1
|
Yan H, Peng Z, Zhang H, Wang B, Xu W, He Z. Cadmium Minimization in Crops: A Trade-Off With Mineral Nutrients in Safe Breeding. PLANT, CELL & ENVIRONMENT 2025; 48:838-851. [PMID: 39351608 DOI: 10.1111/pce.15182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/27/2024] [Accepted: 09/15/2024] [Indexed: 12/06/2024]
Abstract
Cadmium (Cd) contamination poses a threat to global crop safety. To address this issue, researchers mainly focused on the Cd, explored mechanism of accumulation to low-Cd breeding technologies and created several low-Cd varieties over the past decades. However, new challenges have emerged, particularly the yield reduction due to disturbances in mineral nutrient balance. The goals of breeding have been transferred from a primary focus on 'low-Cd crops' to 'low-Cd/nutrient-balanced' crops, which means limiting Cd content while maintaining other nutrient elements like iron (Fe), manganese (Mn) and zinc (Zn) at a proper content, thus to meet the future agricultural demands. Here, on a multielement perspective, we reviewed the mechanisms of Cd and mineral nutrient transport system in crops and summarized the research advances in Cd minimization through artificial mutations, natural variations and genetic engineering. Furthermore, the challenge of disruption of mineral nutrients in low-Cd crops was discussed and two potential approaches designing Cd-mineral nutrient-optimized artificial transporters and pyramiding Cd-mineral nutrient-optimized variations were proposed. Aiming at addressing these challenges, these approaches represent promising advancements in the field and offer potential pathways for future research and development in the creation of safe and high-quality crops.
Collapse
Affiliation(s)
- Huili Yan
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Zhimei Peng
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hezifan Zhang
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Binghan Wang
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenxiu Xu
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Zhenyan He
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| |
Collapse
|
2
|
Noor I, Sohail H, Akhtar MT, Cui J, Lu Z, Mostafa S, Hasanuzzaman M, Hussain S, Guo N, Jin B. From stress to resilience: Unraveling the molecular mechanisms of cadmium toxicity, detoxification and tolerance in plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176462. [PMID: 39332719 DOI: 10.1016/j.scitotenv.2024.176462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
Soil contamination with cadmium (Cd) has become a global issue due to increasing human activities. Cd contamination poses threats to plant growth as well as jeopardizing food safety and human health through the accumulation of Cd in edible parts of plants. Unraveling the Cd toxicity mechanisms and responses of plants to Cd stress is critical for promoting plant growth and ensuring food safety in Cd-contaminated soils. Toxicological research on plant responses to heavy metal stress has extensively studied Cd, as it can disrupt multiple physiological processes. In addition to morpho-anatomical, hormonal, and biochemical responses, plants rapidly initiate transcriptional modifications to combat Cd stress-induced oxidative and genotoxic damage. Various families of transcription factors play crucial roles in triggering such responses. Moreover, epigenetic modifications have been identified as essential players in maintaining plant genome stability under genotoxic stress. Plants have developed several detoxification strategies to mitigate Cd-induced toxicity, such as cell-wall binding, complexation, vacuolar sequestration, efflux, and translocation. This review provides a comprehensive update on understanding of molecular mechanisms involved in Cd uptake, transportation, and detoxification, with a particular emphasis on the signaling pathways that involve transcriptional and epigenetic responses in plants. This review highlights the innovative strategies for enhancing Cd tolerance and explores their potential application in various crops. Furthermore, this review offers strategies for increasing Cd tolerance and limiting Cd bioavailability in edible parts of plants, thereby improving the safety of food crops.
Collapse
Affiliation(s)
- Iqra Noor
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China
| | - Hamza Sohail
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China
| | - Muhammad Tanveer Akhtar
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China
| | - Jiawen Cui
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China
| | - Zhaogeng Lu
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China
| | - Salma Mostafa
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Sajjad Hussain
- Citrus Centre, Texas A&M University-Kingsville, Weslaco 78599, United States of America
| | - Nan Guo
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China
| | - Biao Jin
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China.
| |
Collapse
|
3
|
Kaushik S, Ranjan A, Sidhu A, Singh AK, Sirhindi G. Cadmium toxicity: its' uptake and retaliation by plant defence system and ja signaling. Biometals 2024; 37:755-772. [PMID: 38206521 DOI: 10.1007/s10534-023-00569-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024]
Abstract
Cadmium (Cd+2) renders multifarious environmental stresses and highly toxic to nearly all living organisms including plants. Cd causes toxicity by unnecessary augmentation of ROS that targets essential molecules and fundamental processes in plants. In response, plants outfitted a repertory of mechanisms to offset Cd toxicity. The main elements of these are Cd chelation, sequestration into vacuoles, and adjustment of Cd uptake by transporters and escalation of antioxidative mechanism. Signal molecules like phytohormones and reactive oxygen species (ROS) activate the MAPK cascade, the activation of the antioxidant system andsynergistic crosstalk between different signal molecules in order to regulate plant responses to Cd toxicity. Transcription factors like WRKY, MYB, bHLH, bZIP, ERF, NAC etc., located downstream of MAPK, and are key factors in regulating Cd toxicity responses in plants. Apart from this, MAPK and Ca2+signaling also have a salient involvement in rectifying Cd stress in plants. This review highlighted the mechanism of Cd uptake, translocation, detoxification and the key role of defense system, MAPKs, Ca2+ signals and jasmonic acid in retaliating Cd toxicity via synchronous management of various other regulators and signaling components involved under stress condition.
