1
|
Li W, Chen L, Zhao W, Li Y, Chen Y, Wen T, Liu Z, Huang C, Zhang L, Zhao L. Mutation of YFT3, an isomerase in the isoprenoid biosynthetic pathway, impairs its catalytic activity and carotenoid accumulation in tomato fruit. HORTICULTURE RESEARCH 2024; 11:uhae202. [PMID: 39308791 PMCID: PMC11415240 DOI: 10.1093/hr/uhae202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/11/2024] [Indexed: 09/25/2024]
Abstract
Tomato fruit colors are directly associated with their appearance quality and nutritional value. However, tomato fruit color formation is an intricate biological process that remains elusive. In this work we characterized a tomato yellow fruited tomato 3 (yft3, e9292, Solanum lycopersicum) mutant with yellow fruits. By the map-based cloning approach, we identified a transversion mutation (A2117C) in the YFT3 gene encoding a putative isopentenyl diphosphate isomerase (SlIDI1) enzyme, which may function in the isoprenoid biosynthetic pathway by catalyzing conversion between isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP). The mutated YFT3 (A2117C) (designated YFT3 allele) and the YFT3 genes did not show expression difference at protein level, and their encoded YFT3 allelic (S126R) and YFT3 proteins were both localized in plastids. However, the transcript levels of eight genes (DXR, DXS, HDR, PSY1, CRTISO, CYCB, CYP97A, and NCED) associated with carotenoid synthesis were upregulated in fruits of both yft3 and YFT3 knockout (YFT3-KO) lines at 35 and 47 days post-anthesis compared with the red-fruit tomato cultivar (M82). In vitro and in vivo biochemical analyses indicated that YFT3 (S126R) possessed much lower enzymatic activities than the YFT3 protein, indicating that the S126R mutation can impair YFT3 activity. Molecular docking analysis showed that the YFT3 allele has higher ability to recruit isopentenyl pyrophosphate (IPP), but abolishes attachment of the Mg2+ cofactor to IPP, suggesting that Ser126 is a critical residue for YTF3 biochemical and physiological functions. As a result, the yft3 mutant tomato line has low carotenoid accumulation and abnormal chromoplast development, which results in yellow ripe fruits. This study provides new insights into molecular mechanisms of tomato fruit color formation and development.
Collapse
Affiliation(s)
- Wenzhen Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lulu Chen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetland, Yancheng Teachers University, 2 South Xiwang Avenue, Yancheng 224002, China
| | - Weihua Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yuhang Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ying Chen
- Youlaigu Science and Technology Innovation Center, 588 West Chenfeng, Yushan town, Agriculture Service Center, Kunshan 215300, China
| | - Tengjian Wen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhengjun Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, 2708 South Huaxi Avenue, Guiyang 550025, China
| | - Chao Huang
- Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China
| | - Lida Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lingxia Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
2
|
Zhao W, Wang S, Li W, Shan X, Naeem M, Zhang L, Zhao L. The transcription factor EMB1444-like affects tomato fruit ripening by regulating YELLOW-FRUITED TOMATO 1, a core component of ethylene signaling transduction. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6563-6574. [PMID: 37555619 DOI: 10.1093/jxb/erad314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/08/2023] [Indexed: 08/10/2023]
Abstract
The fleshy fruit of tomato (Solanum lycopersicum) are climacteric and, as such, ethylene plays a pivotal role in their ripening and quality traits. In this study, a basic helix-loop-helix transcription factor, EMB1444-like, was found to induce the expression of YELLOW-FRUITED TOMATO 1 (YFT1), which encodes the SlEIN2 protein, a key element in the ethylene signaling pathway. Yeast one-hybrid and EMSA analyses revealed that EMB1444-like binds to the E-box motif (CACTTG, -1295 bp to -1290 bp upstream of the ATG start codon) of the YFT1 promoter (pYFT1). Suppression of EMB1444-like expression in tomato lines (sledl) using RNAi reduced ethylene production by lowering the expression of 1-AMINOCYCLOPROPANE-1-CARBOXYLATE SYNTHASE 2/4 (ACS2/4) and ACC OXIDASE1 (ACO1) in a positive feedback loop. sledl tomato also showed differences in numerous quality traits related to fruit ripening, compared with the wild type, such as delayed chromoplast differentiation, a decrease in carotenoid accumulation, and delayed fruit ripening in an ethylene-independent manner, or at least upstream of ripening mediated by YFT1/SlEIN2. This study elucidates the regulatory framework of fruit ripening in tomato, providing information that may be used to breed tomato hybrid cultivars with an optimal balance of shelf-life, durability, and high quality.
