1
|
Jiang H, Zhang Y, Li J, Tang R, Liang F, Tang R, Zhou Y, Zhang C. Genome-wide identification of SIMILAR to RCD ONE (SRO) gene family in rapeseed ( Brassica napus L.) reveals their role in drought stress response. PLANT SIGNALING & BEHAVIOR 2024; 19:2379128. [PMID: 39003725 PMCID: PMC11249032 DOI: 10.1080/15592324.2024.2379128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/22/2024] [Indexed: 07/16/2024]
Abstract
Rapeseed (Brassica napus L.) is an important oilseed crop widely cultivated worldwide, and drought is the main environmental factor limiting its yield enhancement and the expansion of planted areas. SIMILAR TO RCD ONE (SRO) is a plant-specific small gene family that plays a crucial role in plant growth, development, and responses to abiotic stresses such as drought. However, the functional role of SROs in rapeseed remains poorly understood. In this study, 19 BnaSROs were identified from the rapeseed genome, with 9, 10, 10, 18, and 20 members identified from the genomes of Brassica rapa, Brassica nigra, Brassica oleracea, Brassica juncea, and Brassica carinata, respectively. We then analyzed their sequence characteristics, phylogenetic relationships, gene structures, and conserved domains, and explored the collinearity relationships of the SRO members in Brassica napus and Brassica juncea. Next, we focused on the analysis of tissue expression and stress-responsive expression patterns of rapeseed SRO members and examined their expression profiles under ABA, MeJA and water-deficit drought treatments using qPCR. Transcriptome data analysis and qPCR detection indicated that BnaSROs exhibit multiple stress-responsive expression patterns. BnaSRO1 and BnaSRO11, which are likely to function through interactions with NAC transcription factors, were screened as major drought-regulated members. Our results provide a solid foundation for functional analysis of the role of the SRO gene family in abiotic stress responses, especially drought stress responses, in rapeseed.
Collapse
Affiliation(s)
- Huanhuan Jiang
- Guizhou Oil Crops Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Yuling Zhang
- Guizhou Oil Crops Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Jia Li
- Guizhou Oil Crops Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Rongzi Tang
- Qianxi'nan Academy of Agricultural and Forestry Sciences, Xingyi, Guizhou, China
| | - Fenghao Liang
- Guizhou Oil Crops Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Rong Tang
- Guizhou Oil Crops Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Yuyu Zhou
- Guizhou Oil Crops Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Chao Zhang
- Guizhou Oil Crops Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| |
Collapse
|
2
|
Liang Y, Yang X, Wang C, Wang Y. miRNAs: Primary modulators of plant drought tolerance. JOURNAL OF PLANT PHYSIOLOGY 2024; 301:154313. [PMID: 38991233 DOI: 10.1016/j.jplph.2024.154313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/17/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
Drought is a principal environmental factor that affects the growth and development of plants. Accordingly, plants have evolved adaptive mechanisms to cope with adverse environmental conditions. One of the mechanisms is gene regulation mediated by microRNAs (miRNAs). miRNAs are regarded as primary modulators of gene expression at the post-transcriptional level and have been shown to participate in drought stress response, including ABA response, auxin signaling, antioxidant defense, and osmotic regulation through downregulating the corresponding targets. miRNA-based genetic reconstructions have the potential to improve the tolerance of plants to drought. However, there are few precise classification and discussion of miRNAs in specific response behaviors to drought stress and their applications. This review summarized and discussed the specific response behaviors of miRNAs under drought stress and the role of miRNAs as regulators in the response of plants to drought and highlighted that the modification of miRNAs might effectively improve the tolerance of plants to drought.
Collapse
Affiliation(s)
- Yanting Liang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaoqian Yang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Chun Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanwei Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
3
|
Fang Y, Wang L, Liu K, Wu H, Zheng Y, Duan Y, Feng S, Wang Y. Genome-wide investigation of HD-ZIP gene family and functional characterization of BnaHDZ149 and BnaHDZ22 in salt and drought response in Brassica napus L. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112130. [PMID: 38795751 DOI: 10.1016/j.plantsci.2024.112130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/08/2024] [Accepted: 05/18/2024] [Indexed: 05/28/2024]
Abstract
HD-ZIP proteins comprise a plant-specific transcription factor family, which play pivotal roles in plant development and adaptation to ever-changing environment. Although HD-ZIP family members have been identified in some plant species, so far our knowledge about HD-ZIP genes in rapeseed is still limited. In this study, 178 Brassica napus HD-ZIP (BnaHDZ) family members were identified in the rapeseed genome. The phylogenetic relationship, chromosomal locations, intron-exon structures, motif composition, and expression patterns of the BnaHDZ members were analyzed. The BnaHDZ family can be phylogenetically divided into four categories (Ⅰ, Ⅱ, Ⅲ and Ⅳ). Genome-wide transcriptome analysis revealed that most of the HD-ZIP I members respond to at least one abiotic stress. Two closely homologous stress-responsive HD-ZIP Ⅰ genes, BnaHDZ22 and BnaHDZ149, were identified to be involved in drought and salt responses, and selected for further functional characterization. Overexpressing BnaHDZ149 in rapeseed increased salt sensitivity of the transgenic plants, whereas overexpressing BnaHDZ22 increased sensitivity of the transgenic plants to polyethylene glycol (PEG)-simulated drought stress. This research provides not only a comprehensive landscape of BnaHDZ genes, but also a theoretical basis for elucidating the molecular mechanism of the abiotic stress responses of the HD-ZIP family in rapeseed.
