1
|
Lv J, Wu Y, Huang R, Xu R, Zhang J, Liu Y, Luo L, Liu G, Liu P. Combined Analysis of the Leaf Metabolome, Lipidome, and Candidate Gene Function: Insights into Genotypic Variation in Phosphorus Utilization Efficiency in Stylosanthes guianensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2653-2668. [PMID: 39818859 DOI: 10.1021/acs.jafc.4c06927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Stylo (Stylosanthes guianensis) exhibits excellent tolerance to low-phosphate (Pi) availability, but the underlying mechanisms responsible for improving the phosphorus (P) utilization efficiency (PUE) remain unclear. This study employed metabolomics, lipidomics, and gene expression analyses to investigate the differential responses to low-Pi stress between the high-PUE genotype CF047827 and the cultivar Reyan No. 2. Results showed that CF047827 had higher expression levels of membrane lipid remodeling-related genes in its leaves compared to Reyan No. 2 under low-Pi conditions. This was accompanied by greater phospholipid degradation and non-P-containing lipid biosynthesis in the leaves of CF047827. Furthermore, the purple acid phosphatase gene SgPAP27a, which is more highly expressed in the leaves of CF047827 than in Reyan No. 2 under low-Pi conditions, was identified and functionally characterized. Its role in promoting phospholipid degradation and enhancing PUE was confirmed through heterologous expression in Arabidopsis. These findings provide insights and identify potential candidate genes for breeding high-PUE crop cultivars.
Collapse
Affiliation(s)
- Jinhui Lv
- School of Tropical Agriculture and Forestry & Sanya Institute Breeding and Multiplication, Hainan University, Haikou/Sanya 570228/572025, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yuanhang Wu
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Rui Huang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Ranran Xu
- School of Tropical Agriculture and Forestry & Sanya Institute Breeding and Multiplication, Hainan University, Haikou/Sanya 570228/572025, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jianyu Zhang
- School of Tropical Agriculture and Forestry & Sanya Institute Breeding and Multiplication, Hainan University, Haikou/Sanya 570228/572025, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yu Liu
- School of Tropical Agriculture and Forestry & Sanya Institute Breeding and Multiplication, Hainan University, Haikou/Sanya 570228/572025, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Lijuan Luo
- School of Tropical Agriculture and Forestry & Sanya Institute Breeding and Multiplication, Hainan University, Haikou/Sanya 570228/572025, China
| | - Guodao Liu
- School of Tropical Agriculture and Forestry & Sanya Institute Breeding and Multiplication, Hainan University, Haikou/Sanya 570228/572025, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Pandao Liu
- School of Tropical Agriculture and Forestry & Sanya Institute Breeding and Multiplication, Hainan University, Haikou/Sanya 570228/572025, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
2
|
Li X, Tian J, Chen X, Liao H. Bioengineering and management for efficient and sustainable utilization of phosphorus in crops. Curr Opin Biotechnol 2024; 90:103180. [PMID: 39241658 DOI: 10.1016/j.copbio.2024.103180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 09/09/2024]
Abstract
Phosphorus (P) is an essential macronutrient for plant growth, but low P availability in soils is also a primary constraint to crop production. To meet the increasing demands for food, P fertilizer applications have been increased, causing the accumulation of surplus P in soils, which has led to the frequency and magnitude of associated risk effects on agroecosystems. Finding solutions for efficient and sustainable crop P utilization is, therefore, an urgent priority. This review summarizes recent progress in bioengineering approaches to improving crop P efficiency and highlights that modifying root architecture in P-deficient soils and reducing P accumulation in grains in soils with P surplus could offer a way forward for improving P use efficiency.
