1
|
Lee H, Depuydt S, Shin K, De Saeger J, Han T, Park J. Interactive Effects of Blue Light and Water Turbulence on the Growth of the Green Macroalga Ulva australis (Chlorophyta). PLANTS (BASEL, SWITZERLAND) 2024; 13:266. [PMID: 38256819 PMCID: PMC10820934 DOI: 10.3390/plants13020266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/06/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
Macroalgal growth and yield are key to sustainable aquaculture. Although light and water turbulence are two important factors that affect algal productivity, research on their interaction is limited. Therefore, in this study, we investigated the effects of different wavelengths of light and the presence or absence of water turbulence on the growth of the green macroalga Ulva australis. Water turbulence was found to enhance the growth of U. australis irrespective of photosynthetic performance, but only in blue light cultures. The quantum dose of blue light required to induce 50% growth promotion was 1.02 mol m-2, which is comparable to the reported values for cryptochrome-mediated effects in other macroalgae. The combined effect of blue light and water turbulence led to the accumulation of photosynthesis-related proteins that support plastid differentiation and facilitate efficient photosynthesis and growth. Our findings thus highlight the potential of harnessing blue light and water turbulence to maximise macroalgal cultivation for sustainable and profitable algal aquaculture.
Collapse
Affiliation(s)
- Hojun Lee
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea
| | - Stephen Depuydt
- Erasmus Brussels University of Applied Sciences and Arts, Nijverheidskaai 170, 1070 Brussels, Belgium
| | - Kisik Shin
- Water Environmental Engineering Research Division, National Institute of Environmental Research (NIER), 42, Hwangyeong-ro, Incheon 22689, Republic of Korea
| | - Jonas De Saeger
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea
| | - Taejun Han
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653-Block F, B-9000 Gent, Belgium
| | - Jihae Park
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653-Block F, B-9000 Gent, Belgium
- Center for Environmental and Energy Research, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea
| |
Collapse
|
2
|
Tamaki S, Shinomura T, Mochida K. Illuminating the diversity of carotenoids in microalgal eyespots and phototaxis. PLANT SIGNALING & BEHAVIOR 2023; 18:2257348. [PMID: 37724547 PMCID: PMC10512927 DOI: 10.1080/15592324.2023.2257348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/06/2023] [Indexed: 09/21/2023]
Abstract
Photosynthetic organisms biosynthesize various carotenoids, a group of light-absorbing isoprenoid pigments that have key functions in photosynthesis, photoprotection, and phototaxis. Microalgae, in particular, contain diverse carotenoids and carotenoid biosynthetic pathways as a consequence of the various endosymbiotic events in their evolutionary history. Carotenoids such as astaxanthin, diadinoxanthin, and fucoxanthin are unique to algae. In microalgae, carotenoids are concentrated in the eyespot, a pigmented organelle that is important for phototaxis. A wide range of microalgae, including chlorophytes, euglenophytes, ochrophytes, and haptophytes, have an eyespot. In the chlorophyte Chlamydomonas reinhardtii, carotenoid layers in the eyespot reflect light to amplify the photosignal and shield photoreceptors from light, thereby enabling precise phototaxis. Our recent research revealed that, in contrast to the β-carotene-rich eyespot of C. reinhardtii, the euglenophyte Euglena gracilis relies on zeaxanthin for stable eyespot formation and phototaxis. In this review, we highlight recent advancements in the study of eyespot carotenoids and phototaxis in these microalgae, placing special emphasis on the diversity of carotenoid-dependent visual systems among microalgae.