Collapse
Affiliation(s)
- Yujie Fang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Lu Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Kuan Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Han Wu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yuqian Zheng
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yujing Duan
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shanshan Feng
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Youping Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
4
|
Yu Y, Wang P, Wan H, Wang Y, Hu H, Ni Z. The Gma-miR394a/GmFBX176 module is involved in regulating the soybean (Glycine max L.) response to drought stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 337:111879. [PMID: 37778470 DOI: 10.1016/j.plantsci.2023.111879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/10/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Drought seriously affects the yield and quality of soybean. Previous studies have shown that the gma-miR394a/GmFBX176 module regulates the response of Arabidopsis to drought stress. However, whether the gma-miR394a/GmFBX176 module is involved in the regulation of the soybean drought stress response remains unclear. Here, the function of the gma-miR394a/GmFBX176 module in the soybean drought stress response was evaluated. In soybean hairy roots, drought stress induced the transcription of gma-miR394a and inhibited the transcription of GmFBX176. GUS histochemical staining showed that transgenic GmFBX176p:GUS soybean hairy root staining was weak and that GUS transcript levels decreased under drought stress. A transient expression experiment in tobacco showed that gma-miR394a inhibited GmFBX176 transcription. Under drought stress, composite soybean plants overexpressing gma-miR394a showed increased drought resistance compared with control K599 composite soybean plants (K599); their survival rate and peroxidase activity were higher than those of K599, and their malondialdehyde content was lower. In contrast, composite soybean plants overexpressing GmFBX176m3 (gma-miR394a complement site mutation) presented lower drought resistance than K599 plants. Transcriptomic sequencing showed that the gma-miR394a/GmFBX176 module affected the transcript levels of stress response genes and transcription factors. These results indicate that the gma-miR394a/GmFBX176 module can be used to improve the drought resistance of soybean.
Collapse
Affiliation(s)
- Yuehua Yu
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, PR China
| | - Ping Wang
- College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, PR China
| | - Huina Wan
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, PR China
| | - Yi Wang
- College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, PR China
| | - Hao Hu
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, PR China
| | - Zhiyong Ni
- College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, PR China.
| |
Collapse
|
5
|
Azad MF, Dawar P, Esim N, Rock CD. Role of miRNAs in sucrose stress response, reactive oxygen species, and anthocyanin biosynthesis in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1278320. [PMID: 38023835 PMCID: PMC10656695 DOI: 10.3389/fpls.2023.1278320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
In plants, sucrose is the main transported disaccharide that is the primary product of photosynthesis and controls a multitude of aspects of the plant life cycle including structure, growth, development, and stress response. Sucrose is a signaling molecule facilitating various stress adaptations by crosstalk with other hormones, but the molecular mechanisms are not well understood. Accumulation of high sucrose concentrations is a hallmark of many abiotic and biotic stresses, resulting in the accumulation of reactive oxygen species and secondary metabolite anthocyanins that have antioxidant properties. Previous studies have shown that several MYeloBlastosis family/MYB transcription factors are positive and negative regulators of sucrose-induced anthocyanin accumulation and subject to microRNA (miRNA)-mediated post-transcriptional silencing, consistent with the notion that miRNAs may be "nodes" in crosstalk signaling by virtue of their sequence-guided targeting of different homologous family members. In this study, we endeavored to uncover by deep sequencing small RNA and mRNA transcriptomes the effects of exogenous high sucrose stress on miRNA abundances and their validated target transcripts in Arabidopsis. We focused on genotype-by-treatment effects of high sucrose stress in Production of Anthocyanin Pigment 1-Dominant/pap1-D, an activation-tagged dominant allele of MYB75 transcription factor, a positive effector of secondary metabolite anthocyanin pathway. In the process, we discovered links to reactive oxygen species signaling through miR158/161/173-targeted Pentatrico Peptide Repeat genes and two novel non-canonical targets of high sucrose-induced miR408 and miR398b*(star), relevant to carbon metabolic fluxes: Flavonoid 3'-Hydroxlase (F3'H), an important enzyme in determining the B-ring hydroxylation pattern of flavonoids, and ORANGE a post-translational regulator of Phytoene Synthase expression, respectively. Taken together, our results contribute to understanding the molecular mechanisms of carbon flux shifts from primary to secondary metabolites in response to high sugar stress.
Collapse
Affiliation(s)
- Md. Fakhrul Azad
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Pranav Dawar
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Nevzat Esim
- Department of Molecular Biology and Genetics, Bіngöl University, Bingöl, Türkiye
| | - Christopher D. Rock
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
6
|
Pasandideh Arjmand M, Samizadeh Lahiji H, Mohsenzadeh Golfazani M, Biglouei MH. Evaluation of protein's interaction and the regulatory network of some drought-responsive genes in Canola under drought and re-watering conditions. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1085-1102. [PMID: 37829706 PMCID: PMC10564702 DOI: 10.1007/s12298-023-01345-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 10/14/2023]
Abstract
Drought stress is one of the most important environmental stresses that severely limits the growth and yield of Canola. The re-watering can compensate for the damage caused by drought stress. Investigation of protein's interaction of genes involved in important drought-responsive pathways and their regulatory network by microRNAs (miRNAs) under drought and re-watering conditions are helpful approaches to discovering drought-stress tolerance and recovery mechanisms. In this study, the protein's interaction and functional enrichment analyses of glycolysis, pentose phosphate, glyoxylate cycle, fatty acid biosynthesis, heat shock factor main genes, and the regulatory network of key genes by miRNAs were investigated by in silico analysis. Then, the relative expression of key genes and their related miRNAs were investigated in tolerant and susceptible genotypes of Canola under drought and re-watering conditions by Real-time PCR technique. The bna-miR156b/c/g, bna-miR395d/e/f, bna-miR396a, and all the studied key genes except HSFA1E and PK showed changes in expression levels in one or both genotypes after re-watering. The PPC1 and HSFB2B expression decreased, whereas the MLS and CAC3 expression increased in both genotypes under re-watering treatment after drought stress. It could cause the regulation of oxaloacetate production, the increase of the glyoxylate cycle, lipid biosynthesis, and the reduction of the negative regulation of HSFs under re-watering conditions. It seems that PPC1, G6PD2, MLS, CAC3, and HSFB2B were involved in the recovery mechanisms after drought stress of Canola. They were regulated by drought-responsive miRNAs to respond appropriately to drought stress. Therefore, regulating these genes could be important in plant recovery mechanisms. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01345-1.