Collapse
Affiliation(s)
- Xinxin Li
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiang Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, China
| | - Xinping Chen
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Hong Liao
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
3
|
Hu D, Cui R, Wang K, Yang Y, Wang R, Zhu H, He M, Fan Y, Wang L, Wang L, Chu S, Zhang J, Zhang S, Yang Y, Zhai X, Lü H, Zhang D, Wang J, Kong F, Yu D, Zhang H, Zhang D. The Myb73-GDPD2-GA2ox1 transcriptional regulatory module confers phosphate deficiency tolerance in soybean. THE PLANT CELL 2024; 36:2176-2200. [PMID: 38345432 PMCID: PMC11132883 DOI: 10.1093/plcell/koae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 02/07/2024] [Indexed: 05/30/2024]
Abstract
Phosphorus is indispensable in agricultural production. An increasing food supply requires more efficient use of phosphate due to limited phosphate resources. However, how crops regulate phosphate efficiency remains largely unknown. Here, we identified a major quantitative trait locus, qPE19, that controls 7 low-phosphate (LP)-related traits in soybean (Glycine max) through linkage mapping and genome-wide association studies. We identified the gene responsible for qPE19 as GLYCEROPHOSPHORYL DIESTER PHOSPHODIESTERASE2 (GmGDPD2), and haplotype 5 represents the optimal allele favoring LP tolerance. Overexpression of GmGDPD2 significantly affects hormone signaling and improves root architecture, phosphate efficiency and yield-related traits; conversely, CRISPR/Cas9-edited plants show decreases in these traits. GmMyb73 negatively regulates GmGDPD2 by directly binding to its promoter; thus, GmMyb73 negatively regulates LP tolerance. GmGDPD2 physically interacts with GA 2-oxidase 1 (GmGA2ox1) in the plasma membrane, and overexpressing GmGA2ox1 enhances LP-associated traits, similar to GmGDPD2 overexpression. Analysis of double mutants for GmGDPD2 and GmGA2ox1 demonstrated that GmGDPD2 regulates LP tolerance likely by influencing auxin and gibberellin dose-associated cell division in the root. These results reveal a regulatory module that plays a major role in regulating LP tolerance in soybeans and is expected to be utilized to develop phosphate-efficient varieties to enhance soybean production, particularly in phosphate-deficient soils.
Collapse
Affiliation(s)
- Dandan Hu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Ruifan Cui
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Ke Wang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Yuming Yang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Ruiyang Wang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Hongqing Zhu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Mengshi He
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Yukun Fan
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Le Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Li Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shanshan Chu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Jinyu Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Shanshan Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Yifei Yang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Xuhao Zhai
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Haiyan Lü
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Dandan Zhang
- State Key Laboratory of Agricultural Microbiology, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinshe Wang
- Zhengzhou National Subcenter for Soybean Improvement, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Fanjiang Kong
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Hengyou Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Dan Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
4
|
Ghazy MI, El-Naem SA, Hefeina AG, Sallam A, Eltaher S. Genome-Wide Association Study of Rice Diversity Panel Reveals New QTLs for Tolerance to Water Deficit Under the Egyptian Conditions. RICE (NEW YORK, N.Y.) 2024; 17:29. [PMID: 38649523 PMCID: PMC11035518 DOI: 10.1186/s12284-024-00703-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/26/2024] [Indexed: 04/25/2024]
Abstract
Drought has a significant impact on rice yield by restricting the crop's ability to grow and develop. Producing rice cultivars adapted to water deficit conditions is still the main interest of rice breeders and geneticists. To address this challenge, a set of 413 highly diverse rice populations were evaluated under normal and water deficit conditions for two growing seasons of 2021 and 2022. High genetic variation was found among genotypes for all studied traits. The heritability estimates ranged from 0.82 (panicle length) to 0.95 (plant height). Sterility percentage (SET%) was the most trait affected by water deficit in two growing seasons. 22 Rice genotypes were classified as drought tolerant in both years. Genome-wide association mapping was performed for all traits in the two growing seasons under both conditions using a total of 700,000 SNPs. The GWAS results revealed important and major SNPs associated with all traits. 26 Significant SNPs with stable allele effects were found to be associated with yield traits under water deficit conditions in both years. The results of this study provided rice genotypes that can be adapted under water deficit conditions and important stable SNP markers that can be used for marker-assisted selection after validation in different genetic backgrounds.
