1
|
Luo S, Liu J, Shi K, Zhang J, Wang Z. Integrated transcriptomic and metabolomic analyses reveal that MsSPHK1 - A sphingosine kinase gene negatively regulates drought tolerance in alfalfa (Medicago sativa L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 218:109302. [PMID: 39579717 DOI: 10.1016/j.plaphy.2024.109302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/04/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024]
Abstract
Alfalfa is a valuable forage crop but voluntarily affected by drought. Understanding the mechanisms of drought resistance in alfalfa is crucial for improving resilient cultivars. In our study, we used four distinct alfalfa accessions two drought-tolerance (DT) and two drought-sensitive (DS) and identified transcriptional modules and candidate genes associated with the drought tolerance in the DS from transcriptomic analyses. Our metabolic profiling of 520 metabolites revealed significant variations between the DS and DT groups, particularly in the levels of flavonoids and nucleotides and their derivatives. The integrated analysis of transcriptome and metabolome analysis revealed that the glycine, serine, and threonine metabolism and the sphingolipid metabolism are associated with the drought resistance. When drought stress occurs, MsSRR (MsG 0180002649.01) and MsSPHK1 (MsG 0280006618.01) are significantly up-regulated, L-serine and dihydrosphingosine (DHS) significantly down-regulated in DS. By silencing the MsSPHK1 gene we found the drought resistance was significantly improved. This was evidenced by a significant increase in the activity of antioxidant enzymes such as SOD, POD, and CAT, compared to the control group. Additionally, the photosynthetic rate, stomatal conductance, and efficiency of photosystem II measured by Fv/Fm, phi2 and qL, were significantly higher in the silenced plants than in the control group. In conclusion, our results suggest that the increased level of dihydrosphingosine improves alfalfa resistance to drought stress. Moreover, the negative regulatory role of MsSPHK1 in drought tolerance provides a promising target for genetic manipulation to enhance the resilience of alfalfa to drought stress.
Collapse
Affiliation(s)
- Shengze Luo
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jia Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Kun Shi
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinli Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zan Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Li L, Chen G, Sun Q, Wang Q, Wang S, Wang H, Ni Z, Jiang C, Li L, Li T. Evaluation of Salt Resistance of Six Apple Rootstocks. Int J Mol Sci 2024; 25:12568. [PMID: 39684281 DOI: 10.3390/ijms252312568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
Apples (Malus domestica Borkh) are important fruits in China; however, salt stress is severe in northern regions, and the key to plant resistance to salt stress lies in the rootstock. Therefore, it is necessary to explore rootstocks with strong salt resistance for the development of the apple industry. This study used tissue culture seedlings of six apple rootstocks, namely, '71-3-150', '54-118', 'M9T337', 'GM256', 'ML176', and 'ML2', as experimental materials. The seedlings were treated with a medium containing 150 mM NaCl, and the physiological indicators and related gene expression responses of several rootstocks were studied after salt stress. The results showed that salt stress affects the growth of both the aboveground and underground parts of plants. Through physiological indicators and the related gene expression responses of rootstocks, it was observed that salt stress significantly increased Na+ contents in different rootstocks. Simultaneously, the activity of various antioxidant enzymes and the expression levels of related genes also increased. In summary, by analyzing the parameters of various physiological indicators, it can be concluded that among the studied rootstocks, the '71-3-150' and '54-118' rootstocks have the strongest resistance to salt stress, while the 'M9T337' and 'GM256' rootstocks exhibit moderate resistance, and the 'ML176' and 'ML2' rootstocks have the weakest resistance.
Collapse
Affiliation(s)
- Lun Li
- Frontiers Science Center for Molecular Design Breeding, College of Horticulture, China Agricultural University, Beijing 100193, China
- Shandong Institute of Pomology, Taian 271000, China
| | - Guolin Chen
- College of Horticulture and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Qingrong Sun
- Shandong Institute of Pomology, Taian 271000, China
| | - Qing Wang
- College of Horticulture and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Sen Wang
- Shandong Institute of Pomology, Taian 271000, China
| | - Haibo Wang
- Shandong Institute of Pomology, Taian 271000, China
| | - Zhihua Ni
- College of Horticulture, Jilin Agricultural University, Changchun 130118, China
| | - Caina Jiang
- Frontiers Science Center for Molecular Design Breeding, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Linguang Li
- Frontiers Science Center for Molecular Design Breeding, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Tianhong Li
- Frontiers Science Center for Molecular Design Breeding, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Chen XF, Wu BS, Yang H, Shen Q, Lu F, Huang WL, Guo J, Ye X, Yang LT, Chen LS. The underlying mechanisms by which boron mitigates copper toxicity in Citrus sinensis leaves revealed by integrated analysis of transcriptome, metabolome and physiology. TREE PHYSIOLOGY 2024; 44:tpae099. [PMID: 39109836 DOI: 10.1093/treephys/tpae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/05/2024] [Indexed: 09/14/2024]