Collapse
Affiliation(s)
- Maryam Pasandideh Arjmand
- Department of Plant Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | | | | | - Mohammad Hassan Biglouei
- Department of Water Engineering, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
7
|
Wang T, Zou H, Ren S, Jin B, Lu Z. Genome-Wide Identification, Characterization, and Expression Analysis of NF-Y Gene Family in Ginkgo biloba Seedlings and GbNF-YA6 Involved in Heat-Stress Response and Tolerance. Int J Mol Sci 2023; 24:12284. [PMID: 37569658 PMCID: PMC10418864 DOI: 10.3390/ijms241512284] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/22/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Nuclear factor Y (NF-Y) transcription factors play an essential role in regulating plant growth, development, and stress responses. Despite extensive research on the NF-Y gene family across various species, the knowledge regarding the NF-Y family in Ginkgo biloba remains unknown. In this study, we identified a total of 25 NF-Y genes (seven GbNF-YAs, 12 GbNF-YBs, and six GbNF-YCs) in the G. biloba genome. We characterized the gene structure, conserved motifs, multiple sequence alignments, and phylogenetic relationships with other species (Populus and Arabidopsis). Additionally, we conducted a synteny analysis, which revealed the occurrence of segment duplicated NF-YAs and NF-YBs. The promoters of GbNF-Y genes contained cis-acting elements related to stress response, and miRNA-mRNA analysis showed that some GbNF-YAs with stress-related cis-elements could be targeted by the conserved miRNA169. The expression of GbNF-YA genes responded to drought, salt, and heat treatments, with GbNF-YA6 showing significant upregulation under heat and drought stress. Subcellular localization indicated that GbNF-YA6 was located in both the nucleus and the membrane. Overexpressing GbNF-YA6 in ginkgo callus significantly induced the expression of heat-shock factors (GbHSFs), and overexpressing GbNF-YA6 in transgenic Arabidopsis enhanced its heat tolerance. Additionally, Y2H assays demonstrated that GbNF-YA6 could interact with GbHSP at the protein level. Overall, our findings offer novel insights into the role of GbNF-YA in enhancing abiotic stress tolerance and warrant further functional research of GbNF-Y genes.
Collapse
Affiliation(s)
| | | | | | - Biao Jin
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China; (T.W.); (H.Z.); (S.R.)
| | - Zhaogeng Lu
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China; (T.W.); (H.Z.); (S.R.)
| |
Collapse
|
8
|
Ren Y, Li J, Liu J, Zhang Z, Song Y, Fan D, Liu M, Zhang L, Xu Y, Guo D, He J, Song S, Gao Z, Ma C. Functional Differences of Grapevine Circular RNA Vv-circPTCD1 in Arabidopsis and Grapevine Callus under Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:2332. [PMID: 37375960 DOI: 10.3390/plants12122332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Circular RNAs (circRNAs) serve as covalently closed single-stranded RNAs and have been proposed to influence plant development and stress resistance. Grapevine is one of the most economically valuable fruit crops cultivated worldwide and is threatened by various abiotic stresses. Herein, we reported that a circRNA (Vv-circPTCD1) processed from the second exon of the pentatricopeptide repeat family gene PTCD1 was preferentially expressed in leaves and responded to salt and drought but not heat stress in grapevine. Additionally, the second exon sequence of PTCD1 was highly conserved, but the biogenesis of Vv-circPTCD1 is species-dependent in plants. It was further found that the overexpressed Vv-circPTCD1 can slightly decrease the abundance of the cognate host gene, and the neighboring genes are barely affected in the grapevine callus. Furthermore, we also successfully overexpressed the Vv-circPTCD1 and found that the Vv-circPTCD1 deteriorated the growth during heat, salt, and drought stresses in Arabidopsis. However, the biological effects on grapevine callus were not always consistent with those of Arabidopsis. Interestingly, we found that the transgenic plants of linear counterpart sequence also conferred the same phenotypes as those of circRNA during the three stress conditions, no matter what species it is. Those results imply that although the sequences are conserved, the biogenesis and functions of Vv-circPTCD1 are species-dependent. Our results indicate that the plant circRNA function investigation should be conducted in homologous species, which supports a valuable reference for further plant circRNA studies.
Collapse
Affiliation(s)
- Yi Ren
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junpeng Li
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingjing Liu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Zhen Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue Song
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dongying Fan
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Minying Liu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lipeng Zhang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Yuanyuan Xu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dinghan Guo
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Juan He
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shiren Song
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhen Gao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Chao Ma
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
9
|
Balyan S, Kansal S, Jajo R, Behere PR, Chatterjee R, Raghuvanshi S. Delineating the tissue-mediated drought stress governed tuning of conserved miR408 and its targets in rice. Funct Integr Genomics 2023; 23:187. [PMID: 37243818 DOI: 10.1007/s10142-023-01111-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
Engineering drought tolerance in rice needs to focus on regulators that enhance tolerance while boosting plant growth and vigor. The present study delineated the concealed function and tissue-mediated interplay of the miR408/target module in imparting drought stress tolerance in rice. The plant miR408 family comprises three dominant mature forms (21 nt), including a distinct monocot variant (F-7 with 5' C) and is divided into six groups. miR408 majorly cleaves genes belonging to the blue copper protein in addition to several other species-specific targets in plants. Comparative sequence analysis in 4726 rice accessions identified 22 sequence variants (SNP and InDELs) in its promoter (15) and pre-miR408 region. Haplotype analysis of the sequence variants indicated eight haplotypes (three: Japonica-specific and five: Indica-specific) of the miR408 promoter. In drought-tolerant Nagina 22, miR408 follows flag leaf preferential expression. Under drought conditions, its levels are upregulated in flag leaf and roots which seems to be regulated by a differential fraction of methylated cytosines (mCs) in the precursor region. The active pool of miR408 regulated targets under control and drought conditions is impacted by the tissue type. Comparative expression analysis of the miR408/target module under different sets of conditions features 83 targets exhibiting antagonistic expression in rice, out of which 12 genes, including four PLANTACYANINS (OsUCL6, 7, 9 and 30), PIRIN, OsLPR1, OsCHUP1, OsDOF12, OsBGLU1, glycine-rich cell wall gene, OsDUT, and OsERF7, are among the high confidence targets. Further, overexpression of MIR408 in drought-sensitive rice cultivar (PB1) leads to the massive enhancement of vegetative growth in rice with improved ETR and Y(II) and enhanced dehydration stress tolerance. The above results suggest that miR408 is likely to act as a positive regulator of growth and vigor, as well as dehydration stress, making it a potential candidate for engineering drought tolerance in rice.