Collapse
Affiliation(s)
- Shun Tamaki
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Tomoko Shinomura
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Tochigi, Japan
| | - Keiichi Mochida
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Microalgae Resource Upcycling Research Laboratory, RIKEN Baton Zone Program, Yokohama, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- School of Information and Data Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
3
|
Yamashita F, Baluška F. Algal Ocelloids and Plant Ocelli. PLANTS (BASEL, SWITZERLAND) 2022; 12:61. [PMID: 36616190 PMCID: PMC9824129 DOI: 10.3390/plants12010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Vision is essential for most organisms, and it is highly variable across kingdoms and domains of life. The most known and understood form is animal and human vision based on eyes. Besides the wide diversity of animal eyes, some animals such as cuttlefish and cephalopods enjoy so-called dermal or skin vision. The most simple and ancient organ of vision is the cell itself and this rudimentary vision evolved in cyanobacteria. More complex are so-called ocelloids of dinoflagellates which are composed of endocellular organelles, acting as lens- and cornea/retina-like components. Although plants have almost never been included into the recent discussions on organismal vision, their plant-specific ocelli had already been proposed by Gottlieb Haberlandt already in 1905. Here, we discuss plant ocelli and their roles in plant-specific vision, both in the shoots and roots of plants. In contrast to leaf epidermis ocelli, which are distributed throughout leaf surface, the root apex ocelli are located at the root apex transition zone and serve the light-guided root navigation. We propose that the plant ocelli evolved from the algal ocelloids, are part of complex plant sensory systems and guide cognition-based plant behavior.
Collapse
|
4
|
Yao R, Fu W, Du M, Chen ZX, Lei AP, Wang JX. Carotenoids Biosynthesis, Accumulation, and Applications of a Model Microalga Euglenagracilis. Mar Drugs 2022; 20:496. [PMID: 36005499 PMCID: PMC9409970 DOI: 10.3390/md20080496] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
The carotenoids, including lycopene, lutein, astaxanthin, and zeaxanthin belong to the isoprenoids, whose basic structure is made up of eight isoprene units, resulting in a C40 backbone, though some of them are only trace components in Euglena. They are essential to all photosynthetic organisms due to their superior photoprotective and antioxidant properties. Their dietary functions decrease the risk of breast, cervical, vaginal, and colorectal cancers and cardiovascular and eye diseases. Antioxidant functions of carotenoids are based on mechanisms such as quenching free radicals, mitigating damage from reactive oxidant species, and hindering lipid peroxidation. With the development of carotenoid studies, their distribution, functions, and composition have been identified in microalgae and higher plants. Although bleached or achlorophyllous mutants of Euglena were among the earliest carotenoid-related microalgae under investigation, current knowledge on the composition and biosynthesis of these compounds in Euglena is still elusive. This review aims to overview what is known about carotenoid metabolism in Euglena, focusing on the carotenoid distribution and structure, biosynthesis pathway, and accumulation in Euglena strains and mutants under environmental stresses and different culture conditions. Moreover, we also summarize the potential applications in therapy preventing carcinogenesis, cosmetic industries, food industries, and animal feed.
Collapse
Affiliation(s)
| | | | | | | | - An-Ping Lei
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (R.Y.); (W.F.); (M.D.); (Z.-X.C.)
| | - Jiang-Xin Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (R.Y.); (W.F.); (M.D.); (Z.-X.C.)
| |
Collapse
|
5
|
Chen Z, Zhu J, Du M, Chen Z, Liu Q, Zhu H, Lei A, Wang J. A Synthetic Biology Perspective on the Bioengineering Tools for an Industrial Microalga: Euglena gracilis. Front Bioeng Biotechnol 2022; 10:882391. [PMID: 35464731 PMCID: PMC9020809 DOI: 10.3389/fbioe.2022.882391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Euglena is a genus of single-celled eukaryotes that show both plant- and animal-like characteristics. Euglena gracilis, a model species, is of great academic interest for studying endosymbiosis and chloroplast development. As an industrial species, E. gracilis is also of primary biotechnological and economic importance as high value-added food, medicine, and cosmetic and high-quality feedstock for jet-fuel production because of its cells containing many high-value products, such as vitamins, amino acids, pigments, unsaturated fatty acids, and carbohydrate paramylon, as metabolites. For more than half a century, E. gracilis has been used as an industrial biotechnology platform for fundamental biology research, mainly exploring relevant physiological and biochemical method studies. Although many researchers focused on genetic engineering tools for E. gracilis in recent years, little progress has been achieved because of the lack of high-quality genome information and efficient techniques for genetic operation. This article reviewed the progress of the genetic transformation of E. gracilis, including methods for the delivery of exogenous materials and other advanced biotechnological tools for E. gracilis, such as CRISPR and RNA interference. We hope to provide a reference to improve the research in functional genomics and synthetic biology of Euglena.