Abstract
Both copper (Cu) excess and boron (B) deficiency are often observed in some citrus orchard soils. The molecular mechanisms by which B alleviates excessive Cu in citrus are poorly understood. Seedlings of sweet orange (Citrus sinensis (L.) Osbeck cv. Xuegan) were treated with 0.5 (Cu0.5) or 350 (Cu350 or Cu excess) μM CuCl2 and 2.5 (B2.5) or 25 (B25) μM HBO3 for 24 wk. Thereafter, this study examined the effects of Cu and B treatments on gene expression levels revealed by RNA-Seq, metabolite profiles revealed by a widely targeted metabolome, and related physiological parameters in leaves. Cu350 upregulated 564 genes and 170 metabolites, and downregulated 598 genes and 58 metabolites in leaves of 2.5 μM B-treated seedlings (LB2.5), but it only upregulated 281 genes and 100 metabolites, and downregulated 136 genes and 40 metabolites in leaves of 25 μM B-treated seedlings (LB25). Cu350 decreased the concentrations of sucrose and total soluble sugars and increased the concentrations of starch, glucose, fructose and total nonstructural carbohydrates in LB2.5, but it only increased the glucose concentration in LB25. Further analysis demonstrated that B addition reduced the oxidative damage and alterations in primary and secondary metabolisms caused by Cu350, and alleviated the impairment of Cu350 to photosynthesis and cell wall metabolism, thus improving leaf growth. LB2.5 exhibited some adaptive responses to Cu350 to meet the increasing need for the dissipation of excessive excitation energy (EEE) and the detoxification of reactive oxygen species (reactive aldehydes) and Cu. Cu350 increased photorespiration, xanthophyll cycle-dependent thermal dissipation, nonstructural carbohydrate accumulation, and secondary metabolite biosynthesis and abundances; and upregulated tryptophan metabolism and related metabolite abundances, some antioxidant-related gene expression, and some antioxidant abundances. Additionally, this study identified some metabolic pathways, metabolites and genes that might lead to Cu tolerance in leaves.
Collapse
Affiliation(s)
- Xu-Feng Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan, Fuzhou 350002, China
| | - Bi-Sha Wu
- College of Resources and Environment, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan, Fuzhou 350002, China
- College of Environmental and Biological Engineering, Putian University, No. 1133 Xueyuan Middle Street, Chengxiang, Putian 351100, China
| | - Hui Yang
- College of Resources and Environment, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan, Fuzhou 350002, China
| | - Qian Shen
- College of Resources and Environment, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan, Fuzhou 350002, China
| | - Fei Lu
- College of Resources and Environment, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan, Fuzhou 350002, China
| | - Wei-Lin Huang
- College of Resources and Environment, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan, Fuzhou 350002, China
| | - Jiuxin Guo
- College of Resources and Environment, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan, Fuzhou 350002, China
| | - Xin Ye
- College of Resources and Environment, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan, Fuzhou 350002, China
| | - Lin-Tong Yang
- College of Resources and Environment, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan, Fuzhou 350002, China
| | - Li-Song Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan, Fuzhou 350002, China
| |
Collapse
|
4
|
Jia X, Xu S, Wang F, Jia Y, Qing Y, Gao T, Zhang Z, Liu X, Yang C, Ma F, Li C. Sorbitol mediates age-dependent changes in apple plant growth strategy through gibberellin signaling. HORTICULTURE RESEARCH 2024; 11:uhae192. [PMID: 39145197 PMCID: PMC11322524 DOI: 10.1093/hr/uhae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/30/2024] [Indexed: 08/16/2024]
Abstract
Plants experience various age-dependent changes during juvenile to adult vegetative phase. However, the regulatory mechanisms orchestrating the changes remain largely unknown in apple (Malus domestica). This study showed that tissue-cultured apple plants at juvenile, transition, and adult phase exhibit age-dependent changes in their plant growth, photosynthetic performance, hormone levels, and carbon distribution. Moreover, this study identified an age-dependent gene, sorbitol dehydrogenase (MdSDH1), a key enzyme for sorbitol catabolism, highly expressed in the juvenile phase in apple. Silencing MdSDH1 in apple significantly decreased the plant growth and GA3 levels. However, exogenous GA3 rescued the reduced plant growth phenotype of TRV-MdSDH1. Biochemical analysis revealed that MdSPL1 interacts with MdWRKY24 and synergistically enhance the repression of MdSPL1 and MdWRKY24 on MdSDH1, thereby promoting sorbitol accumulation during vegetative phase change. Exogenous sorbitol application indicated that sorbitol promotes the transcription of MdSPL1 and MdWRKY24. Notably, MdSPL1-MdWRKY24 module functions as key repressor to regulate GA-responsive gene, Gibberellic Acid-Stimulated Arabidopsis (MdGASA1) expression, thereby leading to a shift from the quick to the slow-growth strategy. These results reveal the pivotal role of sorbitol in controlling apple plant growth, thereby improving our understanding of vegetative phase change in apple.