Collapse
Affiliation(s)
- Sonia Balyan
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Shivani Kansal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Ringyao Jajo
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Pratyush Rajiv Behere
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Rishika Chatterjee
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Saurabh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
10
|
Du K, Yang Y, Li J, Wang M, Jiang J, Wu J, Fang Y, Xiang Y, Wang Y. Functional Analysis of Bna-miR399c- PHO2 Regulatory Module Involved in Phosphorus Stress in Brassica napus. Life (Basel) 2023; 13:life13020310. [PMID: 36836667 PMCID: PMC9965056 DOI: 10.3390/life13020310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Phosphorus stress is one of the important factors restricting plant growth and development, and the microRNA (miRNA) family is involved in the regulation of the response to plant nutrient stress by repressing the expression of target genes at the post-transcriptional or translational level. miR399 is involved in the transportation of phosphate in multiple plants by improving tolerance to low Pi conditions. However, the effect of miR399 on the response of low Pi stress in rapeseed (Brassica napus L.) is unclear. The present study showed a significant increase in taproot length and lateral root number of plants overexpressing Bna-miR399c, while the biomass and Pi accumulation in shoots and roots increased, and the anthocyanin content decreased and chlorophyll content improved under low Pi stress. The results illustrate that Bna-miR399c could enhance the uptake and transportation of Pi in soil, thus making B. napus more tolerant to low Pi stress. Furthermore, we confirmed that BnPHO2 is one of the targets of Bna-miR399c, and the rejection of Pi in rapeseed seedlings increased due to the overexpression of BnPHO2. Hence, we suggest that miR399c-PHO2 module can effectively regulate the homeostasis of Pi in B. napus. Our study can also provide the theoretical basis for germplasm innovation and the design of intelligent crops with low nutrient input and high yield to achieve the dual objectives of income and yield increase and environmental protection in B. napus.
Collapse
Affiliation(s)
- Kun Du
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Yang Yang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Jinping Li
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Ming Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Jinjin Jiang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Jian Wu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Yujie Fang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Yang Xiang
- Guizhou Rapeseed Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550008, China
| | - Youping Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-514-87997303; Fax: +86-514-87991747
| |
Collapse
|
11
|
Ji J, Zeng Y, Zhang S, Chen F, Hou X, Li Q. The miR169b/NFYA1 module from the halophyte Halostachys caspica endows salt and drought tolerance in Arabidopsis through multi-pathways. FRONTIERS IN PLANT SCIENCE 2023; 13:1026421. [PMID: 36726670 PMCID: PMC9886095 DOI: 10.3389/fpls.2022.1026421] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/01/2022] [Indexed: 06/18/2023]
Abstract
Salt and drought are the major abiotic stress factors plaguing plant growth, development and crop yields. Certain abiotic-stress tolerant plants have developed special mechanisms for adapting to adverse environments in the long process of evolution. Elucidating the molecular mechanisms by which they can exert resistance to abiotic stresses is beneficial for breeding new cultivars to guide agricultural production. Halostachys caspica, a perennial halophyte belonging to Halostachys in Amaranthaceae, is extremely tolerant to harsh environments, which is commonly grown in the saline-alkali arid desert area of Northwest, China. However, the molecular mechanism of stress tolerance is unclear. Nuclear Factor Y-A (NFYA) is a transcription factor that regulates the expression of downstream genes in plant response to adverse environments. It has also been reported that some members of the NFYA family are the main targets of miR169 in plants. In this study, we mainly focused on exploring the functions and preliminary mechanism of the miR169b/NFYA1 module from H. caspica to abiotic stress. The main results showed that RLM-RACE technology validated that HcNFYA1 was targeted by HcmiR169b, qRT-PCR revealed that HcmiR169b was repressed and HcNFYA1 was induced in the H. caspica branches under various abiotic stress as well ABA treatment and Arabidopsis stable transformation platform with molecular methods was applied to elucidate that the HcmiR169b/HcNFYA1 module conferred the salt and drought tolerance to plants by enhancing ABA synthesis and ABA signal transduction pathways, maintaining ROS homeostasis and the stability of cell membrane. HcNFYA1 is expected to be a candidate gene to improve plant resistance to salt and drought stresses.
Collapse
Affiliation(s)
- Jieyun Ji
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, sChina
| | - Youling Zeng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, sChina
| | - Suwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, sChina
| | - Fangyuan Chen
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, sChina
| | - Xianfei Hou
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Qiang Li
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| |
Collapse
|
12
|
Reprogramming of Fundamental miRNA and Gene Expression during the Barley- Piriformospora indica Interaction. J Fungi (Basel) 2022; 9:jof9010024. [PMID: 36675845 PMCID: PMC9865155 DOI: 10.3390/jof9010024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The interactions between plants and microorganisms, which are widely present in the microbial-dominated rhizosphere, have been studied. This association is highly beneficial to the organisms involved, as plants benefit soil microorganisms by providing them with metabolites, while microorganisms promote plant growth and development by promoting nutrient uptake and/or protecting the plant from biotic and abiotic stresses. Piriformospora indica, an endophytic fungus of Sebacinales, colonizes the roots of a wide range of host plants and establishes various benefits for the plants. In this work, an interaction between barley and the P. indica was established to elucidate microRNA (miRNA)-based regulatory changes in miRNA profiles and gene expression that occurred during the symbiosis. Growth promotion and vigorous root development were confirmed in barley colonized by P. indica. The genome-wide expression profile analysis of miRNAs in barley root showed that 7,798,928, 6,418,039 and 7,136,192 clean reads were obtained from the libraries of mock, 3 dai and 7 dai roots, respectively. Sequencing of the barley genome yielded in 81 novel miRNA and 450 differently expressed genes (DEGs). Additionally, 11, 24, 6 differentially expressed microRNAs (DEMs) in barley were found in the three comparison groups, including 3 dai vs. mock, 7 dai vs. mock and 7 dai vs. 3 dai, respectively. The predicted target genes of these miRNAs are mainly involved in transcription, cell division, auxin signal perception and transduction, photosynthesis and hormone stimulus. Transcriptome analysis of P. indica identified 667 and 594 differentially expressed genes (DEG) at 3 dai and 7 dai. Annotation and GO (Gene Ontology) analysis indicated that the DEGs with the greatest changes were concentrated in oxidoreductase activity, ion transmembrane transporter activity. It implies that reprogramming of fundamental miRNA and gene expression occurs both in barley and P. indica. Analysis of global changes in miRNA profiles of barley colonized with P. indica revealed that several putative endogenous barley miRNAs expressed upon colonization belonging to known micro RNA families involved in growth and developmental regulation.