Collapse
Affiliation(s)
- Mohamed I Ghazy
- Rice Research and Training Department, Field Crops Research Institute, Agricultural Research Center, Giza, 12619, Egypt
| | - Sabry A El-Naem
- Rice Research and Training Department, Field Crops Research Institute, Agricultural Research Center, Giza, 12619, Egypt
| | - Ahmed G Hefeina
- Rice Research and Training Department, Field Crops Research Institute, Agricultural Research Center, Giza, 12619, Egypt
| | - Ahmed Sallam
- Department of Plant Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City (USC), Sadat City, 32897, Egypt.
| | - Shamseldeen Eltaher
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt
| |
Collapse
|
5
|
Wang Q, Yu C, Kong C, Zeng H, Yu W, Wu J. Genomics analysis of three phosphorus-dissolving bacteria isolated from Torreya grandis soil. Int Microbiol 2024; 27:361-376. [PMID: 37453003 DOI: 10.1007/s10123-023-00393-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
With the increasingly serious problem of phosphorus deficiency in the subtropical zone, chemical fertilizers are widely used. But it pollutes the environment. Phosphorus-solubilizing microorganisms (PSMs) are referred to as a new solution to this problem. We explored the phosphorus-dissolving characteristics of PSB strains isolated from the rhizosphere soil of Torreya grandis to provide a theoretical basis for selecting the strain for managing phosphorus deficiency in subtropical soils and also provides a more sufficient theoretical basis for the utilization of PSMs. From 84 strains, three strains exhibiting high phosphorus solubility and strong IAA producing capacity were selected through a series of experiments. The phosphate-solubilizing capacity of the three selected strains W1, W74, and W83 were 339.78 mg/L, 332.57 mg/L, and 358.61 mg/L, respectively. Furthermore, W1 showed the strongest IAA secreting capacity of 8.62 mg/L, followed by W74 (7.58 mg/L), and W83 (7.59 mg/L). Determination by metabolites, it was observed that these three strains dissolved phosphorus by secreting a large amount of lactic acid, aromatic acid, and succinic acid. The genome of these PSBs were sequenced and annotated in this study. Our results revealed that PSB primarily promotes their metabolic pathway, especially carbon metabolism, to secrete plenty organic acids for dissolving insoluble phosphorus.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Chenliang Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Congcong Kong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Hao Zeng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Weiwu Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China.
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China.
- NFGA Engineering Research Center for Torreya Grandis 'Merrillii', Zhejiang A&F University, Hangzhou, 311300, China.
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China.
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China.
- NFGA Engineering Research Center for Torreya Grandis 'Merrillii', Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
6
|
Sun X, Zhang H, Yang Z, Xing X, Fu Z, Li X, Kong Y, Li W, Du H, Zhang C. Overexpression of GmPAP4 Enhances Symbiotic Nitrogen Fixation and Seed Yield in Soybean under Phosphorus-Deficient Condition. Int J Mol Sci 2024; 25:3649. [PMID: 38612461 PMCID: PMC11011270 DOI: 10.3390/ijms25073649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/14/2024] Open
Abstract
Legume crops establish symbiosis with nitrogen-fixing rhizobia for biological nitrogen fixation (BNF), a process that provides a prominent natural nitrogen source in agroecosystems; and efficient nodulation and nitrogen fixation processes require a large amount of phosphorus (P). Here, a role of GmPAP4, a nodule-localized purple acid phosphatase, in BNF and seed yield was functionally characterized in whole transgenic soybean (Glycine max) plants under a P-limited condition. GmPAP4 was specifically expressed in the infection zones of soybean nodules and its expression was greatly induced in low P stress. Altered expression of GmPAP4 significantly affected soybean nodulation, BNF, and yield under the P-deficient condition. Nodule number, nodule fresh weight, nodule nitrogenase, APase activities, and nodule total P content were significantly increased in GmPAP4 overexpression (OE) lines. Structural characteristics revealed by toluidine blue staining showed that overexpression of GmPAP4 resulted in a larger infection area than wild-type (WT) control. Moreover, the plant biomass and N and P content of shoot and root in GmPAP4 OE lines were also greatly improved, resulting in increased soybean yield in the P-deficient condition. Taken together, our results demonstrated that GmPAP4, a purple acid phosphatase, increased P utilization efficiency in nodules under a P-deficient condition and, subsequently, enhanced symbiotic BNF and seed yield of soybean.