Collapse
Affiliation(s)
- Xumei Jia
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuo Xu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fei Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yiwei Jia
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yubin Qing
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tengteng Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhijun Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaomin Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chao Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chao Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
5
|
Fan Z, Zhu Y, Kuang W, Leng J, Wang X, Qiu L, Nie J, Yuan Y, Zhang RF, Wang Y, Zhao Q. The 14-3-3 protein GRF8 modulates salt stress tolerance in apple via the WRKY18-SOS pathway. PLANT PHYSIOLOGY 2024; 194:1906-1922. [PMID: 37987562 DOI: 10.1093/plphys/kiad621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/26/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
Salinity is a severe abiotic stress that limits plant survival, growth, and development. 14-3-3 proteins are phosphopeptide-binding proteins that are involved in numerous signaling pathways, such as metabolism, development, and stress responses. However, their roles in salt tolerance are unclear in woody plants. Here, we characterized an apple (Malus domestica) 14-3-3 gene, GENERAL REGULATORY FACTOR 8 (MdGRF8), the product of which promotes salinity tolerance. MdGRF8 overexpression improved salt tolerance in apple plants, whereas MdGRF8-RNA interference (RNAi) weakened it. Yeast 2-hybrid, bimolecular fluorescence complementation, pull-down, and coimmunoprecipitation assays revealed that MdGRF8 interacts with the transcription factor MdWRKY18. As with MdGRF8, overexpressing MdWRKY18 enhanced salt tolerance in apple plants, whereas silencing MdWRKY18 had the opposite effect. We also determined that MdWRKY18 binds to the promoters of the salt-related genes SALT OVERLY SENSITIVE 2 (MdSOS2) and MdSOS3. Moreover, we showed that the 14-3-3 protein MdGRF8 binds to the phosphorylated form of MdWRKY18, enhancing its stability and transcriptional activation activity. Our findings reveal a regulatory mechanism by the MdGRF8-MdWRKY18 module for promoting the salinity stress response in apple.
Collapse
Affiliation(s)
- Zihao Fan
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Yuqing Zhu
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Wei Kuang
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Jun Leng
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Xue Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Linlin Qiu
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Jiyun Nie
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Yongbing Yuan
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Rui-Fen Zhang
- Academy of Agricultural Sciences of Qingdao, Qingdao, Shandong 266100, China
| | - Yongzhang Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Qiang Zhao
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| |
Collapse
|
6
|
Li L, Du L, Cao Q, Yang Z, Liu Y, Yang H, Duan X, Meng Z. Salt Tolerance Evaluation of Cucumber Germplasm under Sodium Chloride Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:2927. [PMID: 37631139 PMCID: PMC10459999 DOI: 10.3390/plants12162927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/29/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Cucumber (Cucumis sativus L.) is an important horticultural crop worldwide. Sodium (Na+) and chloride (Cl-) in the surface soil are the major limiting factors in coastal areas of Shandong Province in China. Therefore, to understand the mechanism used by cucumber to adapt to sodium chloride (NaCl), we analyzed the phenotypic and physiological indicators of eighteen cucumber germplasms after three days under 100 and 150 mM NaCl treatment. A cluster analysis revealed that eighteen germplasms could be divided into five groups based on their physiological indicators. The first three groups consisted of seven salt-tolerant and medium salt-tolerant germplasms, including HLT1128h, Zhenni, and MC2065. The two remaining groups consisted of five medium salt-sensitive germplasms, including DM26h and M1-2-h-10, and six salt-sensitive germplasms including M1XT and 228. A principal component analysis revealed that the trend of comprehensive scores was consistent with the segmental cluster analysis and survival rates of cucumber seedlings. Overall, the phenotype, comprehensive survival rate, cluster analysis, and principal component analysis revealed that the salt-tolerant and salt-sensitive germplasms were Zhenni, F11-15, MC2065, M1XT, M1-2-h-10, and DM26h. The results of this study will provide references to identify or screen salt-tolerant cucumber germplasms and lay a foundation for breeding salt-tolerant cucumber varieties.
Collapse
Affiliation(s)
- Libin Li
- Key Laboratory of Greenhouse Vegetable Biology of Shandong Province, Vegetable Science Observation and Experiment Station in Huang—Huai Region of Ministry of Agriculture (Shandong), Shandong Branch of National Vegetable Improvement Center, Vegetable Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China (Q.C.)
| | - Lianda Du
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Qiwei Cao
- Key Laboratory of Greenhouse Vegetable Biology of Shandong Province, Vegetable Science Observation and Experiment Station in Huang—Huai Region of Ministry of Agriculture (Shandong), Shandong Branch of National Vegetable Improvement Center, Vegetable Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China (Q.C.)
| | - Zonghui Yang
- Key Laboratory of Greenhouse Vegetable Biology of Shandong Province, Vegetable Science Observation and Experiment Station in Huang—Huai Region of Ministry of Agriculture (Shandong), Shandong Branch of National Vegetable Improvement Center, Vegetable Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China (Q.C.)
| | - Yihan Liu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Hua Yang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xi Duan
- College of Agricultural Science and Technology, Shandong Agriculture and Engineering University, Jinan 250100, China
| | - Zhaojuan Meng
- Key Laboratory of Greenhouse Vegetable Biology of Shandong Province, Vegetable Science Observation and Experiment Station in Huang—Huai Region of Ministry of Agriculture (Shandong), Shandong Branch of National Vegetable Improvement Center, Vegetable Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China (Q.C.)