Collapse
|
13
|
Bian X, Yang X, Li Q, Sun X. Effects of planting of two common crops, Allium fistulosum and Brassica napus, on soil properties and microbial communities of ginseng cultivation in northeast China. BMC Microbiol 2022; 22:182. [PMID: 35869447 PMCID: PMC9306067 DOI: 10.1186/s12866-022-02592-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/05/2022] [Indexed: 02/06/2023] Open
Abstract
Background Long-term cultivation of ginseng can cause severe crop disorders and soil sickness. Crop rotation is an effective agricultural management measure to improve soil sustainability and decrease pathogens. However, the suitable ginseng rotation system and the changes in soil microbial community and soil characteristics under the rotation system need to be further explored. Methods To explore suitable ginseng crop rotation systems and improve soil utilization, Allium fistulosum and Brassica napus were planted on ginseng cultivation soil for one year. The effects of the two crops on the chemical properties and enzyme activities of the ginseng cultivation soil were evaluated by chemical analysis. In addition, amplicon sequencing targeting 16 s rDNA genes of bacteria and ITS of fungi has been used to characterize the functional and compositional diversity of microbial communities. Results The results elucidated that the levels of available phosphorus (AP) and available potassium (AK) in the soil increased significantly after one year of cultivation for both crops and Allium fistulosum cultivation may also have reduced soil salinity. In addition, the effects of the two crops on the activities of key soil enzymes were different. Catalase (CAT), urease (URE), and acid phosphatase (A-PHO) activities were significantly reduced and sucrase (SUC), and laccase (LAC) activities were significantly increased after Allium fistulosum planting. While A-PHO activity was significantly increased and LAC activity was significantly decreased after Brassica napus planting. Allium fistulosum significantly reduced the abundance of soil fungal communities. The cultivation of Allium fistulosum and Brassica napus significantly altered the composition of soil bacterial and fungal communities, where changes in the abundance of dominant microorganisms, such as Ascomycota, and Mortierellomycota, etc., were closely related to soil chemistry and enzyme activity. Moreover, both significantly reduced the abundance of the pathogenic fungus Ilyonectria. Conclusions Our study clarified the effects of Allium fistulosum and Brassica napus on the microbial community and physicochemical properties of ginseng cultivated soil and provides a basis for the sustainable application of ginseng cultivation soil and the development of ginseng crop rotation systems. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02592-0.
Collapse
|
14
|
Jing J, Yang P, Wang Y, Qu Q, An J, Fu B, Hu X, Zhou Y, Hu T, Cao Y. Identification of Competing Endogenous RNAs (ceRNAs) Network Associated with Drought Tolerance in Medicago truncatula with Rhizobium Symbiosis. Int J Mol Sci 2022; 23:14237. [PMID: 36430715 PMCID: PMC9696283 DOI: 10.3390/ijms232214237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022] Open
Abstract
Drought, bringing the risks of agricultural production losses, is becoming a globally environmental stress. Previous results suggested that legumes with nodules exhibited superior drought tolerance compared with the non-nodule group. To investigate the molecular mechanism of rhizobium symbiosis impacting drought tolerance, transcriptome and sRNAome sequencing were performed to identify the potential mRNA-miRNA-ncRNA dynamic network. Our results revealed that seedlings with active nodules exhibited enhanced drought tolerance by reserving energy, synthesizing N-glycans, and medicating systemic acquired resistance due to the early effects of symbiotic nitrogen fixation (SNF) triggered in contrast to the drought susceptible with inactive nodules. The improved drought tolerance might be involved in the decreased expression levels of miRNA such as mtr_miR169l-5p, mtr_miR398b, and mtr_miR398c and its target genes in seedlings with active nodules. Based on the negative expression pattern between miRNA and its target genes, we constructed an mRNA-miR169l-ncRNA ceRNA network. During severe drought stress, the lncRNA alternative splicings TCONS_00049507 and TCONS_00049510 competitively interacted with mtr_miR169l-5p, which upregulated the expression of NUCLEAR FACTOR-Y (NF-Y) transcription factor subfamily NF-YA genes MtNF-YA2 and MtNF-YA3 to regulate their downstream drought-response genes. Our results emphasized the importance of SNF plants affecting drought tolerance. In conclusion, our work provides insight into ceRNA involvement in rhizobium symbiosis contributing to drought tolerance and provides molecular evidence for future study.
Collapse
Affiliation(s)
- Jiaxian Jing
- College of Grassland Agriculture, Northwest A&F University, Xianyang 712100, China
| | - Peizhi Yang
- College of Grassland Agriculture, Northwest A&F University, Xianyang 712100, China
| | - Yue Wang
- College of Grassland Agriculture, Northwest A&F University, Xianyang 712100, China
| | - Qihao Qu
- College of Grassland Agriculture, Northwest A&F University, Xianyang 712100, China
| | - Jie An
- College of Grassland Agriculture, Northwest A&F University, Xianyang 712100, China
- State Key Laboratory of Agrobiotechnology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100083, China
| | - Bingzhe Fu
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Xiaoning Hu
- Shaanxi Academy of Forestry, Xi’an 710082, China
| | - Yi Zhou
- School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Tianming Hu
- College of Grassland Agriculture, Northwest A&F University, Xianyang 712100, China
| | - Yuman Cao
- College of Grassland Agriculture, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
15
|
Li J, Li Y, Wang R, Fu J, Zhou X, Fang Y, Wang Y, Liu Y. Multiple Functions of MiRNAs in Brassica napus L. Life (Basel) 2022; 12:1811. [PMID: 36362967 PMCID: PMC9694376 DOI: 10.3390/life12111811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 09/05/2023] Open
Abstract
The worldwide climate changes every year due to global warming, waterlogging, drought, salinity, pests, and pathogens, impeding crop productivity. Brassica napus is one of the most important oil crops in the world, and rapeseed oil is considered one of the most health-beneficial edible vegetable oils. Recently, miRNAs have been found and confirmed to control the expression of targets under disruptive environmental conditions. The mechanism is through the formation of the silencing complex that mediates post-transcriptional gene silencing, which pairs the target mRNA and target cleavage and/or translation inhibition. However, the functional role of miRNAs and targets in B. napus is still not clarified. This review focuses on the current knowledge of miRNAs concerning development regulation and biotic and abiotic stress responses in B. napus. Moreover, more strategies for miRNA manipulation in plants are discussed, along with future perspectives, and the enormous amount of transcriptome data available provides cues for miRNA functions in B. napus. Finally, the construction of the miRNA regulatory network can lead to the significant development of climate change-tolerant B. napus through miRNA manipulation.