Collapse
Affiliation(s)
- Shruti Kaushik
- Department of Botany, Punjabi University, Patiala, Punjab, 147002, India
| | - Alok Ranjan
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- Department of Biotechnology, Patna Women's College, Bihar, 800001, India
| | - Anmol Sidhu
- Department of Botany, Punjabi University, Patiala, Punjab, 147002, India
| | - Anil Kumar Singh
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Geetika Sirhindi
- Department of Botany, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
4
|
Zhang X, Yang M, Yang H, Pian R, Wang J, Wu AM. The Uptake, Transfer, and Detoxification of Cadmium in Plants and Its Exogenous Effects. Cells 2024; 13:907. [PMID: 38891039 PMCID: PMC11172145 DOI: 10.3390/cells13110907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Cadmium (Cd) exerts a toxic influence on numerous crucial growth and development processes in plants, notably affecting seed germination rate, transpiration rate, chlorophyll content, and biomass. While considerable advances in Cd uptake and detoxification of plants have been made, the mechanisms by which plants adapt to and tolerate Cd toxicity remain elusive. This review focuses on the relationship between Cd and plants and the prospects for phytoremediation of Cd pollution. We highlight the following issues: (1) the present state of Cd pollution and its associated hazards, encompassing the sources and distribution of Cd and the risks posed to human health; (2) the mechanisms underlying the uptake and transport of Cd, including the physiological processes associated with the uptake, translocation, and detoxification of Cd, as well as the pertinent gene families implicated in these processes; (3) the detrimental effects of Cd on plants and the mechanisms of detoxification, such as the activation of resistance genes, root chelation, vacuolar compartmentalization, the activation of antioxidant systems and the generation of non-enzymatic antioxidants; (4) the practical application of phytoremediation and the impact of incorporating exogenous substances on the Cd tolerance of plants.
Collapse
Affiliation(s)
- Xintong Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Man Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Hui Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Ruiqi Pian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Jinxiang Wang
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Agricultural and Rural Pollution Control and Environmental Safety in Guangdong Province, Guangzhou 510642, China
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| |
Collapse
|
5
|
Ma C, Zhang Q, Guo Z, Guo X, Song W, Ma H, Zhou Z, Zhuo R, Zhang H. Copper-dependent control of uptake, translocation and accumulation of cadmium in hyperaccumlator Sedum alfredii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171024. [PMID: 38387586 DOI: 10.1016/j.scitotenv.2024.171024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Cadmium (Cd) is detrimental to plant growth and threatens human health. Here, we investigated the potential for remediation of Cd-contaminated soil with high copper (Cu) background using Cd hyperaccumulator ecotype (HE) Sedum alfredii. We assessed effects of Cu on Cd accumulation, compartmentation and translocation in HE S. alfredii, and compared with those in a related non-accumulator ecotype (NHE). We found that Cu supply significantly induced Cd accumulation in roots and shoots of long-term soil-cultivated HE S. alfredii. A large fraction of root Cd was accumulated in the organelles, but a small fraction was stored in the cell wall. Importantly, Cu addition reduced Cd accumulation in the cell wall and the organelles in root cells. Furthermore, leaf cell capacity to sequestrate Cd in the organelles was greatly improved upon Cu exposure. We also found that genes involving metal transport and cell wall remodeling were distinctly regulated to mediate Cd accumulation in HE S. alfredii. These findings indicate that Cu-dependent decrease of root cell-wall-bound Cd, and stimulation of efflux/influx of organelle Cd transport in root and leaf cells plays a role in the dramatic Cd hyperaccumulation expressed in naturally survived HE S. alfredii.
Collapse
Affiliation(s)
- Chunjie Ma
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Qi Zhang
- Department of Life Science, Tangshan Normal University, Tangshan 063000, China
| | - Zhaoyuan Guo
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Xiaonuo Guo
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Wenhua Song
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Hanhan Ma
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Zhongle Zhou
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Renying Zhuo
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Haiyan Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
6
|
Li H, Song Liu X, Sun D, Min Yang Z. A long non-coding RNA associated with H3K7me3 methylation negatively regulates OsZIP16 transcription under cadmium stress. Gene 2024; 901:148173. [PMID: 38242376 DOI: 10.1016/j.gene.2024.148173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/07/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Cadmium (Cd) is a toxic environmental pollutant, posing a high risk to crop production and human health. However, the genetic mechanisms for regulation of Cd accumulation in crops are poorly understood. In this study, we functionally identified a novel long non-coding RNA (lncRNA, TCONS_00502780) that repressed a locus encoding an uncharacterized metal transporter ZIP16 (ZRT/IRT-like Protein) in rice. LncRNA-OsZIP16 (L16) is resident in the antisense strand of OsZIP16. Both L16 and OsZIP16 were transcriptionally expressed during the life cycle, but under Cd stress the L16 transcription was repressed, whereas the OsZIP16 expression was upregulated. OsZIP16 is localized to the endoplasmic reticulum. Knocking out OsZIP16 by CRISPR-Cas9 (C16) resulted in Cd sensitivity, manifested by reduced plant growth and intense cellular damage with a slightly higher Cd translocation from roots to shoots, suggesting that OsZIP16 expression is required for rice growth and development under Cd stress. Conversely, OsZIP16 constitutive overexpression (OE16) lines displayed a growth phenotype compatible to the wide-type with lower Cd translocation ratio from roots to shoots. L16 knock-down lines by RNA interference (L16-R) showed a similar phenotype to the OE16 lines, while the L16 overexpression (L16-OE) lines were phenotypically similar to the C16 lines. The OsZIP16 transcription was upregulated in the L16-R lines but downregulated in the L16-OE lines. Using an antibody against the trimethylation of histone H3 lysine 27 (H3K27me3) followed by chromatin immunoprecipitation (ChIP), we found the reduced H3K27me3 methylation marks surrounding the OsZIP16 gene under Cd stress. Further examination of H3K27me3 in the L16-R lines revealed that the methylation levels were also significantly lower than those in WT. Taken together, these data suggest that the L16 could negatively regulate the OsZIP16 transcriptional expression through an epigenetic mechanism for rice adaption to Cd stress.