Collapse
Affiliation(s)
- Weihua Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shan Wang
- Agriculture Service Center, Kunshan 215300, China
| | - Wenzhen Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xuemeng Shan
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Muhammad Naeem
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lida Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lingxia Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
3
|
Naeem M, Zhao W, Ahmad N, Zhao L. Beyond green and red: unlocking the genetic orchestration of tomato fruit color and pigmentation. Funct Integr Genomics 2023; 23:243. [PMID: 37453947 DOI: 10.1007/s10142-023-01162-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Fruit color is a genetic trait and a key factor for consumer acceptability and is therefore receiving increasing importance in several breeding programs. Plant pigments offer plants with a variety of colored organs that attract animals for pollination, favoring seed dispersers and conservation of species. The pigments inside plant cells not only play a light-harvesting role but also provide protection against light damage and exhibit nutritional and ecological value for health and visual pleasure in humans. Tomato (Solanum lycopersicum) is a leading vegetable crop; its fruit color formation is associated with the accumulation of several natural pigments, which include carotenoids in the pericarp, flavonoids in the peel, as well as the breakdown of chlorophyll during fruit ripening. To improve tomato fruit quality, several techniques, such as genetic engineering and genome editing, have been used to alter fruit color and regulate the accumulation of secondary metabolites in related pathways. Recently, clustered regularly interspaced short palindromic repeat (CRISPR)-based systems have been extensively used for genome editing in many crops, including tomatoes, and promising results have been achieved using modified CRISPR systems, including CAS9 (CRISPR/CRISPR-associated-protein) and CRISPR/Cas12a systems. These advanced tools in biotechnology and whole genome sequencing of various tomato species will certainly advance the breeding of tomato fruit color with a high degree of precision. Here, we attempt to summarize the current advancement and effective application of genetic engineering techniques that provide further flexibility for fruit color formation. Furthermore, we have also discussed the challenges and opportunities of genetic engineering and genome editing to improve tomato fruit color.
Collapse
Affiliation(s)
- Muhammad Naeem
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Weihua Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Lingxia Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
4
|
Carbonnel S, Falquet L, Hazak O. Deeper genomic insights into tomato CLE genes repertoire identify new active peptides. BMC Genomics 2022; 23:756. [PMID: 36396987 PMCID: PMC9670457 DOI: 10.1186/s12864-022-08980-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
Abstract
Abstract
Background
In eukaryotes, cell-to-cell communication relies on the activity of small signaling peptides. In plant genomes, many hundreds of genes encode for such short peptide signals. However, only few of them are functionally characterized and due to the small gene size and high sequence variability, the comprehensive identification of such peptide-encoded genes is challenging. The CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION-RELATED (CLE) gene family encodes for short peptides that have a role in plant meristem maintenance, vascular patterning and responses to environment. The full repertoire of CLE genes and the role of CLE signaling in tomato (Solanum lycopersicum)- one of the most important crop plants- has not yet been fully studied.
Results
By using a combined approach, we performed a genome-wide identification of CLE genes using the current tomato genome version SL 4.0. We identified 52 SlCLE genes, including 37 new non annotated before. By analyzing publicly available RNAseq datasets we could confirm the expression of 28 new SlCLE genes. We found that SlCLEs are often expressed in a tissue-, organ- or condition-specific manner. Our analysis shows an interesting gene diversification within the SlCLE family that seems to be a result of gene duplication events. Finally, we could show a biological activity of selected SlCLE peptides in the root growth arrest that was SlCLV2-dependent.
Conclusions
Our improved combined approach revealed 37 new SlCLE genes. These findings are crucial for better understanding of the CLE signaling in tomato. Our phylogenetic analysis pinpoints the closest homologs of Arabidopsis CLE genes in tomato genome and can give a hint about the function of newly identified SlCLEs. The strategy described here can be used to identify more precisely additional short genes in plant genomes. Finally, our work suggests that the mechanism of root-active CLE peptide perception is conserved between Arabidopsis and tomato. In conclusion, our work paves the way to further research on the CLE-dependent circuits modulating tomato development and physiological responses.