Collapse
Affiliation(s)
- Jian Li
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221121, China
| | - Yangyang Li
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221121, China
| | - Rongyuan Wang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221121, China
| | - Jiangyan Fu
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221121, China
| | - Xinxing Zhou
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221121, China
| | - Yujie Fang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Youping Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Yaju Liu
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221121, China
| |
Collapse
|
16
|
Lin L, Fan J, Li P, Liu D, Ren S, Lin K, Fang Y, Lin C, Wang Y, Wu J. The Sclerotinia sclerotiorum-inducible promoter pBnGH17D7 in Brassica napus: isolation, characterization, and application in host-induced gene silencing. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6663-6677. [PMID: 35927220 PMCID: PMC9629790 DOI: 10.1093/jxb/erac328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Sclerotinia stem rot (SSR), caused by Sclerotinia sclerotiorum, is among the most devastating diseases in Brassica napus worldwide. Conventional breeding for SSR resistance in Brassica species is challenging due to the limited availability of resistant germplasm. Therefore, genetic engineering is an attractive approach for developing SSR-resistant Brassica crops. Compared with the constitutive promoter, an S. sclerotiorum-inducible promoter would avoid ectopic expression of defense genes that may cause plant growth deficits. In this study, we generated a S. sclerotiorum-inducible promoter. pBnGH17D7, from the promoter of B. napus glycosyl hydrolase 17 gene (pBnGH17). Specifically, 5'-deletion and promoter activity analyses in transgenic Arabidopsis thaliana plants defined a 189 bp region of pBnGH17 which was indispensable for S. sclerotiorum-induced response. Compared with pBnGH17, pBnGH17D7 showed a similar response upon S. sclerotiorum infection, but lower activity in plant tissues in the absence of S. sclerotiorum infection. Moreover, we revealed that the transcription factor BnTGA7 directly binds to the TGACG motif in pBnGH17D7 to activate BnGH17. Ultimately, pBnGH17D7 was exploited for engineering Sclerotinia-resistant B. napus via host-induced gene silencing. It induces high expression of siRNAs against the S. sclerotiorum pathogenic factor gene specifically during infection, leading to increased resistance.
Collapse
Affiliation(s)
- Li Lin
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Jialin Fan
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Panpan Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Dongxiao Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Sichao Ren
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Keyun Lin
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Yujie Fang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Chen Lin
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | | | | |
Collapse
|
17
|
Rao S, Gupta A, Bansal C, Sorin C, Crespi M, Mathur S. A conserved HSF:miR169:NF-YA loop involved in tomato and Arabidopsis heat stress tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:7-26. [PMID: 36050841 DOI: 10.1111/tpj.15963] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/15/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Heat stress transcription factors (HSFs) and microRNAs (miRNAs) regulate different stress and developmental networks in plants. Regulatory feedback mechanisms are at the basis of these networks. Here, we report that plants improve their heat stress tolerance through HSF-mediated transcriptional regulation of MIR169 and post-transcriptional regulation of Nuclear Factor-YA (NF-YA) transcription factors. We show that HSFs recognize tomato (Solanum lycopersicum) and Arabidopsis MIR169 promoters using yeast one-hybrid/chromatin immunoprecipitation-quantitative PCR. Silencing tomato HSFs using virus-induced gene silencing (VIGS) reduced Sly-MIR169 levels and enhanced Sly-NF-YA9/A10 target expression. Further, Sly-NF-YA9/A10 VIGS knockdown tomato plants and Arabidopsis plants overexpressing At-MIR169d or At-nf-ya2 mutants showed a link with increased heat tolerance. In contrast, Arabidopsis plants overexpressing At-NF-YA2 and those expressing a non-cleavable At-NF-YA2 form (miR169d-resistant At-NF-YA2) as well as plants in which At-miR169d regulation is inhibited (miR169d mimic plants) were more sensitive to heat stress, highlighting NF-YA as a negative regulator of heat tolerance. Furthermore, post-transcriptional cleavage of NF-YA by elevated miR169 levels resulted in alleviation of the repression of the heat stress effector HSFA7 in tomato and Arabidopsis, revealing a retroactive control of HSFs by the miR169:NF-YA node. Hence, a regulatory feedback loop involving HSFs, miR169s and NF-YAs plays a critical role in the regulation of the heat stress response in tomato and Arabidopsis plants.