Collapse
Affiliation(s)
- He Li
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xue Song Liu
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Di Sun
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhi Min Yang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
7
|
Dong Q, Wu Y, Wang H, Li B, Huang R, Li H, Tao Q, Li Q, Tang X, Xu Q, Luo Y, Wang C. Integrated morphological, physiological and transcriptomic analyses reveal response mechanisms of rice under different cadmium exposure routes. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133688. [PMID: 38310845 DOI: 10.1016/j.jhazmat.2024.133688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/04/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
Rice (Oryza sativa) is one of the major cereal crops and takes up cadmium (Cd) more readily than other crops. Understanding the mechanism of Cd uptake and defense in rice can help us avoid Cd in the food chain. However, studies comparing Cd uptake, toxicity, and detoxification mechanisms of leaf and root Cd exposure at the morphological, physiological, and transcriptional levels are still lacking. Therefore, experiments were conducted in this study and found that root Cd exposure resulted in more severe oxidative and photosynthetic damage, lower plant biomass, higher Cd accumulation, and transcriptional changes in rice than leaf Cd exposure. The activation of phenylpropanoids biosynthesis in both root and leaf tissues under different Cd exposure routes suggests that increased lignin is the response mechanism of rice under Cd stress. Moreover, the roots of rice are more sensitive to Cd stress and their adaptation responses are more pronounced than those of leaves. Quantitative PCR revealed that OsPOX, OsCAD, OsPAL and OsCCR play important roles in the response to Cd stress, which further emphasize the importance of lignin. Therefore, this study provides theoretical evidence for future chemical and genetic regulation of lignin biosynthesis in crop plants to reduce Cd accumulation.
Collapse
Affiliation(s)
- Qin Dong
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yingjie Wu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| | - Haidong Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Bing Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Rong Huang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiquan Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoyan Tang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiang Xu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Youlin Luo
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Changquan Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
8
|
Li J, Zhang Z, Shi G. Genome-Wide Identification and Expression Profiling of Heavy Metal ATPase (HMA) Genes in Peanut: Potential Roles in Heavy Metal Transport. Int J Mol Sci 2024; 25:613. [PMID: 38203784 PMCID: PMC10779257 DOI: 10.3390/ijms25010613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/29/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024] Open
Abstract
The heavy metal ATPase (HMA) family belongs to the P-type ATPase superfamily and plays an essential role in the regulation of metal homeostasis in plants. However, the gene family has not been fully investigated in peanut. Here, a genome-wide identification and bioinformatics analysis was performed on AhHMA genes in peanut, and the expression of 12 AhHMA genes in response to Cu, Zn, and Cd was evaluated in two peanut cultivars (Silihong and Fenghua 1) differing in Cd accumulation. A total of 21 AhHMA genes were identified in the peanut genome, including ten paralogous gene pairs derived from whole-genome duplication, and an additional gene resulting from tandem duplication. AhHMA proteins could be divided into six groups (I-VI), belonging to two clades (Zn/Co/Cd/Pb-ATPases and Cu/Ag-ATPases). Most AhHMA proteins within the same clade or group generally have a similar structure. However, significant divergence exists in the exon/intron organization even between duplicated gene pairs. RNA-seq data showed that most AhHMA genes are preferentially expressed in roots, shoots, and reproductive tissues. qRT-PCR results revealed that AhHMA1.1/1.2, AhHMA3.1/3.2, AhHMA7.1/7.4, and AhHMA8.1 might be involved in Zn transport in peanut plants, while AhHMA3.2 and AhHMA7.5 might be involved in Cd transport. Our findings provide clues to further characterize the functions of AhHMA genes in metal uptake and translocation in peanut plants.
Collapse
Affiliation(s)
| | | | - Gangrong Shi
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China; (J.L.); (Z.Z.)
| |
Collapse
|
9
|
Xu W, Huang H, Li X, Yang M, Chi S, Pan Y, Li N, Paterson AH, Chai Y, Lu K. CaHMA1 promotes Cd accumulation in pepper fruit. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132480. [PMID: 37683343 DOI: 10.1016/j.jhazmat.2023.132480] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/10/2023]
Abstract
The main planting areas for pepper (Capsicum sp.) are high in cadmium (Cd), which is the most prevalent heavy metal pollutant worldwide. Breeding pepper cultivars with low Cd levels can promote sustainable agricultural production and ensure the safety of pepper products. To identify breeding targets for reducing Cd accumulation in pepper fruits, we performed a genome-wide association study on 186 accessions. Polymorphisms were associated with fruit Cd content in a genomic region containing a homolog of Arabidopsis (Arabidopsis thaliana) Heavy metal-transporting ATPase 1 (HMA1) encoding a P-type ATPase. In two cultivars with contrasting Cd accumulation, transcriptome analysis revealed differentially expressed genes enriched for carbohydrate metabolism and photosynthesis in fruits with high Cd accumulation, and a Cd2+/Zn2+-exporting ATPase gene (HMA). Heterologous expression of CaHMA1 in yeast increases Cd sensitivity. Overexpression of CaHMA1 conferred a severe increase in Cd content in Arabidopsis plants, whereas reduced CaHMA1 expression in pepper fruits decreased Cd content. We propose that CaHMA1 expression may be an important component of the high Cd accumulation in pepper plants.
Collapse
Affiliation(s)
- Weihong Xu
- College of Resources and Environmental Sciences, Southwest University, Chongqing 400715, China
| | - He Huang
- College of Resources and Environmental Sciences, Southwest University, Chongqing 400715, China
| | - Xiaodong Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Mei Yang
- College of Resources and Environmental Sciences, Southwest University, Chongqing 400715, China
| | - Sunlin Chi
- College of Resources and Environmental Sciences, Southwest University, Chongqing 400715, China
| | - Yu Pan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Nannan Li
- College of Resources and Environmental Sciences, Southwest University, Chongqing 400715, China
| | - Andrew H Paterson
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30605, USA.
| | - Yourong Chai
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China.