Collapse
Affiliation(s)
- Xi Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China; (X.S.); (H.Z.); (Z.Y.); (X.X.); (Z.F.); (X.L.); (Y.K.); (W.L.)
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding 071000, China
| | - Huantao Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China; (X.S.); (H.Z.); (Z.Y.); (X.X.); (Z.F.); (X.L.); (Y.K.); (W.L.)
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding 071000, China
| | - Zhanwu Yang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China; (X.S.); (H.Z.); (Z.Y.); (X.X.); (Z.F.); (X.L.); (Y.K.); (W.L.)
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding 071000, China
| | - Xinzhu Xing
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China; (X.S.); (H.Z.); (Z.Y.); (X.X.); (Z.F.); (X.L.); (Y.K.); (W.L.)
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding 071000, China
| | - Zhao Fu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China; (X.S.); (H.Z.); (Z.Y.); (X.X.); (Z.F.); (X.L.); (Y.K.); (W.L.)
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding 071000, China
| | - Xihuan Li
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China; (X.S.); (H.Z.); (Z.Y.); (X.X.); (Z.F.); (X.L.); (Y.K.); (W.L.)
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding 071000, China
| | - Youbin Kong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China; (X.S.); (H.Z.); (Z.Y.); (X.X.); (Z.F.); (X.L.); (Y.K.); (W.L.)
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding 071000, China
| | - Wenlong Li
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China; (X.S.); (H.Z.); (Z.Y.); (X.X.); (Z.F.); (X.L.); (Y.K.); (W.L.)
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding 071000, China
| | - Hui Du
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China; (X.S.); (H.Z.); (Z.Y.); (X.X.); (Z.F.); (X.L.); (Y.K.); (W.L.)
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding 071000, China
| | - Caiying Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China; (X.S.); (H.Z.); (Z.Y.); (X.X.); (Z.F.); (X.L.); (Y.K.); (W.L.)
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
7
|
Zhang H, He X, Munyaneza V, Zhang G, Ye X, Wang C, Shi L, Wang X, Ding G. Acid phosphatase involved in phosphate homeostasis in Brassica napus and the functional analysis of BnaPAP10s. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108389. [PMID: 38377886 DOI: 10.1016/j.plaphy.2024.108389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/21/2023] [Accepted: 01/18/2024] [Indexed: 02/22/2024]
Abstract
Purple acid phosphatases (PAPs) are involved in activating the rhizosphere's organic phosphorus (P) and promoting P recycling during plant development, especially under the long-term P deficiency conditions in acid soil. However, the function of BnaPAPs in response to P deficiency stress in Brassica napus has rarely been explored. In this study, we found that the acid phosphatase activities (APA) of rapeseed shoot and root increased under P deficienct conditions. Genome-wide identification found that 82 PAP genes were unevenly distributed on 19 chromosomes in B. napus, which could be divided into eight subfamilies. The segmental duplication events were the main driving force for expansion during evolution, and the gene structures and conserved motifs of most members within the same subfamily were highly conservative. Moreover, the expression levels of 37 and 23 different expressed genes were induced by low P in leaf and root, respectively. BnaA09.PAP10a and BnaC09.PAP10a were identified as candidate genes via interaction networks. Significantly, both BnaPAP10a overexpression lines significantly increased root-related APA and total phosphate concentration under P deficiency and ATP supply conditions, thereby improving plant growth and root length. In summary, our results provided a valuable foundation for further study of BnaPAP functions.