Collapse
Affiliation(s)
- Zhenfan Chen
- College of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Jiayi Zhu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Ming Du
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zixi Chen
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, China
| | - Hui Zhu
- College of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China
| | - Anping Lei
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiangxin Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- *Correspondence: Jiangxin Wang,
| |
Collapse
|
6
|
Improved Productivity of Astaxanthin from Photosensitive Haematococcus pluvialis Using Phototaxis Technology. Mar Drugs 2022; 20:md20040220. [PMID: 35447893 PMCID: PMC9032356 DOI: 10.3390/md20040220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 11/25/2022] Open
Abstract
Haematococcus pluvialis is a microalgae actively studied for the production of natural astaxanthin, which is a powerful antioxidant for human application. However, it is economically disadvantageous for commercialization owing to the low productivity of astaxanthin. This study reports an effective screening strategy using the negative phototaxis of the H. pluvialis to attain the mutants having high astaxanthin production. A polydimethylsiloxane (PDMS)-based microfluidic device irradiated with a specific light was developed to efficiently figure out the phototactic response of H. pluvialis. The partial photosynthesis deficient (PP) mutant (negative control) showed a 0.78-fold decreased cellular response to blue light compared to the wild type, demonstrating the positive relationship between the photosynthetic efficiency and the phototaxis. Based on this relationship, the Haematococcus mutants showing photosensitivity to blue light were selected from the 10,000 random mutant libraries. The M1 strain attained from the phototaxis-based screening showed 1.17-fold improved growth rate and 1.26-fold increases in astaxanthin production (55.12 ± 4.12 mg g−1) in the 100 L photo-bioreactor compared to the wild type. This study provides an effective selection tool for industrial application of the H. pluvialis with improved astaxanthin productivity.
Collapse
|
7
|
Chen Z, Chen Z, Zhu J, He J, Liu Q, Zhu H, Lei A, Wang J. Proteomic Responses of Dark-Adapted Euglena gracilis and Bleached Mutant Against Light Stimuli. Front Bioeng Biotechnol 2022; 10:843414. [PMID: 35309998 PMCID: PMC8927018 DOI: 10.3389/fbioe.2022.843414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 01/25/2022] [Indexed: 11/29/2022] Open
Abstract
Euglena gracilis (E. gracilis) has secondary endosymbiotic chloroplasts derived from ancient green algae. Its chloroplasts are easily lost under numerous conditions to become permanently bleached mutants. Green cells adapted in the dark contain undeveloped proplastids and they will develop into mature chloroplasts after 3 days of light exposure. Thus, E. gracilis is an ideal model species for a chloroplast development study. Previous studies about chloroplast development in E. gracilis focused on morphology and physiology, whereas few studies have addressed the regulatory processes induced by light in the proteome. In this study, the whole-genome proteome of dark-adapted E. gracilis (WT) and permanently ofloxacin-bleached mutant (B2) was compared under the light exposure after 0, 12, and 72 h. The results showed that the photosynthesis-related proteins were up-regulated over time in both WT and B2. The B2 strain, with losing functional chloroplasts, seemed to possess a complete photosynthetic function system. Both WT and B2 exhibited significant light responses with similar alternation patterns, suggesting the sensitive responses to light in proteomic levels. The main metabolic activities for the utilization of carbon and energy in WT were up-regulated, while the proteins with calcium ion binding, cell cycle, and non-photosynthetic carbon fixation were down-regulated in B2. This study confirmed light-induced chloroplast development in WT from dark, and also for the first time investigates the light responses of a bleached mutant B2, providing more information about the unknown functions of residual plastids in Euglena bleached mutants.