| | - Kun Lu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
10
|
Zhang LD, Song LY, Dai MJ, Liu JY, Li J, Xu CQ, Guo ZJ, Song SW, Liu JW, Zhu XY, Zheng HL. Inventory of cadmium-transporter genes in the root of mangrove plant Avicennia marina under cadmium stress. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132321. [PMID: 37597395 DOI: 10.1016/j.jhazmat.2023.132321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
Mangrove Avicennia marina has the importantly potential for cadmium (Cd) pollution remediation in coastal wetlands. Unfortunately, the molecular mechanisms and transporter members for Cd uptake by the roots of A. marina are not well documented. In this study, photosynthetic and phenotypic analysis indicated that A. marina is particularly tolerant to Cd. The content and flux analysis indicated that Cd is mainly retained in the roots, with greater Cd influx in fine roots than that in coarse roots, and higher Cd influx in the root meristem zone as well. Using transcriptomic analysis, a total of 5238 differentially expressed genes were identified between the Cd treatment and control group. Moreover, we found that 54 genes were responsible for inorganic ion transport. Among these genes, AmHMA2, AmIRT1, and AmPCR2 were localized in the plasma membrane and AmZIP1 was localized in both plasma membrane and cytoplasm. All above gene encoding transporters showed significant Cd transport activities using function assay in yeast cells. In addition, the overexpression of AmZIP1 or AmPCR2 in Arabidopsis improved the Cd tolerance of transgenic plants. This is particularly significant as it provides insight into the molecular mechanism for Cd uptake by the roots of mangrove plants and a theoretical basis for coastal wetland phytoremediation.
Collapse
Affiliation(s)
- Lu-Dan Zhang
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Ling-Yu Song
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Ming-Jin Dai
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Jin-Yu Liu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Jing Li
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Chao-Qun Xu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Ze-Jun Guo
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Shi-Wei Song
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Jing-Wen Liu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Xue-Yi Zhu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Hai-Lei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China.
| |
Collapse
|
11
|
Wang X, Komatsu S. Subcellular Proteomics to Elucidate Soybean Response to Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:2865. [PMID: 37571018 PMCID: PMC10421527 DOI: 10.3390/plants12152865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
Climate change jeopardizes soybean production by declining seed yield and quality. In this review, the morphophysiological alterations of soybean in response to abiotic stress are summarized, followed by illustrations of cellular metabolisms and regulatory mechanisms to organellar stress based on subcellular proteomics. This highlights the communications associated with reactive oxygen species scavenging, molecular chaperones, and phytohormone signals among subcellular compartments. Given the complexity of climate change and the limitations of plants in coping with multiple abiotic stresses, a generic response to environmental constraints is proposed between calcium and abscisic acid signals in subcellular organelles. This review summarizes the findings of subcellular proteomics in stressed soybean and discusses the future prospects of subcellular proteomics for promoting the improvement of climate-tolerant crops.
Collapse
Affiliation(s)
- Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China;
| | - Setsuko Komatsu
- Faculty of Environmental and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| |
Collapse
|
12
|
Zheng X, Zhang B, Pan N, Cheng X, Lu W. Hydrogen Sulfide Alleviates Cadmium Stress by Enhancing Photosynthetic Efficiency and Regulating Sugar Metabolism in Wheat Seedlings. PLANTS (BASEL, SWITZERLAND) 2023; 12:2413. [PMID: 37446974 DOI: 10.3390/plants12132413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
Hydrogen sulfide (H2S) plays prominent multifunctional roles in the mediation of various physiological processes and stress responses to plants. In this study, hydroponic experiments were carried out to explore the effects of NaHS pretreatment on the growth of wheat (Triticum aestivum L.) under 50 μM cadmium (Cd). Compared with Cd treatment alone, 50 μM NaHS pretreatment increased the plant height, soluble sugar content of shoots and roots, and dry weight of shoots and roots under Cd stress, while the Cd concentration of shoots and roots was significantly reduced by 18.1% and 25.9%, respectively. Meanwhile, NaHS pretreatment protected the photosynthetic apparatus by increasing the net photosynthetic rate and PSII electron transportation rate of wheat leaves under Cd stress. NaHS pretreatment significantly increased the soluble sugar content to maintain the osmotic pressure balance of the leaf cells. The gene expression results associated with photosynthetic carbon assimilation and sucrose synthesis in wheat leaves suggested that the NaHS pretreatment significantly up-regulated the expression of TaRBCL, TaRBCS, and TaPRK, while it down-regulated the expression of TaFBA, TaSuSy, TaSAInv, and TaA/NInv. In summary, NaHS pretreatment improved the resistance of wheat seedlings under Cd stress by increasing the rate of photosynthesis and regulating the expression of genes related to sugar metabolism.
Collapse
Affiliation(s)
- Xiang Zheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Bei Zhang
- College of Life Sciences, Westlake University, Hangzhou 310000, China
| | - Ni Pan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xue Cheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Lu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
13
|
Rai PK, Sonne C, Kim KH. Heavy metals and arsenic stress in food crops: Elucidating antioxidative defense mechanisms in hyperaccumulators for food security, agricultural sustainability, and human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162327. [PMID: 36813200 DOI: 10.1016/j.scitotenv.2023.162327] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/02/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
The spread of heavy metal(loid)s at soil-food crop interfaces has become a threat to sustainable agricultural productivity, food security, and human health. The eco-toxic effects of heavy metals on food crops can be manifested through reactive oxygen species that have the potential to disturb seed germination, normal growth, photosynthesis, cellular metabolism, and homeostasis. This review provides a critical overview of stress tolerance mechanisms in food crops/hyperaccumulator plants against heavy metals and arsenic (HM-As). The HM-As antioxidative stress tolerance in food crops is associated with changes in metabolomics (physico-biochemical/lipidomics) and genomics (molecular level). Furthermore, HM-As stress tolerance can occur through plant-microbe, phytohormone, antioxidant, and signal molecule interactions. Information regarding the avoidance, tolerance, and stress resilience of HM-As should help pave the way to minimize food chain contamination, eco-toxicity, and health risks. Advanced biotechnological approaches (e.g., genome modification with CRISPR-Cas9 gene editing) in concert with traditional sustainable biological methods are useful options to develop 'pollution safe designer cultivars' with increased climate change resilience and public health risks mitigation. Further, the usage of HM-As tolerant hyperaccumulator biomass in biorefineries (e.g., environmental remediation, value added chemicals, and bioenergy) is advocated to realize the synergy between biotechnological research and socio-economic policy frameworks, which are inextricably linked with environmental sustainability. The biotechnological innovations, if directed toward 'cleaner climate smart phytotechnologies' and 'HM-As stress resilient food crops', should help open the new path to achieve sustainable development goals (SDGs) and a circular bioeconomy.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Department of Environmental Science, Mizoram University, Aizawl 796004, India
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
14
|
Advances in Genes-Encoding Transporters for Cadmium Uptake, Translocation, and Accumulation in Plants. TOXICS 2022; 10:toxics10080411. [PMID: 35893843 PMCID: PMC9332107 DOI: 10.3390/toxics10080411] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 12/12/2022]
Abstract
Cadmium (Cd) is a heavy metal that is highly toxic for plants, animals, and human beings. A better understanding of the mechanisms involved in Cd accumulation in plants is beneficial for developing strategies for either the remediation of Cd-polluted soils using hyperaccumulator plants or preventing excess Cd accumulation in the edible parts of crops and vegetables. As a ubiquitous heavy metal, the transport of Cd in plant cells is suggested to be mediated by transporters for essential elements such as Ca, Zn, K, and Mn. Identification of the genes encoding Cd transporters is important for understanding the mechanisms underlying Cd uptake, translocation, and accumulation in either crop or hyperaccumulator plants. Recent studies have shown that the transporters that mediate the uptake, transport, and accumulation of Cd in plants mainly include members of the natural resistance-associated macrophage protein (Nramp), heavy metal-transporting ATPase (HMA), zinc and iron regulated transporter protein (ZIP), ATP-binding cassette (ABC), and yellow stripe-like (YSL) families. Here, we review the latest advances in the research of these Cd transporters and lay the foundation for a systematic understanding underlying the molecular mechanisms of Cd uptake, transport, and accumulation in plants.