Collapse
Affiliation(s)
- Sombir Rao
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110 067, India
| | - Apoorva Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110 067, India
| | - Chandni Bansal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110 067, India
| | - Celine Sorin
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, Univ Evry, 91405, Orsay, France
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91405, Orsay, France
| | - Martin Crespi
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, Univ Evry, 91405, Orsay, France
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91405, Orsay, France
| | - Saloni Mathur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110 067, India
| |
Collapse
|
18
|
Jiao P, Ma R, Wang C, Chen N, Liu S, Qu J, Guan S, Ma Y. Integration of mRNA and microRNA analysis reveals the molecular mechanisms underlying drought stress tolerance in maize ( Zea mays L.). FRONTIERS IN PLANT SCIENCE 2022; 13:932667. [PMID: 36247625 PMCID: PMC9557922 DOI: 10.3389/fpls.2022.932667] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/02/2022] [Indexed: 05/24/2023]
Abstract
Drought is among the most serious environmental issue globally, and seriously affects the development, growth, and yield of crops. Maize (Zea mays L.), an important crop and industrial raw material, is planted on a large scale worldwide and drought can lead to large-scale reductions in maize corn production; however, few studies have focused on the maize root system mechanisms underlying drought resistance. In this study, miRNA-mRNA analysis was performed to deeply analyze the molecular mechanisms involved in drought response in the maize root system under drought stress. Furthermore, preliminary investigation of the biological function of miR408a in the maize root system was also conducted. The morphological, physiological, and transcriptomic changes in the maize variety "M8186" at the seedling stage under 12% PEG 6000 drought treatment (0, 7, and 24 h) were analyzed. With prolonged drought stress, seedlings gradually withered, the root system grew significantly, and abscisic acid, brassinolide, lignin, glutathione, and trehalose content in the root system gradually increased. Furthermore, peroxidase activity increased, while gibberellic acid and jasmonic acid gradually decreased. Moreover, 32 differentially expressed miRNAs (DEMIRs), namely, 25 known miRNAs and 7 new miRNAs, and 3,765 differentially expressed mRNAs (DEMRs), were identified in maize root under drought stress by miRNA-seq and mRNA-seq analysis, respectively. Through combined miRNA-mRNA analysis, 16 miRNA-target gene pairs, comprising 9 DEMIRs and 15 DEMRs, were obtained. In addition, four metabolic pathways, namely, "plant hormone signal transduction", "phenylpropane biosynthesis", "glutathione metabolism", and "starch and sucrose metabolism", were predicted to have important roles in the response of the maize root system to drought. MiRNA and mRNA expression results were verified by real-time quantitative PCR. Finally, miR408a was selected for functional analysis and demonstrated to be a negative regulator of drought response, mainly through regulation of reactive oxygen species accumulation in the maize root system. This study helps to elaborate the regulatory response mechanisms of the maize root system under drought stress and predicts the biological functions of candidate miRNAs and mRNAs, providing strategies for subsequent mining for, and biological breeding to select for, drought-responsive genes in the maize root system.
Collapse
Affiliation(s)
- Peng Jiao
- College of Life Sciences, Jilin Agricultural University, Changchun, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ruiqi Ma
- College of Plant Science, Jilin University, Changchun, China
| | - Chunlai Wang
- College of Life Sciences, Jilin Agricultural University, Changchun, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Nannan Chen
- College of Life Sciences, Jilin Agricultural University, Changchun, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Siyan Liu
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jing Qu
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Shuyan Guan
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yiyong Ma
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
19
|
Zhou J, Yang L, Chen X, Zhou M, Shi W, Deng S, Luo Z. Genome-Wide Identification and Characterization of the NF-YA Gene Family and Its Expression in Response to Different Nitrogen Forms in Populus × canescens. Int J Mol Sci 2022; 23:ijms231911217. [PMID: 36232523 PMCID: PMC9570100 DOI: 10.3390/ijms231911217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
The NF-YA gene family is a class of conserved transcription factors that play important roles in plant growth and development and the response to abiotic stress. Poplar is a model organism for studying the rapid growth of woody plants that need to consume many nutrients. However, studies on the response of the NF-YA gene family to nitrogen in woody plants are limited. In this study, we conducted a systematic and comprehensive bioinformatic analysis of the NF-YA gene family based on Populus × canescens genomic data. A total of 13 PcNF-YA genes were identified and mapped to 6 chromosomes. According to the amino acid sequence characteristics and genetic structure of the NF-YA domains, the PcNF-YAs were divided into five clades. Gene duplication analysis revealed five pairs of replicated fragments and one pair of tandem duplicates in 13 PcNF-YA genes. The PcNF-YA gene promoter region is rich in different cis-acting regulatory elements, among which MYB and MYC elements are the most abundant. Among the 13 PcNF-YA genes, 9 contained binding sites for P. × canescens miR169s. In addition, RT-qPCR data from the roots, wood, leaves and bark of P. × canescens showed different spatial expression profiles of PcNF-YA genes. Transcriptome data and RT-qPCR analysis showed that the expression of PcNF-YA genes was altered by treatment with different nitrogen forms. Furthermore, the functions of PcNF-YA genes in transgenic poplar were analyzed, and the potential roles of PcNF-YA genes in the response of poplar roots to different nitrogen forms were revealed, indicating that these genes regulate root growth and development.
Collapse
Affiliation(s)
- Jing Zhou
- Correspondence: ; Tel.: +86-10-62889368
| | | | | | | | | | | | | |
Collapse
|
20
|
Hu Y, Chen X, Shen X. Regulatory network established by transcription factors transmits drought stress signals in plant. STRESS BIOLOGY 2022; 2:26. [PMID: 37676542 PMCID: PMC10442052 DOI: 10.1007/s44154-022-00048-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/20/2022] [Indexed: 09/08/2023]
Abstract
Plants are sessile organisms that evolve with a flexible signal transduction system in order to rapidly respond to environmental changes. Drought, a common abiotic stress, affects multiple plant developmental processes especially growth. In response to drought stress, an intricate hierarchical regulatory network is established in plant to survive from the extreme environment. The transcriptional regulation carried out by transcription factors (TFs) is the most important step for the establishment of the network. In this review, we summarized almost all the TFs that have been reported to participate in drought tolerance (DT) in plant. Totally 466 TFs from 86 plant species that mostly belong to 11 families are collected here. This demonstrates that TFs in these 11 families are the main transcriptional regulators of plant DT. The regulatory network is built by direct protein-protein interaction or mutual regulation of TFs. TFs receive upstream signals possibly via post-transcriptional regulation and output signals to downstream targets via direct binding to their promoters to regulate gene expression.
