performance in response to changes in light intensity and darkness. Finally, we consider redox regulation as an additional layer of control of the signaling function of the chloroplast.
Collapse
Affiliation(s)
- Francisco Javier Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla—Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
- Author for communication:
| | - María-Cruz González
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla—Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Juan Manuel Pérez-Ruiz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla—Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| |
Collapse
|
2
|
Exploring the Functional Relationship between y-Type Thioredoxins and 2-Cys Peroxiredoxins in Arabidopsis Chloroplasts. Antioxidants (Basel) 2020; 9:antiox9111072. [PMID: 33142810 PMCID: PMC7694023 DOI: 10.3390/antiox9111072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 11/17/2022] Open
Abstract
Thioredoxins (Trxs) are small, ubiquitous enzymes that catalyze disulphide–dithiol interchange in target enzymes. The large set of chloroplast Trxs, including f, m, x and y subtypes, use reducing equivalents fueled by photoreduced ferredoxin (Fdx) for fine-tuning photosynthetic performance and metabolism through the control of the activity of redox-sensitive proteins. Although biochemical analyses suggested functional diversity of chloroplast Trxs, genetic studies have established that deficiency in a particular Trx subtype has subtle phenotypic effects, leading to the proposal that the Trx isoforms are functionally redundant. In addition, chloroplasts contain an NADPH-dependent Trx reductase with a joint Trx domain, termed NTRC. Interestingly, Arabidopsis mutants combining the deficiencies of x- or f-type Trxs and NTRC display very severe growth inhibition phenotypes, which are partially rescued by decreased levels of 2-Cys peroxiredoxins (Prxs). These findings indicate that the reducing capacity of Trxs f and x is modulated by the redox balance of 2-Cys Prxs, which is controlled by NTRC. In this study, we explored whether NTRC acts as a master regulator of the pool of chloroplast Trxs by analyzing its functional relationship with Trxs y. While Trx y interacts with 2-Cys Prxs in vitro and in planta, the analysis of Arabidopsis mutants devoid of NTRC and Trxs y suggests that Trxs y have only a minor effect, if any, on the redox state of 2-Cys Prxs.
Collapse
|
3
|
Kang Z, Qin T, Zhao Z. Thioredoxins and thioredoxin reductase in chloroplasts: A review. Gene 2019; 706:32-42. [DOI: 10.1016/j.gene.2019.04.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/13/2019] [Accepted: 04/15/2019] [Indexed: 10/27/2022]
|
4
|
Guo Y, Li J, Fang Y, Wan Y, Tang J, Wei T, Jiang X, Wang R, Wang M. An event of alternative splicing affects the expression of two BnCYCD3-1-like genes in Brassica napus. Gene 2019; 694:33-41. [PMID: 30716436 DOI: 10.1016/j.gene.2018.12.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/18/2018] [Accepted: 12/27/2018] [Indexed: 01/04/2023]
Abstract
Two full-length cDNAs of the cyclin-D3-1-like gene, named as BnCYCD3-1-like-1 and BnCYCD3-1-like-2 respectively were obtained from Brassica napus, both of which encoded a cell cycle protein CYCD3. Alternative splicing (AS) events of the two genes' transcripts were identified, assigned as BnCYCD3-1-like-1-1, BnCYCD3-1-like-1-2, BnCYCD3-1-like-2-1 and BnCYCD3-1-like-2-2 respectively. BnCYCD3-1-like-1-1 and BnCYCD3-1-like-2-1 were both fully-spliced transcripts which encoded a complete protein containing a LXCXE motif, two cyclin boxes and a PEST domain, while other two alternative splicing transcripts both resulted in the early termination of the protein translation. BnCYCD3-1-like-2-2 retained the third intron, lacking a PEST domain, while BnCYCD3-1-like-1-2 retained all the introns, lacking the C-terminal cyclin domain and a PEST domain. The expression pattern for tissue and development specification of the AS transcripts were investigated. The results showed that the standard splicing transcripts (BnCYCD3-1-like-1-1 and BnCYCD3-1-like-2-1) with complete structural domains were found with the most abundant expression in seeds, followed by leaves, and the least expression in stems. Both of BnCYCD3-1-like-2-1 and BnCYCD3-1-like-2-2 had the highest abundance in leaves, followed by roots. In addition, by applying various biotic and abiotic stresses on Brassica napus, the variations in the expression of each transcript under stress treatment were studied. Also, it was found that AS of the cyclin-D3-1-like gene may play an important role in helping Brassica napus respond to environmental stresses by coordinating the levels of transcripts of standard splicing and alternative splicing.