Collapse
|
15
|
Luo K, Liu H, Liu Q, Tu Y, Yu E, Xing D. Cadmium accumulation and migration of 3 peppers varieties in yellow and limestone soils under geochemical anomaly. ENVIRONMENTAL TECHNOLOGY 2022; 43:10-20. [PMID: 32431241 DOI: 10.1080/09593330.2020.1772375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The high geological background of heavy metal cadmium (Cd) in geochemical anomaly areas in Southwest China and the anthropogenic pollution superposition effect in some typical areas due to mining exploitation have attracted special attention for several decades. The accumulation and migration of Cd in the farmland soil-crop system was worth discussing. In this study, the representative yellow soil and limestone soil in Guizhou Province, as well as three types of pepper (Capsicum annuum L.) were selected to investigate Cd accumulation and migration regulation from soil to plants using pot tests at different Cd concentration levels. For red cluster pepper, line pepper and hybrid pepper, the accumulation capacity of Cd in various parts was similar as follows: Cdroot > Cdstem ≈ Cdleaf > Cdfruit. The differences in the Cd concentration between pepper varieties were as follows: Cd in line pepper roots was higher than that in red cluster pepper and hybrid pepper, but for leaves and fruits, the Cd concentration of red cluster pepper was higher than the others. A higher accumulation and lower transport capacity of Cd in yellow soil as well as a lower accumulation and higher transport capacity of Cd in limestone soil were achieved based on the results of enrichment coefficients and transport coefficients in yellow soil. The red pepper Cd concentration was higher than that of the other two types. The accumulation and transformation of Cd for peppers in yellow soil is more significant (p < 0.05), which results in a higher risk of migration through the food chain.
Collapse
Affiliation(s)
- Kai Luo
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, People's Republic of China
| | - Hongyan Liu
- College of Agriculture, Guizhou University, Guiyang, People's Republic of China
| | - Qingdong Liu
- College of Agriculture, Guizhou University, Guiyang, People's Republic of China
| | - Yu Tu
- College of Agriculture, Guizhou University, Guiyang, People's Republic of China
| | - Enjiang Yu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, People's Republic of China
| | - Dan Xing
- Guizhou Academy of Agricultural Sciences, Guiyang, People's Republic of China
| |
Collapse
|
16
|
Wu D, Saleem M, He T, He G. The Mechanism of Metal Homeostasis in Plants: A New View on the Synergistic Regulation Pathway of Membrane Proteins, Lipids and Metal Ions. MEMBRANES 2021; 11:membranes11120984. [PMID: 34940485 PMCID: PMC8706360 DOI: 10.3390/membranes11120984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/04/2021] [Accepted: 12/11/2021] [Indexed: 12/15/2022]
Abstract
Heavy metal stress (HMS) is one of the most destructive abiotic stresses which seriously affects the growth and development of plants. Recent studies have shown significant progress in understanding the molecular mechanisms underlying plant tolerance to HMS. In general, three core signals are involved in plants' responses to HMS; these are mitogen-activated protein kinase (MAPK), calcium, and hormonal (abscisic acid) signals. In addition to these signal components, other regulatory factors, such as microRNAs and membrane proteins, also play an important role in regulating HMS responses in plants. Membrane proteins interact with the highly complex and heterogeneous lipids in the plant cell environment. The function of membrane proteins is affected by the interactions between lipids and lipid-membrane proteins. Our review findings also indicate the possibility of membrane protein-lipid-metal ion interactions in regulating metal homeostasis in plant cells. In this review, we investigated the role of membrane proteins with specific substrate recognition in regulating cell metal homeostasis. The understanding of the possible interaction networks and upstream and downstream pathways is developed. In addition, possible interactions between membrane proteins, metal ions, and lipids are discussed to provide new ideas for studying metal homeostasis in plant cells.