Collapse
Affiliation(s)
- Yongfeng Hu
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement, Biotechnology Research Center, China Three Gorges University, Yichang, 443002 Hubei China
| | - Xiaoliang Chen
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement, Biotechnology Research Center, China Three Gorges University, Yichang, 443002 Hubei China
| | - Xiangling Shen
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement, Biotechnology Research Center, China Three Gorges University, Yichang, 443002 Hubei China
| |
Collapse
|
21
|
Chen B, Ding Z, Zhou X, Wang Y, Huang F, Sun J, Chen J, Han W. Integrated Full-Length Transcriptome and MicroRNA Sequencing Approaches Provide Insights Into Salt Tolerance in Mangrove ( Sonneratia apetala Buch.-Ham.). Front Genet 2022; 13:932832. [PMID: 35899202 PMCID: PMC9310009 DOI: 10.3389/fgene.2022.932832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small RNA molecules that serve as key players in plant stress responses. Although stress-regulated miRNAs have been explored in various plants, they are not well studied in mangroves. Herein, we combined PacBio isoform sequencing (Iso-Seq) with BGISEQ short-read RNA-seq to probe the role of miRNAs in the salt stress response of the mangrove plant, Sonneratia apetala Buch.-Ham. A total of 1,702,463 circular consensus sequencing reads were generated that produced 295,501 nonredundant full-length transcripts from the leaves of a 1-year-old S. apetala. After sequencing nine small RNA libraries constructed from control and 1- and 28-day 300 mM NaCl treatments, we identified 143 miRNAs (114 known and 29 novel) from a total of >261 million short reads. With the criteria of |log2FC| ≥ 1 and q-value < 0.05, 42 and 70 miRNAs were differentially accumulated after 1- and 28-day salt treatments, respectively. These differential accumulated miRNAs potentially targeted salt-responsive genes encoding transcription factors, ion homeostasis, osmotic protection, and detoxificant-related proteins, reminiscent of their responsibility for salinity adaptation in S. apetala. Particularly, 62 miRNAs were Sonneratia specific under salt stress, of which 34 were co-expressed with their 131 predicted targets, thus producing 140 miRNA-target interactions. Of these, 82 miRNA-target pairs exhibited negative correlations. Eighteen miRNA targets were categorized for the 'environmental information processing' during KEGG analysis and were related to plant hormone signal transduction (ko04075), MAPK signaling pathway-plant (ko04016), and ABC transporters (ko02010). These results underscored miRNAs as possible contributors to mangrove success in severe environments and offer insights into an miRNA-mediated regulatory mechanism of salt response in S. apetala.
Collapse
Affiliation(s)
- Beibei Chen
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang, China
| | - Zeyi Ding
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang, China
| | - Xiang Zhou
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang, China
| | - Yue Wang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Fei Huang
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang, China
| | - Jiaxin Sun
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang, China
| | - Jinhui Chen
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Weidong Han
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
22
|
Sun M, Li Y, Zheng J, Wu D, Li C, Li Z, Zang Z, Zhang Y, Fang Q, Li W, Han Y, Zhao X, Li Y. A Nuclear Factor Y-B Transcription Factor, GmNFYB17, Regulates Resistance to Drought Stress in Soybean. Int J Mol Sci 2022; 23:7242. [PMID: 35806245 PMCID: PMC9266788 DOI: 10.3390/ijms23137242] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/24/2022] Open
Abstract
Soybean is sensitive to drought stress, and increasing tolerance to drought stresses is an important target for improving the performance of soybean in the field. The genetic mechanisms underlying soybean's drought tolerance remain largely unknown. Via a genome-wide association study (GWAS) combined with linkage analysis, we identified 11 single-nucleotide polymorphisms (SNPs) and 22 quantitative trait locus (QTLs) that are significantly associated with soybean drought tolerance. One of these loci, namely qGI10-1, was co-located by GWAS and linkage mapping. The two intervals of qGI10-1 were differentiated between wild and cultivated soybean. A nuclear factor Y transcription factor, GmNFYB17, was located in one of the differentiated regions of qGI10-1 and thus selected as a candidate gene for further analyses. The analysis of 29 homologous genes of GmNFYB17 in soybean showed that most of the genes from this family were involved in drought stress. The over-expression of GmNFYB17 in soybean enhanced drought resistance and yield accumulation. The transgenic plants grew better than control under limited water conditions and showed a lower degree of leaf damage and MDA content but higher RWC, SOD activity and proline content compared with control. Moreover, the transgenic plants showed a fast-growing root system, especially regarding a higher root-top ratio and more branching roots and lateral roots. The better agronomic traits of yield were also found in GmNFYB17 transgenic plants. Thus, the GmNFYB17 gene was proven to positively regulate drought stress resistance and modulate root growth in soybean. These results provide important insights into the molecular mechanisms underlying drought tolerance in soybean.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yingpeng Han
- Key Laboratory of Soybean Biology, Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China; (M.S.); (Y.L.); (J.Z.); (D.W.); (C.L.); (Z.L.); (Z.Z.); (Y.Z.); (Q.F.); (W.L.); (X.Z.)
| | | | - Yongguang Li
- Key Laboratory of Soybean Biology, Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China; (M.S.); (Y.L.); (J.Z.); (D.W.); (C.L.); (Z.L.); (Z.Z.); (Y.Z.); (Q.F.); (W.L.); (X.Z.)
| |
Collapse
|
23
|
Ma X, Zhao F, Zhou B. The Characters of Non-Coding RNAs and Their Biological Roles in Plant Development and Abiotic Stress Response. Int J Mol Sci 2022; 23:ijms23084124. [PMID: 35456943 PMCID: PMC9032736 DOI: 10.3390/ijms23084124] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 02/07/2023] Open
Abstract
Plant growth and development are greatly affected by the environment. Many genes have been identified to be involved in regulating plant development and adaption of abiotic stress. Apart from protein-coding genes, more and more evidence indicates that non-coding RNAs (ncRNAs), including small RNAs and long ncRNAs (lncRNAs), can target plant developmental and stress-responsive mRNAs, regulatory genes, DNA regulatory regions, and proteins to regulate the transcription of various genes at the transcriptional, posttranscriptional, and epigenetic level. Currently, the molecular regulatory mechanisms of sRNAs and lncRNAs controlling plant development and abiotic response are being deeply explored. In this review, we summarize the recent research progress of small RNAs and lncRNAs in plants, focusing on the signal factors, expression characters, targets functions, and interplay network of ncRNAs and their targets in plant development and abiotic stress responses. The complex molecular regulatory pathways among small RNAs, lncRNAs, and targets in plants are also discussed. Understanding molecular mechanisms and functional implications of ncRNAs in various abiotic stress responses and development will benefit us in regard to the use of ncRNAs as potential character-determining factors in molecular plant breeding.
Collapse
Affiliation(s)
- Xu Ma
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin 150040, China;
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Fei Zhao
- Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
- Correspondence: (F.Z.); (B.Z.); Tel.: +86-0538-8243-965 (F.Z.); +86-0451-8219-1738 (B.Z.)
| | - Bo Zhou
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin 150040, China;
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- Correspondence: (F.Z.); (B.Z.); Tel.: +86-0538-8243-965 (F.Z.); +86-0451-8219-1738 (B.Z.)
| |
Collapse
|