Collapse
Affiliation(s)
- Hao Zhang
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Xuyou He
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Venuste Munyaneza
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Guangzeng Zhang
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Xiangsheng Ye
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Chuang Wang
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Lei Shi
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, 510000, Guangdong, China
| | - Guangda Ding
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China.
| |
Collapse
|
8
|
Song J, Liu Y, Cai W, Zhou S, Fan X, Hu H, Ren L, Xue Y. Unregulated GmAGL82 due to Phosphorus Deficiency Positively Regulates Root Nodule Growth in Soybean. Int J Mol Sci 2024; 25:1802. [PMID: 38339080 PMCID: PMC10855635 DOI: 10.3390/ijms25031802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Nitrogen fixation, occurring through the symbiotic relationship between legumes and rhizobia in root nodules, is crucial in sustainable agriculture. Nodulation and soybean production are influenced by low levels of phosphorus stress. In this study, we discovered a MADS transcription factor, GmAGL82, which is preferentially expressed in nodules and displays significantly increased expression under conditions of phosphate (Pi) deficiency. The overexpression of GmAGL82 in composite transgenic plants resulted in an increased number of nodules, higher fresh weight, and enhanced soluble Pi concentration, which subsequently increased the nitrogen content, phosphorus content, and overall growth of soybean plants. Additionally, transcriptome analysis revealed that the overexpression of GmAGL82 significantly upregulated the expression of genes associated with nodule growth, such as GmENOD100, GmHSP17.1, GmHSP17.9, GmSPX5, and GmPIN9d. Based on these findings, we concluded that GmAGL82 likely participates in the phosphorus signaling pathway and positively regulates nodulation in soybeans. The findings of this research may lay the theoretical groundwork for further studies and candidate gene resources for the genetic improvement of nutrient-efficient soybean varieties in acidic soils.
Collapse
Affiliation(s)
- Jia Song
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China; (J.S.); (Y.L.); (H.H.)
| | - Ying Liu
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China; (J.S.); (Y.L.); (H.H.)
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Wangxiao Cai
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; (W.C.); (S.Z.); (X.F.)
| | - Silin Zhou
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; (W.C.); (S.Z.); (X.F.)
| | - Xi Fan
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; (W.C.); (S.Z.); (X.F.)
| | - Hanqiao Hu
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China; (J.S.); (Y.L.); (H.H.)
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Lei Ren
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China; (J.S.); (Y.L.); (H.H.)
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Yingbin Xue
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China; (J.S.); (Y.L.); (H.H.)
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| |
Collapse
|
9
|
Qin X, Hao S, Hu C, Yu M, Shabala S, Tan Q, Wu S, Xu S, Sun J, Sun X. Revealing the Mechanistic Basis of Regulation of Phosphorus Uptake in Soybean ( Glycine max) Roots by Molybdenum: An Integrated Omics Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13729-13744. [PMID: 37682241 DOI: 10.1021/acs.jafc.3c04637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
While molybdenum (Mo) application can improve phosphorus (P) availability to plants by changing P speciation in the rhizosphere, the mechanistic basis of this process remains unclear. This work investigated the impact of various combinations of Mo and P treatments on root morphology, P and Mo uptake, and root transcriptome and metabolome. Mo application significantly increased soybean biomass and the number of lateral roots at both low (5 μmol) or normal (500 μmol) P levels and significantly improved P concentration and accumulation in Normal P treatment. Compared with the Normal P treatment, Low P significantly increased the number of roots, root surface area, and root acid phosphatase secretion. A total of 6811 Mo-responsive differentially expressed genes and 135 differential metabolites were identified at two P levels. At Low P, transcriptional changes significantly increased root synthesis and secretion of succinic acid, methylmalonic acid, and other organic acids as well as acid phosphatase, thereby increasing the conversion of soil aluminum-bound P and organic P into available P. At Normal P, Mo application increased P uptake mainly by increasing the number of lateral roots. Thus, Mo helps crops adapt to different P levels by regulating root anatomy and transcriptional and metabolic profiles of their roots.