| |
Collapse
|
7
|
Laksana C, Sophiphun O, Chanprame S. In vitro and in vivo screening for the identification of salt-tolerant sugarcane ( Saccharum officinarum L.) clones: molecular, biochemical, and physiological responses to salt stress. Saudi J Biol Sci 2023; 30:103655. [PMID: 37213693 PMCID: PMC10193298 DOI: 10.1016/j.sjbs.2023.103655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/20/2023] [Accepted: 04/16/2023] [Indexed: 05/23/2023] Open
Abstract
Sugarcane is a glycophyte whose growth and yield can be negatively affected by salt stress. As the arable lands with potential saline soils expand annually, the increase of salt-tolerance in sugarcane cultivars is highly desired. We, herein, employed in vitro and in vivo conditions in order to screen sugarcane plants for salt tolerance at the cellular and at the whole plant levels. Calli of sugarcane cv. Khon Kaen 3 (KK3) were selected after culturing in selective media containing various NaCl concentrations, and regenerated plants were then reselected after culturing in selective media containing higher NaCl concentrations. The surviving plants were finally selected after an exposure to 254 mM NaCl under greenhouse conditions. A total of 11 sugarcane plants survived the selection process. Four plants that exhibited tolerance to the four different salt concentrations applied during the aforementioned screening process were then selected for the undertaking of further molecular, biochemical, and physiological studies. The construction of a dendrogram has revealed that the most salt-tolerant plant was characterized by the lowest genetic similarity to the original cultivar. The relative expression levels of six genes (i.e., SoDREB, SoNHX1, SoSOS1, SoHKT, SoBADH, and SoMIPS) were found to be significantly higher in the salt-tolerance clones than those measured in the original plant. The measured proline levels, the glycine betaine content, the relative water content, the SPAD unit, the contents of chlorophyll a and b, as well as the K+/Na+ ratios of the salt-tolerant clones were also found to be significantly higher than those of the original plant.When the salt-tolerant clones were grown in a low saline soil, they exhibited a higher Brix percentage than that of the original cultivar.
Collapse
Affiliation(s)
- Chanakan Laksana
- Faculty of Agricultural Technology, Burapha University Sakaeo Campus, Sakaeo 27160, Thailand
| | - Onsulang Sophiphun
- Faculty of Agricultural Technology, Burapha University Sakaeo Campus, Sakaeo 27160, Thailand
| | - Sontichai Chanprame
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, 73140,Thailand
- Corresponding author.
| |
Collapse
|
8
|
Singer SD, Lehmann M, Zhang Z, Subedi U, Burton Hughes K, Lim NZL, Ortega Polo R, Chen G, Acharya S, Hannoufa A, Huan T. Elucidation of Physiological, Transcriptomic and Metabolomic Salinity Response Mechanisms in Medicago sativa. PLANTS (BASEL, SWITZERLAND) 2023; 12:2059. [PMID: 37653976 PMCID: PMC10221938 DOI: 10.3390/plants12102059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 09/02/2023]
Abstract
Alfalfa (Medicago sativa L.) is a widely grown perennial leguminous forage crop with a number of positive attributes. However, despite its moderate ability to tolerate saline soils, which are increasing in prevalence worldwide, it suffers considerable yield declines under these growth conditions. While a general framework of the cascade of events involved in plant salinity response has been unraveled in recent years, many gaps remain in our understanding of the precise molecular mechanisms involved in this process, particularly in non-model yet economically important species such as alfalfa. Therefore, as a means of further elucidating salinity response mechanisms in this species, we carried out in-depth physiological assessments of M. sativa cv. Beaver, as well as transcriptomic and untargeted metabolomic evaluations of leaf tissues, following extended exposure to salinity (grown for 3-4 weeks under saline treatment) and control conditions. In addition to the substantial growth and photosynthetic reductions observed under salinity treatment, we identified 1233 significant differentially expressed genes between growth conditions, as well as 60 annotated differentially accumulated metabolites. Taken together, our results suggest that changes to cell membranes and walls, cuticular and/or epicuticular waxes, osmoprotectant levels, antioxidant-related metabolic pathways, and the expression of genes encoding ion transporters, protective proteins, and transcription factors are likely involved in alfalfa's salinity response process. Although some of these alterations may contribute to alfalfa's modest salinity resilience, it is feasible that several may be disadvantageous in this context and could therefore provide valuable targets for the further improvement of tolerance to this stress in the future.