Collapse
Affiliation(s)
- Zhenfan Chen
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
- College of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China
| | - Zixi Chen
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiayi Zhu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiayi He
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, China
| | - Hui Zhu
- College of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China
| | - Anping Lei
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiangxin Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- *Correspondence: Jiangxin Wang,
| |
Collapse
|
8
|
Ozasa K, Kang H, Song S, Tamaki S, Shinomura T, Maeda M. Regeneration of the Eyespot and Flagellum in Euglena gracilis during Cell Division. PLANTS 2021; 10:plants10102004. [PMID: 34685814 PMCID: PMC8537169 DOI: 10.3390/plants10102004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/18/2022]
Abstract
Cell division of unicellular microalgae is a fascinating process of proliferation, at which whole organelles are regenerated and distributed to two new lives. We performed dynamic live cell imaging of Euglena gracilis using optical microscopy to elucidate the mechanisms involved in the regulation of the eyespot and flagellum during cell division and distribution of the organelles into the two daughter cells. Single cells of the wild type (WT) and colorless SM-ZK cells were confined in a microfluidic device, and the appearance of the eyespot (stigma) and emergent flagellum was tracked in sequential video-recorded images obtained by automatic cell tracking and focusing. We examined 12 SM-ZK and 10 WT cells and deduced that the eyespot diminished in size and disappeared at an early stage of cell division and remained undetected for 26–97 min (62 min on average, 22 min in deviation). Subsequently, two small eyespots appeared and were distributed into the two daughter cells. Additionally, the emergent flagellum gradually shortened to zero-length, and two flagella emerged from the anterior ends of the daughter cells. Our observation revealed that the eyespot and flagellum of E. gracilis are degraded once in the cell division, and the carotenoids in the eyespot are also decomposed. Subsequently, the two eyespots/flagella are regenerated for distribution into daughter cells. As a logical conclusion, the two daughter cells generated from a single cell division possess the equivalent organelles and each E. gracilis cell has eternal or non-finite life span. The two newly regenerated eyespot and flagellum grow at different rates and mature at different timings in the two daughter cells, resulting in diverse cell characteristics in E. gracilis.
Collapse
Affiliation(s)
- Kazunari Ozasa
- Bioengineering Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako 351-0198, Saitama, Japan;
- Advanced Laser Processing Research Team, RIKEN Center for Advanced Photonics, RIKEN, 2-1 Hirosawa, Wako 351-0198, Saitama, Japan
- Correspondence: ; Tel.: +81-48-462-1111 (ext. 8544); Fax: +81-48-462-4682
| | - Hyunwoong Kang
- Department of Mechanical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (H.K.); (S.S.)
| | - Simon Song
- Department of Mechanical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (H.K.); (S.S.)
- Institute of Nano Science and Technology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Shun Tamaki
- Plant Molecular and Cellular Biology Laboratory, Department of Biosciences, School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya 320-8551, Tochigi, Japan; (S.T.); (T.S.)
- Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Kanagawa, Japan
| | - Tomoko Shinomura
- Plant Molecular and Cellular Biology Laboratory, Department of Biosciences, School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya 320-8551, Tochigi, Japan; (S.T.); (T.S.)