Collapse
|
5
|
Li Y, Chen T, Liu H, Qin W, Yan X, Wu-Zhang K, Peng B, Zhang Y, Yao X, Fu X, Li L, Tang K. The truncated AaActin1 promoter is a candidate tool for metabolic engineering of artemisinin biosynthesis in Artemisia annua L. JOURNAL OF PLANT PHYSIOLOGY 2022; 274:153712. [PMID: 35644103 DOI: 10.1016/j.jplph.2022.153712] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Malaria is a devastating parasitic disease with high levels of morbidity and mortality worldwide. Artemisinin, the active substance against malaria, is a sesquiterpenoid produced by Artemisia annua. To improve artemisinin content in the native A. annua plants, considerable efforts have been attempted, with genetic transformation serving as an effective strategy. Although, the most frequently-used cauliflower mosaic virus (CaMV) 35S (CaMV35S) promoter has proved to be efficient in A. annua transgenic studies, it appears to show weak activity in peltate glandular secretory trichomes (GSTs) of A. annua plants. Here, we characterized the 1727 bp fragment upstream from the translation start codon (ATG) of AaActin1, however, found it was inactive in tobacco. After removal of the 5' intron, the truncated AaActin1 promoter (tpACT) showed 69% and 50% activity of CaMV35S promoter in transiently transformed tobacco and stably transformed A. annua, respectively. β-glucuronidase (GUS) staining analysis showed that the tpACT promoter was capable of directing the constant expression of a foreign gene in peltate GSTs of transgenic A. annua, representing higher activity than CaMV35S promoter. Collectively, our study provided a novel promoter available for metabolic engineering of artemisinin biosynthesis in A. annua.
Collapse
Affiliation(s)
- Yongpeng Li
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tiantian Chen
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hang Liu
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Qin
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Yan
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kuanyu Wu-Zhang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bowen Peng
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaojie Zhang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinghao Yao
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xueqing Fu
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Li
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kexuan Tang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
6
|
Karniel U, Adler Berke N, Mann V, Hirschberg J. Perturbations in the Carotenoid Biosynthesis Pathway in Tomato Fruit Reactivate the Leaf-Specific Phytoene Synthase 2. FRONTIERS IN PLANT SCIENCE 2022; 13:844748. [PMID: 35283915 PMCID: PMC8914173 DOI: 10.3389/fpls.2022.844748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
The accumulation of the red carotenoid pigment lycopene in tomato (Solanum lycopersicum) fruit is achieved by increased carotenoid synthesis during ripening. The first committed step that determines the flux in the carotenoid pathway is the synthesis of phytoene catalyzed by phytoene synthase (PSY). Tomato has three PSY genes that are differentially expressed. PSY1 is exclusively expressed in fruits, while PSY2 mostly functions in green tissues. It has been established that PSY1 is mostly responsible for phytoene synthesis in fruits. Although PSY2 is found in the chromoplasts, it is inactive because loss-of-function mutations in PSY1 in the locus yellow flesh (r) eliminate carotenoid biosynthesis in the fruit. Here we demonstrate that specific perturbations of carotenoid biosynthesis downstream to phytoene prior and during the transition from chloroplast to chromoplast cause the recovery of phytoene synthesis in yellow flesh (r) fruits without significant transcriptional changes of PSY1 and PSY2. The recovery of carotenoid biosynthesis was abolished when the expression of PSY2 was silenced, indicating that the perturbations of carotenoid biosynthesis reactivated the chloroplast-specific PSY2 in fruit chromoplasts. Furthermore, it is demonstrated that PSY2 can function in fruit chromoplasts under certain conditions, possibly due to alterations in the plastidial sub-organelle organization that affect its association with the carotenoid biosynthesis metabolon. This finding provides a plausible molecular explanation to the epistasis of the mutation tangerine in the gene carotenoid isomerase over yellow flesh.