Collapse
Affiliation(s)
- Yuanyuan Guo
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Jie Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Yan Fang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Yunbao Wan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Jiajia Tang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Tao Wei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Xuefei Jiang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Rui Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Maolin Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China.
| |
Collapse
|
5
|
Cejudo FJ, Ojeda V, Delgado-Requerey V, González M, Pérez-Ruiz JM. Chloroplast Redox Regulatory Mechanisms in Plant Adaptation to Light and Darkness. FRONTIERS IN PLANT SCIENCE 2019; 10:380. [PMID: 31019520 PMCID: PMC6458286 DOI: 10.3389/fpls.2019.00380] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/12/2019] [Indexed: 05/18/2023]
Abstract
Light is probably the most important environmental stimulus for plant development. As sessile organisms, plants have developed regulatory mechanisms that allow the rapid adaptation of their metabolism to changes in light availability. Redox regulation based on disulfide-dithiol exchange constitutes a rapid and reversible post-translational modification, which affects protein conformation and activity. This regulatory mechanism was initially discovered in chloroplasts when it was identified that enzymes of the Calvin-Benson cycle (CBC) are reduced and active during the day and become rapidly inactivated by oxidation in the dark. At present, the large number of redox-sensitive proteins identified in chloroplasts extend redox regulation far beyond the CBC. The classic pathway of redox regulation in chloroplasts establishes that ferredoxin (Fdx) reduced by the photosynthetic electron transport chain fuels reducing equivalents to the large set of thioredoxins (Trxs) of this organelle via the activity of a Fdx-dependent Trx reductase (FTR), hence linking redox regulation to light. In addition, chloroplasts harbor an NADPH-dependent Trx reductase with a joint Trx domain, termed NTRC. The presence in chloroplasts of this NADPH-dependent redox system raises the question of the functional relationship between NTRC and the Fdx-FTR-Trx pathways. Here, we update the current knowledge of these two redox systems focusing on recent evidence showing their functional interrelationship through the action of the thiol-dependent peroxidase, 2-Cys peroxiredoxin (2-Cys Prx). The relevant role of 2-Cys Prxs in chloroplast redox homeostasis suggests that hydrogen peroxide may exert a key function to control the redox state of stromal enzymes. Indeed, recent reports have shown the participation of 2-Cys Prxs in enzyme oxidation in the dark, thus providing an explanation for the long-lasting question of photosynthesis deactivation during the light-dark transition.
Collapse
|
6
|
Ojeda V, Pérez-Ruiz JM, Cejudo FJ. 2-Cys Peroxiredoxins Participate in the Oxidation of Chloroplast Enzymes in the Dark. MOLECULAR PLANT 2018; 11:1377-1388. [PMID: 30292682 DOI: 10.1016/j.molp.2018.09.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 05/29/2023]
Abstract
Most redox-regulated chloroplast enzymes are reduced during the day and oxidized during the night. While the reduction mechanism of light-dependent enzymes is well known, the mechanism mediating their oxidation in the dark remains unknown. The thiol-dependent peroxidases, 2-Cys peroxiredoxins (Prxs), play a key role in light-dependent reduction of chloroplast enzymes. Prxs transfer reducing equivalents of thiols to hydrogen peroxide, suggesting the participation of these peroxidases in enzyme oxidation in the dark. Here, we have addressed this issue by analyzing the redox state of well-known redox-regulated chloroplast enzymes in response to darkness in Arabidopsis thaliana mutants deficient in chloroplast-localized Prxs (2-Cys Prxs A and B, Prx IIE, and Prx Q). Mutant plants lacking 2-Cys Prxs A and B, and plants overexpressing NADPH-dependent thioredoxin (Trx) reductase C showed delayed oxidation of chloroplast enzymes in the dark. In contrast, the deficiencies of Prx IIE or Prx Q exerted no effect. In vitro assays allowed the reconstitution of the pathway of reducing equivalents from reduced fructose 1,6-bisphosphatase to hydrogen peroxide mediated by Trxs and 2-Cys Prxs. Taken together, these results suggest that 2-Cys Prxs participate in the short-term oxidation of chloroplast enzymes in the dark.