Collapse
Affiliation(s)
- Danxia Wu
- College of Agricultural, Guizhou University, Guiyang 550025, China;
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA;
| | - Tengbing He
- College of Agricultural, Guizhou University, Guiyang 550025, China;
- Institute of New Rural Development, West Campus, Guizhou University, Guiyang 550025, China
- Correspondence: (T.H.); (G.H.)
| | - Guandi He
- College of Agricultural, Guizhou University, Guiyang 550025, China;
- Correspondence: (T.H.); (G.H.)
| |
Collapse
|
17
|
Cheng Y, Yang T, Xiang W, Li S, Fan X, Sha L, Kang H, Wu D, Zhang H, Zeng J, Zhou Y, Wang Y. Ammonium-nitrogen addition at the seedling stage does not reduce grain cadmium concentration in two common wheat (Triticum aestivum L.) cultivars. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117575. [PMID: 34130116 DOI: 10.1016/j.envpol.2021.117575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/26/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
High cadmium (Cd) concentration in common wheat (Triticum aestivum L.) grains poses potential health risks. Several management strategies have been used to reduce grain Cd concentration. However, limited information is available on the use of ammonium-nitrogen (NH4+-N) as a strategy to manage Cd concentration in wheat grains. In this study, NH4+-N addition at the seedling stage unchanged the grain Cd concentration in the high-Cd accumulator, Zhoumai 18 (ZM18), but dramatically increased that in the low-Cd accumulator, Yunmai 51 (YM51). Further analysis revealed that the effects of NH4+-N addition on whole-plant Cd absorption, root-to-shoot Cd translocation, and shoot-to-grain Cd remobilization were different between the two wheat cultivars. In ZM18, NH4+-N addition did not change whole-plant Cd absorption, but inhibited root-to-shoot Cd translocation and Cd remobilization from lower internodes, lower leaves, node 1, and internode 1 to grains via the down-regulation of yellow stripe-like transporters (YSL), zinc transporters (ZIP5, ZIP7, and ZIP10), and heavy-metal transporting ATPases (HMA2). This inhibition decreased the grain Cd content by 29.62%, which was consistent with the decrease of the grain dry weight by 23.26%, leading to unchanged grain Cd concentration in ZM18. However, in YM51, NH4+-N addition promoted continuous Cd absorption during grain filling, root-to-shoot Cd translocation and whole-plant Cd absorption. The absorbed Cd was directly transported to internode 1 via the xylem and then re-transported to grains via the phloem by up-regulated YSL, ZIP5, and copper transporters (COPT4). This promotion increased the grain Cd content by 245.35%, which was higher than the increased grain dry weight by 132.89%, leading to increased grain Cd concentration in YM51. Our findings concluded that the addition of NH4+-N fertilizer at the seedling stage is not suitable for reducing grain Cd concentration in common wheat cultivars.
Collapse
Affiliation(s)
- Yiran Cheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Tian Yang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Wenhui Xiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Siyu Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Lina Sha
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Dandan Wu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Haiqin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China.
| |
Collapse
|
18
|
Jogawat A, Yadav B, Narayan OP. Metal transporters in organelles and their roles in heavy metal transportation and sequestration mechanisms in plants. PHYSIOLOGIA PLANTARUM 2021; 173:259-275. [PMID: 33586164 DOI: 10.1111/ppl.13370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/23/2021] [Accepted: 02/11/2021] [Indexed: 05/19/2023]
Abstract
Heavy metal toxicity is one of the major concerns for agriculture and health. Accumulation of toxic heavy metals at high concentrations in edible parts of crop plants is the primary cause of disease in humans and cattle. A dramatic increase in industrialization, urbanization, and other high anthropogenic activities has led to the accumulation of heavy metals in agricultural soil, which has consequently disrupted soil conditions and affected crop yield. By now, plants have developed several mechanisms to cope with heavy metal stress. However, not all plants are equally effective in dealing with the toxicity of high heavy metal concentrations. Plants have modified their anatomy, morphophysiology, and molecular networks to survive under changing environmental conditions. Heavy metal sequestration is one of the essential processes evolved by some plants to deal with heavy metals' toxic concentration. Some plants even have the ability to accumulate metals in high quantities in the shoots/organelles without toxic effects. For intercellular and interorganeller metal transport, plants harbor spatially distributed various transporters which mainly help in uptake, translocation, and redistribution of metals. This review discusses different heavy metal transporters in different organelles and their roles in metal sequestration and redistribution to help plants cope with heavy metal stress. A good understanding of the processes at stake helps in developing more tolerant crops without affecting their productivity.
Collapse
Affiliation(s)
| | - Bindu Yadav
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | | |
Collapse
|
19
|
Cheng Y, Bao Y, Chen X, Yao Q, Wang C, Chai S, Zeng J, Fan X, Kang H, Sha L, Zhang H, Zhou Y, Wang Y. Different nitrogen forms differentially affect Cd uptake and accumulation in dwarf Polish wheat (Triticum polonicum L.) seedlings. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123209. [PMID: 32947742 DOI: 10.1016/j.jhazmat.2020.123209] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 05/22/2023]
Abstract
This study investigated the effects of different nitrogen (N) forms on Cadmium (Cd) uptake and accumulation in dwarf Polish wheat (DPW) seedlings, which were grown under Cd stress with N-Null, NH4+-N, NO3--N and NH4+-N + NO3--N. We measured plant growth and determined Cd uptake, translocation, accumulation, subcellular distribution and chemical forms in the roots and shoots of DPW seedlings. We also analyzed saccharide concentrations, and the transcript levels of genes encoding metal transporters in the roots of DPW seedlings. In the absence of NO3--N, addition of NH4+-N reduced roots Cd concentration, FCW (Cd in cell wall), FS (Cd in soluble fraction) and FE (inorganic Cd) concentrations, and induced the expression of four genes encoding metal transporters in roots, while it promoted Cd translocation to shoots. In the presence of NO3--N, addition of NH4+-N increased roots Cd concentration, FCW and FW concentrations, and induced the expression of 22 genes encoding metal transporters in roots. Regardless of NH4+-N level, addition of NO3--N increased roots Cd concentration, FCW, FS, FW (water-soluble Cd), FNaCl (pectates and protein Cd), FHAc (undissolved Cd phosphate) and lactose concentrations, and also induced the expression of genes encoding metal transporters in roots. Overall, NH4+-N differently regulated Cd uptake and accumulation in DPW seedlings in the absence or presence of NO3--N, while NO3--N greatly increased Cd uptake and accumulation in the presence of NH4+-N compared to the absence of NH4+-N. These patterns of Cd alteration likely arose due to different N forms altering Cd subcellular distribution and chemical forms, lactose concentration and the expression of metal transporter genes.