Collapse
Affiliation(s)
- Stacy D. Singer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Madeline Lehmann
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Zixuan Zhang
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Udaya Subedi
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Kimberley Burton Hughes
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Nathaniel Z.-L. Lim
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Rodrigo Ortega Polo
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Surya Acharya
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Abdelali Hannoufa
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada
| | - Tao Huan
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
9
|
Jing Y, Pei T, Li C, Wang D, Wang Q, Chen Y, Li P, Liu C, Ma F. Overexpression of the FERONIA receptor kinase MdMRLK2 enhances apple cold tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 37006197 DOI: 10.1111/tpj.16226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Cold is one of the main abiotic stresses in temperate fruit crops, affecting the yield and fruit quality of apple in China and European countries. The plant receptor-like kinase FERONIA is widely reported to be involved in abiotic stresses. However, its function in apple cold resistance remains unknown. Modification of cell wall components and accumulation of soluble sugars and amino acids are important strategies by which plants cope with cold. In this study, expression of the apple FERONIA receptor-like kinase gene MdMRLK2 was rapidly induced by cold. Apple plants overexpressing MdMRLK2 (35S:MdMRLK2) showed enhanced cold resistance relative to the wild type. Under cold conditions, 35S:MdMRLK2 apple plants had higher amounts of water insoluble pectin, lignin, cellulose, and hemicellulose, which may have resulted from reduced activities of polygalacturonase, pectinate lyase, pectinesterase, and cellulase. More soluble sugars and free amino acids and less photosystem damage were also observed in 35S:MdMRLK2 apple plants. Intriguingly, MdMRLK2 interacted with the transcription factor MdMYBPA1 and promoted its binding to MdANS and MdUFGT promoters, leading to more anthocyanin biosynthesis, particularly under cold conditions. These findings complemented the function of apple FERONIA MdMRLK2 responding to cold resistance.
Collapse
Affiliation(s)
- Yuanyuan Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Tingting Pei
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chunrong Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Duanni Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qi Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yijia Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Pengmin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Changhai Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
10
|
Praveen A, Dubey S, Singh S, Sharma VK. Abiotic stress tolerance in plants: a fascinating action of defense mechanisms. 3 Biotech 2023; 13:102. [PMID: 36866326 PMCID: PMC9971429 DOI: 10.1007/s13205-023-03519-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
Climate fluctuation mediated abiotic stress consequences loss in crop yields. These stresses have a negative impact on plant growth and development by causing physiological and molecular changes. In this review, we have attempted to outline recent studies (5 years) associated with abiotic stress resistance in plants. We investigated the various factors that contribute to coping with abiotic challenges, such as transcription factors (TFs), microRNAs (miRNAs), epigenetic changes, chemical priming, transgenic breeding, autophagy, and non-coding RNAs. Stress responsive genes are regulated mostly by TFs, and these can be used to enhance stress resistance in plants. Plants express some miRNA during stress imposition that act on stress-related target genes to help them survive. Epigenetic alterations govern gene expression and facilitate stress tolerance. Chemical priming enhances growth in plants by modulating physiological parameters. Transgenic breeding enables identification of genes involved in precise plant responses during stressful situations. In addition to protein coding genes, non-coding RNAs also influence the growth of the plant by causing alterations at gene expression levels. For achieving sustainable agriculture for a rising world population, it is crucial to develop abiotic-resistant crops with anticipated agronomical traits. To achieve this objective, understanding the diverse mechanisms by which plants protect themselves against abiotic stresses is imperative. This review emphasizes on recent progress and future prospects for abiotic stress tolerance and productivity in plants.
Collapse
Affiliation(s)
- Afsana Praveen
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Yamuna Expressway, Sector 17A, Gautam Budh Nagar, Uttar Pradesh 203201 India
| | - Sonali Dubey
- National Botanical Research Institute, Uttar Pradesh, Lukhnow, 226001 India
| | - Shilpy Singh
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Yamuna Expressway, Sector 17A, Gautam Budh Nagar, Uttar Pradesh 203201 India
| | - Varun Kumar Sharma
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Yamuna Expressway, Sector 17A, Gautam Budh Nagar, Uttar Pradesh 203201 India
| |
Collapse
|
11
|
Singh P, Choudhary KK, Chaudhary N, Gupta S, Sahu M, Tejaswini B, Sarkar S. Salt stress resilience in plants mediated through osmolyte accumulation and its crosstalk mechanism with phytohormones. FRONTIERS IN PLANT SCIENCE 2022; 13:1006617. [PMID: 36237504 PMCID: PMC9552866 DOI: 10.3389/fpls.2022.1006617] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/24/2022] [Indexed: 06/01/2023]
Abstract
Salinity stress is one of the significant abiotic stresses that influence critical metabolic processes in the plant. Salinity stress limits plant growth and development by adversely affecting various physiological and biochemical processes. Enhanced generation of reactive oxygen species (ROS) induced via salinity stress subsequently alters macromolecules such as lipids, proteins, and nucleic acids, and thus constrains crop productivity. Due to which, a decreasing trend in cultivable land and a rising world population raises a question of global food security. In response to salt stress signals, plants adapt defensive mechanisms by orchestrating the synthesis, signaling, and regulation of various osmolytes and phytohormones. Under salinity stress, osmolytes have been investigated to stabilize the osmotic differences between the surrounding of cells and cytosol. They also help in the regulation of protein folding to facilitate protein functioning and stress signaling. Phytohormones play critical roles in eliciting a salinity stress adaptation response in plants. These responses enable the plants to acclimatize to adverse soil conditions. Phytohormones and osmolytes are helpful in minimizing salinity stress-related detrimental effects on plants. These phytohormones modulate the level of osmolytes through alteration in the gene expression pattern of key biosynthetic enzymes and antioxidative enzymes along with their role as signaling molecules. Thus, it becomes vital to understand the roles of these phytohormones on osmolyte accumulation and regulation to conclude the adaptive roles played by plants to avoid salinity stress.