Collapse
Affiliation(s)
- Valle Ojeda
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Avenida Américo Vespucio 49, 41092 Sevilla, Spain
| | - Juan Manuel Pérez-Ruiz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Avenida Américo Vespucio 49, 41092 Sevilla, Spain.
| | - Francisco Javier Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Avenida Américo Vespucio 49, 41092 Sevilla, Spain.
| |
Collapse
|
7
|
Full-length transcriptome sequences and the identification of putative genes for flavonoid biosynthesis in safflower. BMC Genomics 2018; 19:548. [PMID: 30041604 PMCID: PMC6057038 DOI: 10.1186/s12864-018-4946-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/19/2018] [Indexed: 12/20/2022] Open
Abstract
Background The flower of the safflower (Carthamus tinctorius L.) has been widely used in traditional Chinese medicine for the ability to improve cerebral blood flow. Flavonoids are the primary bioactive components in safflower, and their biosynthesis has attracted widespread interest. Previous studies mostly used second-generation sequencing platforms to survey the putative flavonoid biosynthesis genes. For a better understanding of transcription data and the putative genes involved in flavonoid biosynthesis in safflower, we carry our study. Results High-quality RNA was extracted from six types of safflower tissue. The RNAs of different tissues were mixed equally and used for multiple size-fractionated libraries (1–2, 2–3 and 3-6 k) library construction. Five cells were carried (2 cells for 1–2 and for 2-3 k libraries and 1 cell for 3-6 k libraries). 10.43Gb clean data and 38,302 de-redundant sequences were captured. 44 unique isoforms were annotated as encoding enzymes involved in flavonoid biosynthesis. The full length flavonoid genes were characterized and their evolutional relationship and expressional pattern were analyzed. They can be divided into eight families, with a large differences in the tissue expression. The temporal expressions under MeJA treatment were also measured, 9 genes are significantly up-regulated and 2 genes are significantly down-regulated. The genes involved in flavonoid synthesis in safflower were predicted in our study. Besides, the SSR and lncRNA are also analyzed in our study. Conclusions Full-length transcriptome sequences were used in our study. The genes involved in flavonoid synthesis in safflower were predicted in our study. Combined the determination of flavonoids, CtC4H2, CtCHS3, CtCHI3, CtF3H3, CtF3H1 are mainly participated in MeJA promoting the synthesis of flavonoids. Our results also provide a valuable resource for further study on safflower. Electronic supplementary material The online version of this article (10.1186/s12864-018-4946-9) contains supplementary material, which is available to authorized users.
Collapse
|
8
|
Ojeda V, Nájera VA, González M, Pérez-Ruiz JM, Cejudo FJ. Photosynthetic activity of cotyledons is critical during post-germinative growth and seedling establishment. PLANT SIGNALING & BEHAVIOR 2017; 12:e1347244. [PMID: 28692378 PMCID: PMC5640197 DOI: 10.1080/15592324.2017.1347244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/21/2017] [Accepted: 06/21/2017] [Indexed: 05/18/2023]
Abstract
Thioredoxins (Trxs) play a relevant role in thiol-dependent redox regulation, which allows the rapid adaptation of chloroplast metabolism to unpredictable environmental conditions. In chloroplasts, Trxs use reducing equivalents provided by photoreduced ferredoxin (Fdx) via the action of a ferredoxin-thioredoxin reductase (FTR), thus linking redox regulation to light. In addition, these organelles contain an NADPH-thioredoxin reductase, NTRC, with a Trx domain at the C-terminus. NTRC efficiently reduces 2-Cys peroxiredoxins (Prxs), hence having antioxidant function. However, NTRC also participates in the redox regulation of processes, such as starch and chlorophyll biosynthesis, which are known to be regulated by Trxs. Thus, the question arising is whether there is a cross-talk between the 2 redox systems. Arabidopsis mutants simultaneously devoid of NTRC and Trx x or Trxs f show a dramatic growth inhibition phenotype, indicating that NTRC is required for the function of these unrelated Trxs. Remarkably, both the ntrc-trxx double mutant and, to a higher extent, the ntrc-trxf1f2 triple mutant show high mortality at the seedling stage, which is rescued by sucrose. These findings show the relevant role of redox regulation for chloroplast performance and uncover the key function of cotyledons chloroplasts at the transition to autotrophic metabolism during seedling establishment.
Collapse
Affiliation(s)
- Valle Ojeda
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda Américo Vespucio, Spain
| | - Victoria A. Nájera
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda Américo Vespucio, Spain
| | - Maricruz González
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda Américo Vespucio, Spain
| | - Juan M. Pérez-Ruiz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda Américo Vespucio, Spain
| | - Francisco J. Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda Américo Vespucio, Spain
- CONTACT Francisco J. Cejudo Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda Américo Vespucio, 49, 41092-Sevilla, Spain
| |
Collapse
|