Collapse
Affiliation(s)
- Yiran Cheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yunjing Bao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Xing Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Qin Yao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Chao Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Songyue Chai
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China; Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China; Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Lina Sha
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China; Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Haiqin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China; Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China; Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China; Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
| |
Collapse
|
20
|
Li H, Pu P, Li X, Gong Y, An D, Zhang L, Lv J. Sulfur application reduces cadmium uptake in edible parts of pakchoi (Brassica chinensis L.) by cadmium chelation and vacuolar sequestration. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110402. [PMID: 32151867 DOI: 10.1016/j.ecoenv.2020.110402] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 05/24/2023]
Abstract
Sulfur (S) application in pakchoi (Brassica chinensis L.) cultivation is vital for reducing cadmium (Cd) accumulation in the plants. However, the mechanism of S application on Cd uptake and translocation in pakchoi is unclear. In this study, a hydroponic experiment was performed to investigate the effects of S application on Cd accumulation in pakchoi at one Cd concentration (50 μM, in comparison to the control condition, 0 μM) and three S levels (0, 2, 4 mM). The results showed that excessive S application (4 mM) reduced Cd accumulation and alleviated pakchoi growth inhibition caused by Cd stress in shoots and roots. With increased S application, the proportion of Cd in the vacuolar fraction and the proportion of NaCl-extractable Cd increased in roots. Additionally, S application increased the content of glutathione (GSH) and phytochelatins (PCs). The reduced Cd uptake and accumulation in pakchoi shoots could have been due to increased Cd chelation and vacuolar sequestration in roots. In addition, sufficient S application (2 mM) increased the expression of γ-glutamylcysteine synthetase (GSH1) and nicotinamide synthase (NAS) in roots, and excessive S application upregulated the expression of ATP sulfurylase (ATPS) and phytochelatin synthase (PCs). This study provides evidence for the mechanism of mitigating Cd toxicity in pakchoi and will be helpful for developing strategies to reduce Cd accumulation in the edible parts of pakchoi through S fertilizer application.
Collapse
Affiliation(s)
- Hailan Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Peng Pu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaorui Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanzhen Gong
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| | - Disheng An
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Lixin Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Jinyin Lv
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
21
|
De-Jesús-García R, Rosas U, Dubrovsky JG. The barrier function of plant roots: biological bases for selective uptake and avoidance of soil compounds. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:383-397. [PMID: 32213271 DOI: 10.1071/fp19144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
The root is the main organ through which water and mineral nutrients enter the plant organism. In addition, root fulfils several other functions. Here, we propose that the root also performs the barrier function, which is essential not only for plant survival but for plant acclimation and adaptation to a constantly changing and heterogeneous soil environment. This function is related to selective uptake and avoidance of some soil compounds at the whole plant level. We review the toolkit of morpho-anatomical, structural, and other components that support this view. The components of the root structure involved in selectivity, permeability or barrier at a cellular, tissue, and organ level and their properties are discussed. In consideration of the arguments supporting barrier function of plant roots, evolutionary aspects of this function are also reviewed. Additionally, natural variation in selective root permeability is discussed which suggests that the barrier function is constantly evolving and is subject of natural selection.
Collapse
Affiliation(s)
- Ramces De-Jesús-García
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenuenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Ulises Rosas
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, 04510, CDMX, Mexico
| | - Joseph G Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenuenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico; and Corresponding author.
| |
Collapse
|
22
|
Hirata K, Takagi K, Yamada T, Sayama T, Anai T, Kikuchi A, Ishimoto M. Isolation and characterization of induced mutants in the gene associated with seed cadmium accumulation in soybean. BREEDING SCIENCE 2019; 69:345-351. [PMID: 31481844 PMCID: PMC6711727 DOI: 10.1270/jsbbs.18091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 02/11/2019] [Indexed: 06/10/2023]
Abstract
Food contamination by cadmium (Cd) is a serious threat to human health. Thus, it is imperative to prevent Cd accumulation in staple crops like soybean. The development of low Cd accumulating cultivars is an effective solution. To this end, it is essential to identify the gene(s) controlling seed Cd accumulation. Although Glyma.09G055600 (GmHMA3) seems to be associated with Cd accumulation in soybean, it has not been established if it is responsible for seed Cd accumulation. In the present study, the effect of GmHMA3 on seed Cd accumulation in soybean was validated using three independent GmHMA3 mutants isolated from an ethyl methanesulfonate-induced soybean mutant library. Each of mutant had an amino acid substitution in GmHMA3 and segregating progenies were developed by crossing the original cultivar with each of the three mutants. The relationship between these three mutations and seed Cd accumulation was investigated. While two of them significantly increased seed Cd accumulation corresponding to previous reports of a natural missense mutation in GmHMA3, the other slightly decreased seed Cd accumulation. Overall, these results indicate that GmHMA3 is responsible for seed Cd accumulation in soybean.