Collapse
Affiliation(s)
- Pooja Singh
- Department of Botany, MMV, Banaras Hindu University, Varanasi, India
| | - Krishna Kumar Choudhary
- Department of Botany, MMV, Banaras Hindu University, Varanasi, India
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Nivedita Chaudhary
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Shweta Gupta
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Mamatamayee Sahu
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Boddu Tejaswini
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Subrata Sarkar
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
12
|
Chen Y, Wang J, Yao L, Li B, Ma X, Si E, Yang K, Li C, Shang X, Meng Y, Wang H. Combined Proteomic and Metabolomic Analysis of the Molecular Mechanism Underlying the Response to Salt Stress during Seed Germination in Barley. Int J Mol Sci 2022; 23:ijms231810515. [PMID: 36142428 PMCID: PMC9499682 DOI: 10.3390/ijms231810515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022] Open
Abstract
Salt stress is a major abiotic stress factor affecting crop production, and understanding of the response mechanisms of seed germination to salt stress can help to improve crop tolerance and yield. The differences in regulatory pathways during germination in different salt-tolerant barley seeds are not clear. Therefore, this study investigated the responses of different salt-tolerant barley seeds during germination to salt stress at the proteomic and metabolic levels. To do so, the proteomics and metabolomics of two barley seeds with different salt tolerances were comprehensively examined. Through comparative proteomic analysis, 778 differentially expressed proteins were identified, of which 335 were upregulated and 443 were downregulated. These proteins, were mainly involved in signal transduction, propanoate metabolism, phenylpropanoid biosynthesis, plant hormones and cell wall stress. In addition, a total of 187 salt-regulated metabolites were identified in this research, which were mainly related to ABC transporters, amino acid metabolism, carbohydrate metabolism and lipid metabolism; 72 were increased and 112 were decreased. Compared with salt-sensitive materials, salt-tolerant materials responded more positively to salt stress at the protein and metabolic levels. Taken together, these results suggest that salt-tolerant germplasm may enhance resilience by repairing intracellular structures, promoting lipid metabolism and increasing osmotic metabolites. These data not only provide new ideas for how seeds respond to salt stress but also provide new directions for studying the molecular mechanisms and the metabolic homeostasis of seeds in the early stages of germination under abiotic stresses.
Collapse
Affiliation(s)
- Yiyou Chen
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
| | - Juncheng Wang
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
| | - Lirong Yao
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
| | - Baochun Li
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
- Department of Botany, College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaole Ma
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
| | - Erjing Si
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
| | - Ke Yang
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
| | - Chengdao Li
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
| | - Xunwu Shang
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yaxiong Meng
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
- Correspondence: (Y.M.); (H.W.)
| | - Huajun Wang
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
- Correspondence: (Y.M.); (H.W.)
| |
Collapse
|
13
|
Genome-Wide Analysis of the WRKY Gene Family in Malus domestica and the Role of MdWRKY70L in Response to Drought and Salt Stresses. Genes (Basel) 2022; 13:genes13061068. [PMID: 35741830 PMCID: PMC9222762 DOI: 10.3390/genes13061068] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/05/2023] Open
Abstract
The WRKY transcription factors are unique regulatory proteins in plants, which are important in the stress responses of plants. In this study, 113 WRKY genes were identified from the apple genome GDDH13 and a comprehensive analysis was performed, including chromosome mapping, and phylogenetic, motif and collinearity analysis. MdWRKYs are expressed in different tissues, such as seeds, flowers, stems and leaves. We analyzed seven WRKY proteins in different groups and found that all of them were localized in the nucleus. Among the 113 MdWRKYs, MdWRKY70L was induced by both drought and salt stresses. Overexpression of it in transgenic tobacco plants conferred enhanced stress tolerance to drought and salt. The malondialdehyde content and relative electrolyte leakage values were lower, while the chlorophyll content was higher in transgenic plants than in the wild-type under stressed conditions. In conclusion, this study identified the WRKY members in the apple genome GDDH13, and revealed the function of MdWRKY70L in the response to drought and salt stresses.
Collapse
|
14
|
Abstract
Sugar, an osmoregulatory substance used by plants to adapt to abiotic stresses such as drought and salinity, is one of the most important indexes of fruit quality. In this study, 0–150 mM saline–alkali solutions (NaCl:NaHCO3 = 3:1) were used to irrigate the roots of 10-year-old “Junzao” fruit trees during the growth period to explore the regulation mechanism of different concentrations of saline–alkali stress on sugar and reactive oxygen metabolism in jujube fruit at maturity. The results showed that under low stress (0~90 mM), the contents of sucrose, glucose, and fructose in the jujube fruit and the activities of sucrose phosphate synthase (SPS), sucrose synthase decomposition direction (SS-I), and sucrose synthase synthesis direction (SS-II) increased with increases in stress concentration, results that were consistent with the relative expression trends of the SPS and SS genes; however, the results were reversed under high concentrations (120 and 150 mM). The soluble acid invertase (S-AI) activity decreased with increases in stress concentration under low stress, and the results were reversed with high stress, which was consistent with the relative expression trends of the ZjcINV3, ZjnINV1, and ZjnINV3. Research regarding the response of antioxidant enzymes in fruits under saline–alkali stress showed that only the differences in peroxidase (POD) activity under saline–alkali stress were consistent with sugar accumulation; the proline (PRO), catalase (CAT) decreased and the malondialdehyde (MDA) superoxide dismutase (SOD) increased with increases in saline–alkali stress. These results indicate that the sugar metabolism and antioxidase jointly promote and regulate sugar accumulation in jujube fruits in a low saline–alkali environment.