| | - Mizuo Maeda
- Bioengineering Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako 351-0198, Saitama, Japan;
- Liver Cancer Prevention Research Unit, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako 351-01, Saitama, Japan
| |
Collapse
|
9
|
Ozasa K, Kang H, Song S, Kato S, Shinomura T, Maeda M. Temporal Evolution of the Gravitaxis of Euglena gracilis from a Single Cell. PLANTS (BASEL, SWITZERLAND) 2021; 10:1411. [PMID: 34371614 PMCID: PMC8309284 DOI: 10.3390/plants10071411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 12/20/2022]
Abstract
Gravitaxis is one of the most important issues in the growth of microalgae in the water column; it determines how easily cells receive sunlight with a comfortable intensity that is below the damaging threshold. We quantitatively investigated and analyzed the gravitaxis and cell multiplication of Euglena gracilis using vertically placed microchambers containing a single cell. A temporal change in gravitaxis and cell multiplication was observed after transferring the cells to fresh culture medium for 9 days. We performed 29 individual experiments with 2.5 mm × 2.5 mm × 0.1 mm square microchambers and found that the cells showed positive, negative, and moderate gravitaxis in 8, 7, and 14 cases, respectively, after transferring to fresh culture medium. A common trend was observed for the temporal change in gravitaxis for the eight initially positive gravitaxis cases. The cells with initially positive gravitaxis showed a higher rate of cell multiplication than those with initially negative gravitaxis. We also discussed the gravitaxis mechanism of E. gracilis from the observed trend of gravitaxis change and swimming traces. In addition, bioconvection in a larger and thicker chamber was investigated at a millimeter scale and visualized.
Collapse
Affiliation(s)
- Kazunari Ozasa
- Bioengineering Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan;
- Advanced Laser Processing Research Team, RIKEN Center for Advanced Photonics, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hyunwoong Kang
- Department of Mechanical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (H.K.); (S.S.)
| | - Simon Song
- Department of Mechanical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (H.K.); (S.S.)
- Institute of Nano Science and Technology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Shota Kato
- Center for Bioscience Research and Education, Utsunomiya University, Mine 350, Utsunomiya, Tochigi 321-8505, Japan;
| | - Tomoko Shinomura
- Plant Molecular and Cellular Biology Laboratory, Department of Biosciences, School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi 320-8551, Japan;
| | - Mizuo Maeda
- Bioengineering Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan;
- Liver Cancer Prevention Research Unit, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-01, Japan
| |
Collapse
|
10
|
Tamaki S, Mochida K, Suzuki K. Diverse Biosynthetic Pathways and Protective Functions against Environmental Stress of Antioxidants in Microalgae. PLANTS (BASEL, SWITZERLAND) 2021; 10:1250. [PMID: 34205386 PMCID: PMC8234872 DOI: 10.3390/plants10061250] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 01/08/2023]
Abstract
Eukaryotic microalgae have been classified into several biological divisions and have evolutionarily acquired diverse morphologies, metabolisms, and life cycles. They are naturally exposed to environmental stresses that cause oxidative damage due to reactive oxygen species accumulation. To cope with environmental stresses, microalgae contain various antioxidants, including carotenoids, ascorbate (AsA), and glutathione (GSH). Carotenoids are hydrophobic pigments required for light harvesting, photoprotection, and phototaxis. AsA constitutes the AsA-GSH cycle together with GSH and is responsible for photooxidative stress defense. GSH contributes not only to ROS scavenging, but also to heavy metal detoxification and thiol-based redox regulation. The evolutionary diversity of microalgae influences the composition and biosynthetic pathways of these antioxidants. For example, α-carotene and its derivatives are specific to Chlorophyta, whereas diadinoxanthin and fucoxanthin are found in Heterokontophyta, Haptophyta, and Dinophyta. It has been suggested that AsA is biosynthesized via the plant pathway in Chlorophyta and Rhodophyta and via the Euglena pathway in Euglenophyta, Heterokontophyta, and Haptophyta. The GSH biosynthetic pathway is conserved in all biological kingdoms; however, Euglenophyta are able to synthesize an additional thiol antioxidant, trypanothione, using GSH as the substrate. In the present study, we reviewed and discussed the diversity of microalgal antioxidants, including recent findings.
Collapse
Affiliation(s)
- Shun Tamaki
- Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, Yokohama 230-0045, Japan; (K.M.); (K.S.)
| | - Keiichi Mochida
- Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, Yokohama 230-0045, Japan; (K.M.); (K.S.)
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama 230-0045, Japan
- School of Information and Data Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Kengo Suzuki
- Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, Yokohama 230-0045, Japan; (K.M.); (K.S.)
- euglena Co., Ltd., Tokyo 108-0014, Japan
| |
Collapse
|