Collapse
Affiliation(s)
- Kaori Hirata
- Tohoku Agricultural Research Center, National Agriculture and Food Research Organization (NARO),
297 Uenodai, Kariwano, Daisen, Akita 019-2112,
Japan
| | - Kyoko Takagi
- Tohoku Agricultural Research Center NARO,
50 Harajukuminami, Arai, Fukushima 960-2156,
Japan
| | - Tetsuya Yamada
- Institute of Crop Science, NARO,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518,
Japan
| | - Takashi Sayama
- Western Region Agricultural Research Center, NARO,
1-3-1 Senyu, Zentsuji, Kagawa 765-8508,
Japan
| | - Toyoaki Anai
- Saga University,
1 Honjo-machi, Saga 840-8502,
Japan
| | - Akio Kikuchi
- Tohoku Agricultural Research Center, National Agriculture and Food Research Organization (NARO),
297 Uenodai, Kariwano, Daisen, Akita 019-2112,
Japan
| | - Masao Ishimoto
- Institute of Crop Science, NARO,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518,
Japan
| |
Collapse
|
23
|
Rai PK, Lee SS, Zhang M, Tsang YF, Kim KH. Heavy metals in food crops: Health risks, fate, mechanisms, and management. ENVIRONMENT INTERNATIONAL 2019; 125:365-385. [PMID: 30743144 DOI: 10.1016/j.envint.2019.01.067] [Citation(s) in RCA: 735] [Impact Index Per Article: 122.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/25/2019] [Accepted: 01/26/2019] [Indexed: 05/20/2023]
Abstract
Food security is a high-priority issue for sustainable global development both quantitatively and qualitatively. In recent decades, adverse effects of unexpected contaminants on crop quality have threatened both food security and human health. Heavy metals and metalloids (e.g., Hg, As, Pb, Cd, and Cr) can disturb human metabolomics, contributing to morbidity and even mortality. Therefore, this review focuses on and describes heavy metal contamination in soil-food crop subsystems with respect to human health risks. It also explores the possible geographical pathways of heavy metals in such subsystems. In-depth discussion is further offered on physiological/molecular translocation mechanisms involved in the uptake of metallic contaminants inside food crops. Finally, management strategies are proposed to regain sustainability in soil-food subsystems.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Department of Environmental Science, Mizoram University, Aizawl 796004, India
| | - Sang Soo Lee
- Department of Environmental Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Ming Zhang
- Department of Environmental Engineering, China Jiliang University, Hangzhou 310018, China
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
24
|
Wang R, Wang C, Yao Q, Xiao X, Fan X, Sha L, Zeng J, Kang H, Zhang H, Zhou Y, Wang Y. The polish wheat (Triticum polonicum L.) TpSnRK2.10 and TpSnRK2.11 meditate the accumulation and the distribution of cd and Fe in transgenic Arabidopsis plants. BMC Genomics 2019; 20:210. [PMID: 30866815 PMCID: PMC6417267 DOI: 10.1186/s12864-019-5589-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/06/2019] [Indexed: 12/23/2022] Open
Abstract
Background The SnRK2s (Plant specific protein kinase) are involved in various biological processes, such as plant defense and environmental challenges. In Arabidopsis, AtSnRK2s regulate the expression of some metal transporters. For example, AtSnRK2.4 plays a role in the regulation of Arabidopsis tolerance to Cd; AtSnRK2.2 and AtSnRK2.3 are involved in Cd uptake and translocation. However, the functions of their homologs, TpSnRK2.10 and TpSnRK2.11 from dwarf Polish wheat are unknown. Results TpSnRK2.11 encodes a cytoplasmic protein. TpSnRK2.10 and TpSnRK2.11 have different expression patterns at different growth stages. Expression of TpSnRK2.10 increased yeast’s sensitivity to Cd; conversely, expression of TpSnRK2.11 enhanced yeast’s tolerance to Cd. Overexpression of TpSnRK2.10 or TpSnRK2.11 did not affect Cd sensitivity in Arabidopsis, but significantly increased Cd accumulation in roots and shoots, and Cd translocation from roots to shoots. While, Fe accumulation was significantly increased in roots but decreased in shoots by overexpression of TpSnRK2.10; opposite results were observed in TpSnRK2.11-overexpressing lines. Subcellular distribution analysis found that overexpression of TpSnRK2.10 and TpSnRK2.11 increased Cd concentration in cell wall and organelle fractions of roots and shoots; meanwhile, they also differentially influenced Fe distribution. Conclusions These results indicated that TpSnRK2.10 and TpSnRK2.11 are involved in the uptakes and the translocations of Cd and Fe, possibly by regulating the expression of AtNRAMP1 and AtHMA4, and other genes involved in the synthesis of phytochelatins or hemicellolosic polysaccharides. Electronic supplementary material The online version of this article (10.1186/s12864-019-5589-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruijiao Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Chao Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Qin Yao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Xue Xiao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.,Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Lina Sha
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.,Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.,Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Haiqin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.,Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.,Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China. .,Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
| |
Collapse
|
25
|
Peng F, Wang C, Cheng Y, Kang H, Fan X, Sha L, Zhang H, Zeng J, Zhou Y, Wang Y. Cloning and Characterization of TpNRAMP3, a Metal Transporter From Polish Wheat ( Triticum polonicum L.). FRONTIERS IN PLANT SCIENCE 2018; 9:1354. [PMID: 30294336 PMCID: PMC6158329 DOI: 10.3389/fpls.2018.01354] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/28/2018] [Indexed: 05/15/2023]
Abstract
Essential transition metals and non-essential metals often co-exist in arable soils. In plants, some transition metal transporters, such as the natural resistance-associated macrophage proteins (NRAMPs), poorly selectively transport metals with similar chemical properties whether they are essential or non-essential. In this study, a member of the NRAMP transporter family, TpNRAMP3, was identified from dwarf Polish wheat (Triticum polonicum L.). TpNRAMP3 encodes a plasma membrane-localized protein and was highly expressed in leaf blades and roots at the jointing and booting stages, and in the first nodes at the grain filling stage. Expression of TpNRAMP3 increased sensitivity to Cd and Co, but not Zn, and increased the Cd and Co concentrations in yeast. TpNRAMP3 expression in Arabidopsis increased concentrations of Cd, Co, and Mn, but not Fe or Zn, in roots, shoots, and whole plant. However, TpNRAMP3 did not affect translocation of Cd, Co, or Mn from roots to shoots. These results suggest that TpNRAMP3 is a transporter for Cd, Co, and Mn accumulation, but not for Fe or Zn. However, Cd and Co are non-essential toxic metals; selective genetic manipulation of TpNRAMP3 will help breed low Cd- and Co-accumulating cultivars.
Collapse
Affiliation(s)
- Fan Peng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Chengdu, China
| | - Chao Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Chengdu, China
| | - Yiran Cheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Chengdu, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Chengdu, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Chengdu, China
| | - Lina Sha
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Chengdu, China
| | - Haiqin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Chengdu, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Chengdu, China
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Yi Wang,
| |
Collapse
|