Collapse
|
15
|
Zhou K, Li Y, Hu L, Zhang J, Yue H, Yang S, Liu Y, Gong X, Ma F. Overexpression of MdASMT9, an N-acetylserotonin methyltransferase gene, increases melatonin biosynthesis and improves water-use efficiency in transgenic apple. TREE PHYSIOLOGY 2022; 42:1114-1126. [PMID: 34865159 DOI: 10.1093/treephys/tpab157] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Improving apple water-use efficiency (WUE) is increasingly desirable in the face of global climate change. Melatonin is a pleiotropic molecule that functions in plant development and stress tolerance. In apple, exogenous application of melatonin has been largely investigated, but melatonin biosynthesis and its physiological roles remain elusive. In the plant biosynthetic pathway of melatonin, the last and key step is that N-acetylserotonin methyltransferase (ASMT) converts N-acetylserotonin into melatonin. Here, we identified an apple ASMT gene, MdASMT9, using homology-based cloning and in vitro enzyme assays. Overexpression of MdASMT9 significantly increased melatonin accumulation in transgenic apple lines. Moreover, an enhanced WUE was observed in the MdASMT9-overexpressing apple lines. Under well-watered conditions, this increase in WUE was attributed to an enhancement of photosynthetic rate and stomatal aperture via a reduction in abscisic acid biosynthesis. By contrast, under long-term moderate water deficit conditions, regulations in photoprotective mechanisms, stomatal behavior, osmotic adjustment and antioxidant activity enhanced the WUE in transgenic apple lines. Taken together, our findings shed light on the positive effect of MdASMT9 on improving WUE of apple by modulating melatonin biosynthesis.
Collapse
Affiliation(s)
- Kun Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yangtiansu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lingyu Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingyun Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hong Yue
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shulin Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoqing Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
16
|
Dai Y, Lu Y, Zhou Z, Wang X, Ge H, Sun Q. B-box containing protein 1 from Malus domestica (MdBBX1) is involved in the abiotic stress response. PeerJ 2022; 10:e12852. [PMID: 35178298 PMCID: PMC8815370 DOI: 10.7717/peerj.12852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/07/2022] [Indexed: 01/10/2023] Open
Abstract
B-box proteins (BBXs), which act as transcription factors, mainly regulate photomorphogenesis. However, the molecular functions underlying the activity of plant BBXs in response to abiotic stress remain largely unclear. In this investigation, we found that a BBX from Malus domestica (MdBBX1) was involved in the response to various abiotic stresses. The expression of MdBBX1 was significantly upregulated in response to abiotic stresses and abscisic acid (ABA). Recombinant MdBBX1 increased stress tolerance in Escherichia coli cells. In addition, overexpression of MdBBX1 in Arabidopsis decreased sensitivity to exogenous ABA, resulting in a germination rate and root length that were greater and longer, respectively, than those of wild-type (WT) plants. Moreover, the expression of ABI5 was decreased in MdBBX1-overexpressing lines under ABA treatment. After salt and drought treatments, compared with the WT plants, the MdBBX1 transgenic plants displayed enhanced tolerance and had a higher survival rate. Furthermore, under salt stress, increased proline (PRO) contents, decreased levels of malondialdehyde (MDA), increased activity of antioxidant enzymes (superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX)) and decreased accumulation of reactive oxygen species (ROS) were observed in the MdBBX1-overexpressing plants. Overall, our results provide evidence that MdBBX1 might play a critical role in the regulation of abiotic stress tolerance by reducing the generation of ROS.
Collapse
Affiliation(s)
- Yaqing Dai
- College of Life Science, Shandong Agricultural University, Taian, Shandong, China
| | - Ying Lu
- College of Life Science, Shandong Agricultural University, Taian, Shandong, China,Institute of Shandong River Wetlands, Jinan, Shandong, China
| | - Zhou Zhou
- College of Life Science, Shandong Agricultural University, Taian, Shandong, China
| | - Xiaoyun Wang
- College of Life Science, Shandong Agricultural University, Taian, Shandong, China
| | - Hongjuan Ge
- Qingdao Academy of Agricultural Science, Qingdao, Shandong, China
| | - Qinghua Sun
- College of Life Science, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
17
|
Filippou P, Zarza X, Antoniou C, Obata T, Villarroel CA, Ganopoulos I, Harokopos V, Gohari G, Aidinis V, Madesis P, Christou A, Fernie AR, Tiburcio AF, Fotopoulos V. Systems biology reveals key tissue-specific metabolic and transcriptional signatures involved in the response of Medicago truncatula plant genotypes to salt stress. Comput Struct Biotechnol J 2021; 19:2133-2147. [PMID: 33995908 PMCID: PMC8085674 DOI: 10.1016/j.csbj.2021.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/05/2021] [Accepted: 04/05/2021] [Indexed: 11/24/2022] Open
Abstract
Τhe response of different Medicago truncatula genotypes to salt stress was examined. Systems biology revealed tissue-specific metabolic and transcriptional signatures. RFO metabolites linked with tolerance were identified. Several genes belonging to the TIR-NBS-LRR class were linked with hyper-sensitivity.