Collapse
Affiliation(s)
- Xiaoming Qin
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-Elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Songlan Hao
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-Elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengxiao Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-Elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- School of Biological Science, University of Western Australia, Crawley, WA 6009, Australia
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas 7005, Australia
| | - Qiling Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-Elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Songwei Wu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-Elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Shoujun Xu
- Guangdong Agricultural Environment and Cultivated Land Quality Protection Center, Guangdong Agricultural and Rural Investment Project Center, Guangzhou 510500, China
| | - Jingguo Sun
- Hubei Academy of Tobacco Science, Wuhan 430030, China
| | - Xuecheng Sun
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-Elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| |
Collapse
|
10
|
Wang X, Zhou S, Wang J, Lin W, Yao X, Su J, Li H, Fang C, Kong F, Guan Y. Genome-wide association study for biomass accumulation traits in soybean. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:33. [PMID: 37312748 PMCID: PMC10248709 DOI: 10.1007/s11032-023-01380-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/04/2023] [Indexed: 06/15/2023]
Abstract
Soybean is one of the most versatile crops for oil production, human diets, and feedstocks. The vegetative biomass of soybean is an important determinant of seed yield and is crucial for the forage usages. However, the genetic control of soybean biomass is not well explained. In this work, we used a soybean germplasm population, including 231 improved cultivars, 207 landraces, and 121 wild soybeans, to investigate the genetic basis of biomass accumulation of soybean plants at the V6 stage. We found that biomass-related traits, including NDW (nodule dry weight), RDW (root dry weight), SDW (shoot dry weight), and TDW (total dry weight), were domesticated during soybean evolution. In total, 10 loci, encompassing 47 putative candidate genes, were detected for all biomass-related traits by a genome-wide association study. Among these loci, seven domestication sweeps and six improvement sweeps were identified. Glyma.05G047900, a purple acid phosphatase, was a strong candidate gene to improve biomass for future soybean breeding. This study provided new insights into the genetic basis of biomass accumulation during soybean evolution. Supplementary information The online version contains supplementary material available at 10.1007/s11032-023-01380-6.
Collapse
Affiliation(s)
- Xin Wang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Shaodong Zhou
- College of Resources and Environment, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Jie Wang
- College of Resources and Environment, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
- FAFU-UCR Joint Center for Horticultural Plant Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Wenxin Lin
- College of Resources and Environment, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Xiaolei Yao
- College of Resources and Environment, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Jiaqing Su
- College of Resources and Environment, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Haiyang Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Chao Fang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Fanjiang Kong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Yuefeng Guan
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
- FAFU-UCR Joint Center for Horticultural Plant Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| |
Collapse
|
11
|
Du H, Fang C, Li Y, Kong F, Liu B. Understandings and future challenges in soybean functional genomics and molecular breeding. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:468-495. [PMID: 36511121 DOI: 10.1111/jipb.13433] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Soybean (Glycine max) is a major source of plant protein and oil. Soybean breeding has benefited from advances in functional genomics. In particular, the release of soybean reference genomes has advanced our understanding of soybean adaptation to soil nutrient deficiencies, the molecular mechanism of symbiotic nitrogen (N) fixation, biotic and abiotic stress tolerance, and the roles of flowering time in regional adaptation, plant architecture, and seed yield and quality. Nevertheless, many challenges remain for soybean functional genomics and molecular breeding, mainly related to improving grain yield through high-density planting, maize-soybean intercropping, taking advantage of wild resources, utilization of heterosis, genomic prediction and selection breeding, and precise breeding through genome editing. This review summarizes the current progress in soybean functional genomics and directs future challenges for molecular breeding of soybean.
Collapse
Affiliation(s)
- Haiping Du
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Chao Fang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Yaru Li
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|