Collapse
Affiliation(s)
| | | | | | - Joseph Hirschberg
- Department of Genetics, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
7
|
Fruit Colour and Novel Mechanisms of Genetic Regulation of Pigment Production in Tomato Fruits. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7080259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Fruit colour represents a genetic trait with ecological and nutritional value. Plants mainly use colour to attract animals and favour seed dispersion. Thus, in many species, fruit colour coevolved with frugivories and their preferences. Environmental factors, however, represented other adaptive forces and further diversification was driven by domestication. All these factors cooperated in the evolution of tomato fruit, one of the most important in human nutrition. Tomato phylogenetic history showed two main steps in colour evolution: the change from green-chlorophyll to red-carotenoid pericarp, and the loss of the anthocyanic pigmentation. These events likely occurred with the onset of domestication. Then spontaneous mutations repeatedly occurred in carotenoid and phenylpropanoid pathways, leading to colour variants which often were propagated. Introgression breeding further enriched the panel of pigmentation patterns. In recent decades, the genetic determinants underneath tomato colours were identified. Novel evidence indicates that key regulatory and biosynthetic genes undergo mechanisms of gene expression regulation that are much more complex than what was imagined before: post-transcriptional mechanisms, with RNA splicing among the most common, indeed play crucial roles to fine-tune the expression of this trait in fruits and offer new substrate for the rise of genetic variables, thus providing further evolutionary flexibility to the character.
Collapse
|
8
|
Inhibition of Carotenoid Biosynthesis by CRISPR/Cas9 Triggers Cell Wall Remodelling in Carrot. Int J Mol Sci 2021; 22:ijms22126516. [PMID: 34204559 PMCID: PMC8234013 DOI: 10.3390/ijms22126516] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/03/2022] Open
Abstract
Recent data indicate that modifications to carotenoid biosynthesis pathway in plants alter the expression of genes affecting chemical composition of the cell wall. Phytoene synthase (PSY) is a rate limiting factor of carotenoid biosynthesis and it may exhibit species-specific and organ-specific roles determined by the presence of psy paralogous genes, the importance of which often remains unrevealed. Thus, the aim of this work was to elaborate the roles of two psy paralogs in a model system and to reveal biochemical changes in the cell wall of psy knockout mutants. For this purpose, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR associated (Cas9) proteins (CRISPR/Cas9) vectors were introduced to carotenoid-rich carrot (Daucus carota) callus cells in order to induce mutations in the psy1 and psy2 genes. Gene sequencing, expression analysis, and carotenoid content analysis revealed that the psy2 gene is critical for carotenoid biosynthesis in this model and its knockout blocks carotenogenesis. The psy2 knockout also decreased the expression of the psy1 paralog. Immunohistochemical staining of the psy2 mutant cells showed altered composition of arabinogalactan proteins, pectins, and extensins in the mutant cell walls. In particular, low-methylesterified pectins were abundantly present in the cell walls of carotenoid-rich callus in contrast to the carotenoid-free psy2 mutant. Transmission electron microscopy revealed altered plastid transition to amyloplasts instead of chromoplasts. The results demonstrate for the first time that the inhibited biosynthesis of carotenoids triggers the cell wall remodelling.
Collapse
|
9
|
Zhao W, Li Y, Fan S, Wen T, Wang M, Zhang L, Zhao L. The transcription factor WRKY32 affects tomato fruit colour by regulating YELLOW FRUITED-TOMATO 1, a core component of ethylene signal transduction. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4269-4282. [PMID: 33773493 DOI: 10.1093/jxb/erab113] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Fruit quality in most fleshy fruit crops is fundamentally linked to ripening-associated traits, including changes in colour. In many climacteric fruits, including tomato (Solanum lycopersicum), the phytohormone ethylene plays a key role in regulating ripening. Previous map-based cloning of YELLOW FRUITED-TOMATO 1 (YFT1) revealed that it encodes the EIN2 protein, a core component in ethylene signal transduction. A YFT1 allele with a genetic lesion was found to be down-regulated in the yft1 tomato mutant that has a yellow fruit phenotype and perturbed ethylene signalling. Based on bioinformatic analysis, yeast one hybrid assays and electrophoretic mobility shift assays, we report that transcription factor WRKY32 regulates tomato fruit colour formation. WRKY32 binds to W-box and W-box-like motifs in the regulatory region of the YFT1 promoter and induces its expression. In tomato fruits of WRKY32-RNAi generated lines, ethylene signalling was reduced, leading to a suppression in ethylene emission, a delay in chromoplast development, decreased carotenoid accumulation, and a yellow fruit phenotype. These results provide new insights into the regulatory networks that govern tomato fruit colour formation via ethylene signal transduction.
Collapse
Affiliation(s)
- Weihua Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuhang Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shaozhu Fan
- Branch Institute of Horticulture, Harbin Academy of Agricultural Science, Harbin, China
| | - Tengjian Wen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Minghui Wang
- Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, New York, USA
| | - Lida Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lingxia Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|