Salt stress is an important factor limiting plant productivity by affecting plant physiology and metabolism. To explore salt tolerance adaptive mechanisms in the model legume Medicago truncatula, we used three genotypes with differential salt-sensitivity: TN6.18 (highly sensitive), Jemalong A17 (moderately sensitive), and TN1.11 (tolerant). Cellular damage was monitored in roots and leaves 48 h after 200 mM NaCl treatment by measuring lipid peroxidation, nitric oxide, and hydrogen peroxide contents, further supported by leaf stomatal conductance and chlorophyll readings. The salt-tolerant genotype TN1.11 displayed the lowest level of oxidative damage, in contrast to the salt sensitive TN6.18, which showed the highest responses. Metabolite profiling was employed to explore the differential genotype-related responses to stress at the molecular level. The metabolic data in the salt tolerant TN1.11 roots revealed an accumulation of metabolites related to the raffinose pathway. To further investigate the sensitivity to salinity, global transcriptomic profiling using microarray analysis was carried out on the salt-stressed sensitive genotypes. In TN6.18, the transcriptomic analysis identified a lower expression of many genes related to stress signalling, not previously linked to salinity, and corresponding to the TIR-NBS-LRR gene class. Overall, this global approach contributes to gaining significant new insights into the complexity of stress adaptive mechanisms and to the identification of potential targets for crop improvement.
Collapse
Affiliation(s)
- Panagiota Filippou
- Department of Agricultural Sciences, Biotechnology, and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Xavier Zarza
- Department of Natural Products, Plant Biology and Soil Science, University of Barcelona, Barcelona, Spain
| | - Chrystalla Antoniou
- Department of Agricultural Sciences, Biotechnology, and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Toshihiro Obata
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | | | - Ioannis Ganopoulos
- Hellenic Agricultural Organization DEMETER, Institute of Plant Breeding and Genetic Resources- IPB&GR, Thessaloniki, Greece
| | - Vaggelis Harokopos
- Institute of Immunology, Biomedical Sciences Research Center Alexander Fleming, 34 Fleming Street, 16672 Athens, Greece
| | - Gholamreza Gohari
- Department of Horticultural Sciences, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Vassilis Aidinis
- Institute of Immunology, Biomedical Sciences Research Center Alexander Fleming, 34 Fleming Street, 16672 Athens, Greece
| | | | | | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Antonio F. Tiburcio
- Department of Natural Products, Plant Biology and Soil Science, University of Barcelona, Barcelona, Spain
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology, and Food Science, Cyprus University of Technology, Limassol, Cyprus
- Corresponding author.
| |
Collapse
|
18
|
Patel MK, Kumar M, Li W, Luo Y, Burritt DJ, Alkan N, Tran LSP. Enhancing Salt Tolerance of Plants: From Metabolic Reprogramming to Exogenous Chemical Treatments and Molecular Approaches. Cells 2020; 9:E2492. [PMID: 33212751 PMCID: PMC7697626 DOI: 10.3390/cells9112492] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/26/2022] Open
Abstract
Plants grow on soils that not only provide support for root anchorage but also act as a reservoir of water and nutrients important for plant growth and development. However, environmental factors, such as high salinity, hinder the uptake of nutrients and water from the soil and reduce the quality and productivity of plants. Under high salinity, plants attempt to maintain cellular homeostasis through the production of numerous stress-associated endogenous metabolites that can help mitigate the stress. Both primary and secondary metabolites can significantly contribute to survival and the maintenance of growth and development of plants on saline soils. Existing studies have suggested that seed/plant-priming with exogenous metabolites is a promising approach to increase crop tolerance to salt stress without manipulation of the genome. Recent advancements have also been made in genetic engineering of various metabolic genes involved in regulation of plant responses and protection of the cells during salinity, which have therefore resulted in many more basic and applied studies in both model and crop plants. In this review, we discuss the recent findings of metabolic reprogramming, exogenous treatments with metabolites and genetic engineering of metabolic genes for the improvement of plant salt tolerance.
Collapse
Affiliation(s)
- Manish Kumar Patel
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel;
| | - Manoj Kumar
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel;
| | - Weiqiang Li
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China;
- Joint International Laboratory for Multi-Omics Research, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Yin Luo
- School of Life Sciences, East China Normal University, Shanghai 200241, China;
| | - David J. Burritt
- Department of Botany, University of Otago, P.O. Box 56, Dunedin, New Zealand;
| | - Noam Alkan
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel;
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|